1
|
Chen W, Byun J, Kang HC, Lee HS, Lee JY, Kwon YJ, Cho YY. Karyoptosis as a novel type of UVB-induced regulated cell death. Free Radic Res 2024; 58:796-810. [PMID: 39625813 DOI: 10.1080/10715762.2024.2433986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Karyoptosis is a type of regulated cell death (RCD) characterized by explosive nuclear rupture caused by a loss of nuclear membrane integrity, resulting in the release of genomic DNA and other nuclear components into the cytosol and extracellular environment. The mechanism underlying karyoptosis involves a delicate balance between the following forces: the expansion force exerted by the tightly packed DNA in the nucleus, the resistance provided by the nuclear lamina at the inner nuclear membrane (INM), and the tensile force from the cytoskeleton that helps position the nucleus at the center of the cytoplasm, allowing it to remain maximally expanded. In addition, CREB3, a type II integral membrane protein with DNA-binding ability, tethers chromatin to the INM, providing a tightening force through chromatin interactions that prevent nuclear membrane rupture. UVB radiation can trigger this process, inducing CREB3-FL cleavage and producing CREB3-CF. Therefore, UVB acts as an intrinsic factor in the induction of karyoptosis. Importantly, biochemical analysis of RCD markers shows that karyoptosis is distinct from other forms of cell death, such as apoptosis, autophagy, necroptosis, and pyroptosis. This review explores the mechanisms involved in maintaining nuclear membrane integrity and the role of CREB3 in triggering karyoptosis and provides brief suggestions on the potential implications for targeting cancer cells.
Collapse
Affiliation(s)
- Weidong Chen
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Jiin Byun
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Hye Suk Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Joo Young Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Yong-Yeon Cho
- BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| |
Collapse
|
2
|
Fedorowicz M, Halas A, Macias M, Sledziewska-Gojska E, Woodgate R, McIntyre J. E3 ubiquitin ligase RNF2 protects polymerase ι from destabilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119743. [PMID: 38705361 PMCID: PMC11382163 DOI: 10.1016/j.bbamcr.2024.119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.
Collapse
Affiliation(s)
- Mikolaj Fedorowicz
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Justyna McIntyre
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Menck CFM, Galhardo RS, Quinet A. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis. Mutat Res 2024; 828:111840. [PMID: 37984186 DOI: 10.1016/j.mrfmmm.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
Collapse
Affiliation(s)
- C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - R S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - A Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Martins DJ, Singh JK, Jahjah T, Vessoni AT, Leandro GDS, Silva MM, Biard DSF, Quinet A, Menck CFM. Polymerase iota plays a key role during translesion synthesis of UV-induced lesions in the absence of polymerase eta. Photochem Photobiol 2024; 100:4-18. [PMID: 37926965 DOI: 10.1111/php.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Xeroderma pigmentosum (XP) variant cells are deficient in the translesion synthesis (TLS) DNA polymerase Polη (eta). This protein contributes to DNA damage tolerance, bypassing unrepaired UV photoproducts and allowing S-phase progression with minimal delay. In the absence of Polη, backup polymerases perform TLS of UV lesions. However, which polymerase plays this role in human cells remains an open question. Here, we investigated the potential role of Polι (iota) in bypassing ultraviolet (UV) induced photoproducts in the absence of Polη, using NER-deficient (XP-C) cells knocked down for Polι and/or Polη genes. Our results indicate that cells lacking either Polι or Polη have increased sensitivity to UVC radiation. The lack of both TLS polymerases led to increased cell death and defects in proliferation and migration. Loss of both polymerases induces a significant replication fork arrest and G1/S-phase blockage, compared to the lack of Polη alone. In conclusion, we propose that Polι acts as a bona fide backup for Polη in the TLS of UV-photoproducts.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Jenny Kaur Singh
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | - Tiya Jahjah
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | - Alexandre Teixeira Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
- Sanofi R&D, Vitry-sur-Seine, France
| | - Giovana da Silva Leandro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Matheus Molina Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Denis Serge François Biard
- Université Paris-Saclay, Institut de Biologie François Jacob, Service d'étude des prions et maladies atypiques, iRCM/IBJF, Fontenay-aux-Roses, France
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | | |
Collapse
|
5
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Latancia MT, Moreno NC, Leandro GS, Ribeiro VC, de Souza I, Vieira WKM, Bastos AU, Hoch NC, Rocha CRR, Menck CFM. DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503498. [PMID: 35649682 DOI: 10.1016/j.mrgentox.2022.503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.
Collapse
Affiliation(s)
- Marcela T Latancia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Natália C Moreno
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Giovana S Leandro
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Izadora de Souza
- Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Uchimura Bastos
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nicolas Carlos Hoch
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carlos F M Menck
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Balint E, Unk I. Manganese Is a Strong Specific Activator of the RNA Synthetic Activity of Human Polη. Int J Mol Sci 2021; 23:ijms23010230. [PMID: 35008656 PMCID: PMC8745064 DOI: 10.3390/ijms23010230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities.
Collapse
|
8
|
Rognoni E, Goss G, Hiratsuka T, Sipilä KH, Kirk T, Kober KI, Lui PP, Tsang VSK, Hawkshaw NJ, Pilkington SM, Cho I, Ali N, Rhodes LE, Watt FM. Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. eLife 2021; 10:e71052. [PMID: 34939928 PMCID: PMC8747514 DOI: 10.7554/elife.71052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing, and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt signalling in skin, stimulation of fibroblast proliferation by epidermal β-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4- and CD8-positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins, and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Toru Hiratsuka
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Thomas Kirk
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Katharina I Kober
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Victoria SK Tsang
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUnited Kingdom
| | - Nathan J Hawkshaw
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Suzanne M Pilkington
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Inchul Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Niwa Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Lesley E Rhodes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation TrustManchesterUnited Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's HospitalLondonUnited Kingdom
| |
Collapse
|
9
|
Sugiyama T, Keinard B, Best G, Sanyal MR. Biochemical and photochemical mechanisms that produce different UV-induced mutation spectra. Mutat Res 2021; 823:111762. [PMID: 34563793 DOI: 10.1016/j.mrfmmm.2021.111762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022]
Abstract
Although UV-induced mutagenesis has been studied extensively, the precise mechanisms that convert UV-induced DNA damage into mutations remain elusive. One well-studied mechanism involves DNA polymerase (Pol) η and ζ, which produces C > T transitions during translesion synthesis (TLS) across pyrimidine dimers. We previously proposed another biochemical mechanism that involves multiple UV-irradiations with incubation in the dark in between. The incubation facilitates spontaneous deamination of cytosine in a pyrimidine dimer, and the subsequent UV irradiation induces photolyase-independent (direct) photoreversal that converts cytosine into monomeric uracil residue. In this paper, we first demonstrate that natural sunlight can induce both mutational processes in vitro. The direct photoreversal was also reproduced by monochromatic UVB at 300 nm. We also demonstrate that post-irradiation incubation in the dark is required for both mutational processes, suggesting that cytosine deamination is required for both the Pol η/ζ-dependent and the photoreversal-dependent mechanisms. Another Y-family polymerase Pol ι also mediated a mutagenic TLS on UV-damaged templates when combined with Pol ζ. The Pol ι-dependent mutations were largely independent of post-irradiation incubation, indicating that cytosine deamination was not essential for this mutational process. Sunlight-exposure also induced C > A transversions which were likely caused by oxidation of guanine residues. Finally, we constructed in vitro mutation spectra in a comparable format to cancer mutation signatures. While both Pol η-dependent and photoreversal-dependent spectra showed high similarities to a cancer signature (SBS7a), Pol ι-dependent mutation spectrum has distinct T > A/C substitutions, which are found in another cancer signature (SBS7d). The Pol ι-dependent T > A/C substitutions were resistant to T4 pyrimidine dimer glycosylase-treatment, suggesting that this mutational process is independent of cis-syn pyrimidine dimers. An updated model about multiple mechanisms of UV-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA.
| | | | | | - Mahima R Sanyal
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
10
|
DNA Polymerase and dRP-lyase activities of polymorphic variants of human Pol ι. Biochem J 2021; 478:1399-1412. [PMID: 33600564 DOI: 10.1042/bcj20200491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5'-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.
Collapse
|
11
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
12
|
DNA polymerase ι compensates for Fanconi anemia pathway deficiency by countering DNA replication stress. Proc Natl Acad Sci U S A 2020; 117:33436-33445. [PMID: 33376220 DOI: 10.1073/pnas.2008821117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is caused by defects in cellular responses to DNA crosslinking damage and replication stress. Given the constant occurrence of endogenous DNA damage and replication fork stress, it is unclear why complete deletion of FA genes does not have a major impact on cell proliferation and germ-line FA patients are able to progress through development well into their adulthood. To identify potential cellular mechanisms that compensate for the FA deficiency, we performed dropout screens in FA mutant cells with a whole genome guide RNA library. This uncovered a comprehensive genome-wide profile of FA pathway synthetic lethality, including POLI and CDK4 As little is known of the cellular function of DNA polymerase iota (Pol ι), we focused on its role in the loss-of-function FA knockout mutants. Loss of both FA pathway function and Pol ι leads to synthetic defects in cell proliferation and cell survival, and an increase in DNA damage accumulation. Furthermore, FA-deficient cells depend on the function of Pol ι to resume replication upon replication fork stalling. Our results reveal a critical role for Pol ι in DNA repair and replication fork restart and suggest Pol ι as a target for therapeutic intervention in malignancies carrying an FA gene mutation.
Collapse
|
13
|
Yeom M, Hong JK, Kim JK, Guengerich FP, Choi JY. Three Human Pol ι Variants with Impaired Polymerase Activity Fail to Rescue H 2O 2 Sensitivity in POLI-Deficient Cells. Chem Res Toxicol 2020; 33:2120-2129. [PMID: 32635723 DOI: 10.1021/acs.chemrestox.0c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human Y-family DNA polymerase (pol) ι is involved in translesion DNA synthesis (TLS) and base excision repair (BER) of oxidative DNA damage. Genetic variations may alter the function of pol ι and affect cellular susceptibility to oxidative genotoxic agents, but their effects remain unclear. We investigated the impacts of 10 human missense germline variations on pol ι function by biochemical and cell-based assays. Both polymerase and deoxyribose phosphate (dRP) lyase activities were determined utilizing recombinant pol ι (residues 1-445) proteins. The K209Q, K228I, and Q386R variants showed 4- to 53-fold decreases in specificity constants (kcat/Km) for dCTP insertion opposite G and 8-oxo-7,8-dihydroguanine compared to the wild-type. The R126C and K345E variants showed wild-type-like polymerase activity, although these two variants (as well as the R209Q, K228I, and Q386R variants) showed greater than 6-fold decreases in dRP lyase activity compared to the wild-type. A CRISPR/Cas9-mediated POLI knockout conferred higher sensitivity to H2O2 in human embryonic kidney (HEK293) cells. Exogenous expression of the full-length wild-type, R126C, and K345E variants fully rescued the H2O2 sensitivity in POLI-deficient cells, while full-length R209Q, K228I, and Q386R variants did not rescue the sensitivity. Our results indicate that the R126C and K345E variants (having wild-type-like polymerase activity, albeit impaired in dRP lyase activity) could fully rescue the H2O2 sensitivity in POLI-deficient cells, while the R209Q, K228I, and Q386R variants, all impaired in polymerase and dRP lyase activity, failed to rescue the sensitivity, indicating the relative importance of TLS-related polymerase function of pol ι rather than its BER-related dRP lyase function in protection from oxidative stress. The possibility exists that the hypoactive pol ι variants increase the individual susceptibility to oxidative genotoxic agents.
Collapse
Affiliation(s)
- Mina Yeom
- Department of Pharmacology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jin-Kyung Hong
- Department of Pharmacology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jae-Kwon Kim
- Department of Pharmacology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jeong-Yun Choi
- Department of Pharmacology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
14
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
15
|
Akagi JI, Hashimoto K, Suzuki K, Yokoi M, de Wind N, Iwai S, Ohmori H, Moriya M, Hanaoka F. Effect of sequence context on Polζ-dependent error-prone extension past (6-4) photoproducts. DNA Repair (Amst) 2019; 87:102771. [PMID: 31911268 DOI: 10.1016/j.dnarep.2019.102771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
The (6-4) pyrimidine-pyrimidone photoproduct [(6-4)PP] is a major DNA lesion induced by ultraviolet radiation. (6-4)PP induces complex mutations opposite its downstream bases, in addition to opposite 3' or 5' base, as has been observed through a site-specific translesion DNA synthesis (TLS) assay. The mechanism by which these mutations occur is not well understood. To elucidate the mechanisms underlying mutagenesis induced by (6-4)PP, we performed an intracellular TLS assay using a replicative vector with site-specific T(thymidine)-T (6-4)PP. Rev3-/-p53-/- mouse embryonic fibroblast (MEF) cells (defective in Polζ) were almost completely defective in bypassing T-T (6-4)PP, whereas both Rev1-/- and Polh-/-Poli-/-Polk-/- MEF cells (defective in Polη, Polι, and Polκ) presented bypassing activity comparable to that of wild-type cells, indicating that Y-family TLS polymerases are dispensable for bypassing activity, whereas Polζ plays an essential role, probably at the extension step. Among all cells tested, misincorporation occurred most frequently just beyond the lesion (position +1), indicating that the Polζ-dependent extension step is crucial for (6-4)PP-induced mutagenesis. We then examined the effects of sequence context on T-T (6-4)PP bypass using a series of T-T (6-4)PP templates with different sequences at position +1 or -1 to the lesion, and found that the dependency of T-T (6-4)PP bypass on Polζ is not sequence specific. However, the misincorporation frequency at position +1 differed significantly among these templates. The misincorporation of A at position +1 occurred frequently when a purine base was located at position -1. These results indicate that Polζ-dependent extension plays a major role in inducing base substitutions in (6-4)PP-induced mutagenesis, and its fidelity is affected by sequence context surrounding a lesion.
Collapse
Affiliation(s)
- Jun-Ichi Akagi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Keiji Hashimoto
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York, Stony Brook, NY, 11794-8651, USA
| | - Kenji Suzuki
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Masaaki Moriya
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York, Stony Brook, NY, 11794-8651, USA
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan; National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
16
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
17
|
Matsuno Y, Atsumi Y, Shimizu A, Katayama K, Fujimori H, Hyodo M, Minakawa Y, Nakatsu Y, Kaneko S, Hamamoto R, Shimamura T, Miyano S, Tsuzuki T, Hanaoka F, Yoshioka KI. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat Commun 2019; 10:3925. [PMID: 31477700 PMCID: PMC6718401 DOI: 10.1038/s41467-019-11760-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems. Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. Here authors reveal a mechanism by which replication stress induces MSI and associated induction of mutations in vitro.
Collapse
Affiliation(s)
- Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuko Atsumi
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kotoe Katayama
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, 103-0027, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Tsurumai-cho, Syouwa-ku, Nagoya, 466-8550, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.,National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
18
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
19
|
McIntyre J, Sobolewska A, Fedorowicz M, McLenigan MP, Macias M, Woodgate R, Sledziewska-Gojska E. DNA polymerase ι is acetylated in response to S N2 alkylating agents. Sci Rep 2019; 9:4789. [PMID: 30886224 PMCID: PMC6423139 DOI: 10.1038/s41598-019-41249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
DNA polymerase iota (Polι) belongs to the Y-family of DNA polymerases that are involved in DNA damage tolerance through their role in translesion DNA synthesis. Like all other Y-family polymerases, Polι interacts with proliferating cell nuclear antigen (PCNA), Rev1, ubiquitin and ubiquitinated-PCNA and is also ubiquitinated itself. Here, we report that Polι also interacts with the p300 acetyltransferase and is acetylated. The primary acetylation site is K550, located in the Rev1-interacting region. However, K550 amino acid substitutions have no effect on Polι's ability to interact with Rev1. Interestingly, we find that acetylation of Polι significantly and specifically increases in response to SN2 alkylating agents and to a lower extent to SN1 alkylating and oxidative agents. As we have not observed acetylation of Polι's closest paralogue, DNA polymerase eta (Polη), with which Polι shares many functional similarities, we believe that this modification might exclusively regulate yet to be determined, and separate function(s) of Polι.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mikolaj Fedorowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
20
|
Tanoue Y, Toyoda T, Sun J, Mustofa MK, Tateishi C, Endo S, Motoyama N, Araki K, Wu D, Okuno Y, Tsukamoto T, Takeya M, Ihn H, Vaziri C, Tateishi S. Differential Roles of Rad18 and Chk2 in Genome Maintenance and Skin Carcinogenesis Following UV Exposure. J Invest Dermatol 2018; 138:2550-2557. [PMID: 29859927 DOI: 10.1016/j.jid.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
Defects in DNA polymerase Eta (Polη) cause the sunlight-sensitivity and skin cancer-propensity disorder xeroderma pigmentosum variant. The extent to which Polη function depends on the upstream E3 ubiquitin ligase Rad18 is controversial and has not been investigated using mouse models. Therefore, we tested the role of Rad18 in UV-inducible skin tumorigenesis. Because Rad18 deficiency leads to compensatory DNA damage signaling by Chk2, we also investigated genetic interactions between Rad18 and Chk2 in vivo. Chk2-/-Rad18-/- mice were prone to spontaneous lymphomagenesis. Both Chk2-/- and Chk2-/-Rad18-/- mice were prone to UV-B irradiation-induced skin tumorigenesis when compared with wild-type (WT) animals, but unexpectedly Rad18-/- mice did not recapitulate the skin tumor propensity of Polη mutants. UV-irradiated Rad18-/- cells were more susceptible to G1/S arrest and apoptosis than WT cultures. Chk2 deficiency alleviated both UV-induced G1/S phase arrest and apoptosis of WT and Rad18-/- cells, but led to increased genomic instability. Taken together, our results demonstrate that the tumor-suppressive role of Polη in UV-treated skin is Rad18 independent. We also define a role for Chk2 in suppressing UV-induced skin carcinogenesis in vivo. This study identifies Chk2 dysfunction as a potential risk factor for sunlight-induced skin tumorigenesis in humans.
Collapse
Affiliation(s)
- Yuki Tanoue
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Takeshi Toyoda
- Division of Pathology, National institute of Health Sciences Biological safety center, Tokyo, Japan
| | - Jinghua Sun
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Md Kawsar Mustofa
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Chie Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Noboru Motoyama
- Department of Human Nutrition, Sugiyama Jogakuen University School of Life Studies, Nagoya, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Di Wu
- Department of Periodontology, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yutaka Okuno
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Satoshi Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
21
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
22
|
Zou S, Shang ZF, Liu B, Zhang S, Wu J, Huang M, Ding WQ, Zhou J. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma. Oncotarget 2017; 7:32274-85. [PMID: 27057634 PMCID: PMC5078012 DOI: 10.18632/oncotarget.8580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 01/17/2023] Open
Abstract
DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, P.R. China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, P.R. China
| | - Biao Liu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, P.R. China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, P.R. China
| | - Jinchang Wu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, P.R. China
| | - Min Huang
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, P.R. China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, P.R. China
| |
Collapse
|
23
|
Akagi J, Yokoi M, Cho YM, Toyoda T, Ohmori H, Hanaoka F, Ogawa K. Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair (Amst) 2017; 61:76-85. [PMID: 29247828 DOI: 10.1016/j.dnarep.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.
Collapse
Affiliation(s)
- Junichi Akagi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo Prefecture 657-8501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture 305-8577, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
24
|
Sasatani M, Xi Y, Kajimura J, Kawamura T, Piao J, Masuda Y, Honda H, Kubo K, Mikamoto T, Watanabe H, Xu Y, Kawai H, Shimura T, Noda A, Hamasaki K, Kusunoki Y, Zaharieva EK, Kamiya K. Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level. Carcinogenesis 2017; 38:570-578. [PMID: 28498946 PMCID: PMC5872566 DOI: 10.1093/carcin/bgw208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer development often involves mutagenic replication of damaged DNA by the error-prone translesion synthesis (TLS) pathway. Aberrant activation of this pathway plays a role in tumorigenesis by promoting genetic mutations. Rev1 controls the function of the TLS pathway, and Rev1 expression levels are associated with DNA damage induced cytotoxicity and mutagenicity. However, it remains unclear whether deregulated Rev1 expression triggers or promotes tumorigenesis in vivo. In this study, we generated a novel Rev1-overexpressing transgenic (Tg) mouse and characterized its susceptibility to tumorigenesis. Using a small intestinal tumor model induced by N-methyl-N-nitrosourea (MNU), we found that transgenic expression of Rev1 accelerated intestinal adenoma development in proportion to the Rev1 expression level; however, overexpression of Rev1 alone did not cause spontaneous development of intestinal adenomas. In Rev1 Tg mice, MNU-induced mutagenesis was elevated, whereas apoptosis was suppressed. The effects of hREV1 expression levels on the cytotoxicity and mutagenicity of MNU were confirmed in the human cancer cell line HT1080. These data indicate that dysregulation of cellular Rev1 levels leads to the accumulation of mutations and suppression of cell death, which accelerates the tumorigenic activities of DNA-damaging agents.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yang Xi
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Junko Kajimura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Toshiyuki Kawamura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jinlian Piao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuji Masuda
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kei Kubo
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takahiro Mikamoto
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiromitsu Watanabe
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako, Saitama 351-0197, Japan and
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Elena Karamfilova Zaharieva
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
25
|
|
26
|
Abstract
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. "Hassle-free" DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is "Translesion DNA Synthesis (TLS)". TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the "Y-family" of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein-protein interactions with other critical factors affecting TLS regulation.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
27
|
Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genet 2017; 13:e1006818. [PMID: 28570559 PMCID: PMC5472330 DOI: 10.1371/journal.pgen.1006818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/15/2017] [Accepted: 05/13/2017] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase ν (pol ν), encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν–defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν–disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ). We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ) supports such a specialized role. The work described here fills a current gap in the study of the 16 known DNA polymerases in vertebrate genomes. Until now, experiments with genetically disrupted mice have been reported for all but pol ν, encoded by the POLN gene. To intensively analyze the role of mammalian pol ν we generated multiple Poln-deficient murine models. We discovered that Poln is uniquely upregulated during testicular development and that it is enriched in spermatocytes. This, and phylogenetic analysis indicate a testis-specific function. We observed a modest reduction in meiotic recombination at a recombination hotspot in Poln-deficient mice. Pol ν has been suggested to function in DNA crosslink repair. However, we found no increased DNA crosslink sensitivity in Poln-deficient mice or POLN-depleted human cells. This is a major difference from some previous findings, and we support our conclusion by multiple experimental approaches, and by the very low or absent expression of functional pol ν in mammalian somatic cells. The present work represents the first description and comprehensive analysis of mice deficient in pol ν, and the first thorough phenotypic analysis in human cells.
Collapse
|
28
|
Kazachenko KY, Miropolskaya NA, Gening LV, Tarantul VZ, Makarova AV. Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro. DNA Repair (Amst) 2017; 50:77-82. [DOI: 10.1016/j.dnarep.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
|
29
|
Frank EG, McDonald JP, Yang W, Woodgate R. Mouse DNA polymerase ι lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair (Amst) 2017; 50:71-76. [PMID: 28077247 PMCID: PMC5303534 DOI: 10.1016/j.dnarep.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022]
Abstract
In 2003, we reported that 129-derived strains of mice carry a naturally occurring nonsense mutation at codon 27 of the Poli gene that would produce a polι peptide of just 26 amino acids, rather then the full-length 717 amino acid wild-type polymerase. In support of the genomic analysis, no polι protein was detected in testes extracts from 129X1/SvJmice, where wild-type polι is normally highly expressed. The early truncation in polι occurs before any structural domains of the polymerase are synthesized and as a consequence, we reasoned that 129-derived strains of mice should be considered as functionally defective in polι activity. However, it has recently been reported that during the maturation of the Poli mRNA in 129-derived strains, exon- 2 is sometimes skipped and that an exon-2-less polι protein of 675 amino acids is synthesized that retains catalytic activity in vitro and in vivo. From a structural perspective, we found this idea untenable, given that the amino acids encoded by exon-2 include residues critical for the coordination of the metal ions required for catalysis, as well as the structural integrity of the DNA polymerase. To determine if the exon-2-less polι isoform possesses catalytic activity in vitro, we have purified a glutathione-tagged full-length exon-2-less (675 amino acid) polι protein from baculovirus infected insect cells and compared the activity of the isoform to full-length (717 amino acid) GST-tagged wild-type mouse polι in vitro. Reaction conditions were performed under a range of magnesium or manganese concentrations, as well as different template sequence contexts. Wild-type mouse polι exhibited robust characteristic properties previously associated with human polι's biochemical properties. However, we did not detect any polymerase activity associated with the exon-2-less polι enzyme under the same reaction conditions and conclude that exon-2-less polι is indeed rendered catalytically inactive in vitro.
Collapse
Affiliation(s)
- Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
30
|
Kim JK, Yeom M, Hong JK, Song I, Lee YS, Guengerich FP, Choi JY. Six Germline Genetic Variations Impair the Translesion Synthesis Activity of Human DNA Polymerase κ. Chem Res Toxicol 2016; 29:1741-1754. [PMID: 27603496 DOI: 10.1021/acs.chemrestox.6b00244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA polymerase (pol) κ efficiently catalyzes error-free translesion DNA synthesis (TLS) opposite bulky N2-guanyl lesions induced by carcinogens such as polycyclic aromatic hydrocarbons. We investigated the biochemical effects of nine human nonsynonymous germline POLK variations on the TLS properties of pol κ, utilizing recombinant pol κ (residues 1-526) enzymes and DNA templates containing an N2-CH2(9-anthracenyl)G (N2-AnthG), 8-oxo-7,8-dihydroguanine (8-oxoG), O6-methyl(Me)G, or an abasic site. In steady-state kinetic analyses, the R246X, R298H, T473A, and R512W variants displayed 7- to 18-fold decreases in kcat/Km for dCTP insertion opposite G and N2-AnthG, with 2- to 3-fold decreases in DNA binding affinity, compared to that of the wild-type, and further showed 5- to 190-fold decreases in kcat/Km for next-base extension from C paired with N2-AnthG. The A471V variant showed 2- to 4-fold decreases in kcat/Km for correct nucleotide insertion opposite and beyond G (or N2-AnthG) compared to that of the wild-type. These five hypoactive variants also showed similar patterns of attenuation of TLS activity opposite 8-oxoG, O6-MeG, and abasic lesions. By contrast, the T44M variant exhibited 7- to 11-fold decreases in kcat/Km for dCTP insertion opposite N2-AnthG and O6-MeG (as well as for dATP insertion opposite an abasic site) but not opposite both G and 8-oxoG, nor beyond N2-AnthG, compared to that of the wild-type. These results suggest that the R246X, R298H, T473A, R512W, and A471V variants cause a general catalytic impairment of pol κ opposite G and all four lesions, whereas the T44M variant induces opposite lesion-dependent catalytic impairment, i.e., only opposite O6-MeG, abasic, and bulky N2-G lesions but not opposite G and 8-oxoG, in pol κ, which might indicate that these hypoactive pol κ variants are genetic factors in modifying individual susceptibility to genotoxic carcinogens in certain subsets of populations.
Collapse
Affiliation(s)
- Jae-Kwon Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Mina Yeom
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jin-Kyung Hong
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Insil Song
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology , Daegu 42988, Republic of Korea
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Jeong-Yun Choi
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
31
|
Choi JY, Patra A, Yeom M, Lee YS, Zhang Q, Egli M, Guengerich FP. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι. J Biol Chem 2016; 291:21063-21073. [PMID: 27555320 DOI: 10.1074/jbc.m116.748285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/13/2022] Open
Abstract
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+ The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Amritaj Patra
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Mina Yeom
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Young-Sam Lee
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Qianqian Zhang
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Martin Egli
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - F Peter Guengerich
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| |
Collapse
|
32
|
Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acid-derived adenine adducts in mouse cells. DNA Repair (Amst) 2016; 46:55-60. [PMID: 27497692 DOI: 10.1016/j.dnarep.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Translesion DNA synthesis (TLS) operates when replicative polymerases are blocked by DNA lesions. To investigate the mechanism of mammalian TLS, we employed a plasmid bearing a single 7-(deoxyadenosine-N6-yl)-aristolactam I (dA-AL-I) adduct, which is generated by the human carcinogen, aristolochic acid I, and genetically engineered mouse embryonic fibroblasts. This lesion induces A to T transversions at a high frequency. The simultaneous knockouts of the Polh, Poli and Polk genes did not influence the TLS efficiency or the coding property of dA-AL-I, indicating that an unknown DNA polymerase(s) can efficiently catalyze the insertion of a nucleotide opposite the adduct and subsequent extension. Similarly, knockout of the Rev1 gene did not significantly affect TLS. However, knockout of the Rev3l gene, coding for the catalytic subunit of polζ, drastically suppressed TLS and abolished dA-AL-I to T transversions. The results support the idea that Rev1 is not essential for the cellular TLS functions of polζ in mammalian cells. Furthermore, the frequency of dA-AL-I to T transversion was affected by a sequence context, suggesting that TLS, at least in part, contributes to the formation of mutational hot and cold spots observed in aristolochic acid-induced cancers.
Collapse
|
33
|
Maul RW, MacCarthy T, Frank EG, Donigan KA, McLenigan MP, Yang W, Saribasak H, Huston DE, Lange SS, Woodgate R, Gearhart PJ. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 2016; 213:1675-83. [PMID: 27455952 PMCID: PMC4995076 DOI: 10.1084/jem.20151227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/01/2016] [Indexed: 11/04/2022] Open
Abstract
DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Donald E Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Sabine S Lange
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
34
|
The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability. PLoS Genet 2016; 12:e1005759. [PMID: 26727495 PMCID: PMC4699697 DOI: 10.1371/journal.pgen.1005759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/-Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/-Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents. Translesion synthesis allows DNA replication to occur in the presence of damaged DNA. This process is mediated by low-fidelity DNA polymerases (such as pol ζ or pol η) that maintain genomic stability. The action of these polymerases is crucial to limit cancer. In mice, complete deletion of DNA pol ζ leads to embryonic lethality, and conditional deletion enhances tumorigenesis. Pol ζ is a large protein with many domains that interact with other essential proteins and maintain the structural integrity of pol ζ. It is not known if the polymerase activity of pol ζ mediates its essential activities. Using a cell culture complementation system and in vivo knock-in mice, our work shows that pol ζ–mediated maintenance of genomic stability in the presence of DNA damage is absolutely dependent on its DNA polymerase activity. Others have demonstrated in chicken cells that co-deletion of pol ζ and pol η rescues the pol ζ-dependent phenotypes, but our work in mice and in mouse cell culture does not support that conclusion. These results demonstrate the physiological importance of pol ζ polymerase activity, and show that employing small-molecule inhibitors of the polymerase reaction is a valid strategy for sensitizing tumor cells to chemotherapeutic agents.
Collapse
|
35
|
Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res 2015; 43:7898-910. [PMID: 26170230 PMCID: PMC4652755 DOI: 10.1093/nar/gkv712] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 11/29/2022] Open
Abstract
Translesion DNA synthesis (TLS) by the Y-family DNA polymerases Polη, Polι and Polκ, mediated via interaction with proliferating cell nuclear antigen (PCNA), is a crucial pathway that protects human cells against DNA damage. We report that Polη has three PCNA-interacting protein (PIP) boxes (PIP1, 2, 3) that contribute differentially to two distinct functions, stimulation of DNA synthesis and promotion of PCNA ubiquitination. The latter function is strongly associated with formation of nuclear Polη foci, which co-localize with PCNA. We also show that Polκ has two functionally distinct PIP boxes, like Polη, whereas Polι has a single PIP box involved in stimulation of DNA synthesis. All three polymerases were additionally stimulated by mono-ubiquitinated PCNA in vitro. The three PIP boxes and a ubiquitin-binding zinc-finger of Polη exert redundant and additive effects in vivo via distinct molecular mechanisms. These findings provide an integrated picture of the orchestration of TLS polymerases.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kentaro Kaji
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Haruo Ohmori
- Department of Gene Information, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8517, Japan Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
36
|
129-Derived Mouse Strains Express an Unstable but Catalytically Active DNA Polymerase Iota Variant. Mol Cell Biol 2015; 35:3059-70. [PMID: 26124279 DOI: 10.1128/mcb.00371-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023] Open
Abstract
Mice derived from the 129 strain have a nonsense codon mutation in exon 2 of the polymerase iota (Polι) gene and are therefore considered Polι deficient. When we amplified Polι mRNA from 129/SvJ or 129/Ola testes, only a small fraction of the full-length cDNA contained the nonsense mutation; the major fraction corresponded to a variant Polι isoform lacking exon 2. Polι mRNA lacking exon 2 contains an open reading frame, and the corresponding protein was detected using a polyclonal antibody raised against the C terminus of the murine Polι protein. The identity of the corresponding protein was further confirmed by mass spectrometry. Although the variant protein was expressed at only 5 to 10% of the level of wild-type Polι, it retained de novo DNA synthesis activity, the capacity to form replication foci following UV irradiation, and the ability to rescue UV light sensitivity in Polι(-/-) embryonic fibroblasts derived from a new, fully deficient Polι knockout (KO) mouse line. Furthermore, in vivo treatment of 129-derived male mice with Velcade, a drug that inhibits proteasome function, stabilized and restored a substantial amount of the variant Polι in these animals, indicating that its turnover is controlled by the proteasome. An analysis of two xeroderma pigmentosum-variant (XPV) cases corresponding to missense mutants of Polη, a related translesion synthesis (TLS) polymerase in the same family, similarly showed a destabilization of the catalytically active mutant protein by the proteasome. Collectively, these data challenge the prevailing hypothesis that 129-derived strains of mice are completely deficient in Polι activity. The data also document, both for 129-derived mouse strains and for some XPV patients, new cases of genetic defects corresponding to the destabilization of an otherwise functional protein, the phenotype of which is reversible by proteasome inhibition.
Collapse
|
37
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
38
|
Kanao R, Yokoi M, Ohkumo T, Sakurai Y, Dotsu K, Kura S, Nakatsu Y, Tsuzuki T, Masutani C, Hanaoka F. UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or ι. DNA Repair (Amst) 2015; 29:139-46. [PMID: 25733082 DOI: 10.1016/j.dnarep.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/05/2023]
Abstract
Xeroderma pigmentosum variant (XP-V) is a human rare inherited recessive disease, predisposed to sunlight-induced skin cancer, which is caused by deficiency in DNA polymerase η (Polη). Polη catalyzes accurate translesion synthesis (TLS) past pyrimidine dimers, the most prominent UV-induced lesions. DNA polymerase ι (Polι) is a paralog of Polη that has been suggested to participate in TLS past UV-induced lesions, but its function in vivo remains uncertain. We have previously reported that Polη-deficient and Polη/Polι double-deficient mice showed increased susceptibility to UV-induced carcinogenesis. Here, we investigated UV-induced mutation frequencies and spectra in the epidermal cells of Polη- and/or Polι-deficient mice. While Polη-deficient mice showed significantly higher UV-induced mutation frequencies than wild-type mice, Polι deficiency did not influence the frequencies in the presence of Polη. Interestingly, the frequencies in Polη/Polι double-deficient mice were statistically lower than those in Polη-deficient mice, although they were still higher than those of wild-type mice. Sequence analysis revealed that most of the UV-induced mutations in Polη-deficient and Polη/Polι double-deficient mice were base substitutions at dipyrimidine sites. An increase in UV-induced mutations at both G:C and A:T pairs associated with Polη deficiency suggests that Polη contributes to accurate TLS past both thymine- and cytosine-containing dimers in vivo. A significant decrease in G:C to A:T transition in Polη/Polι double-deficient mice when compared with Polη-deficient mice suggests that Polι is involved in error-prone TLS past cytosine-containing dimers when Polη is inactivated.
Collapse
Affiliation(s)
- Rie Kanao
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masayuki Yokoi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Tsuyoshi Ohkumo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Sakurai
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kantaro Dotsu
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Shinobu Kura
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Yoshimichi Nakatsu
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Teruhisa Tsuzuki
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Chikahide Masutani
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Fumio Hanaoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
39
|
Kim J, Song I, Jo A, Shin JH, Cho H, Eoff RL, Guengerich FP, Choi JY. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis. Chem Res Toxicol 2014; 27:1837-52. [PMID: 25162224 PMCID: PMC4203391 DOI: 10.1021/tx5002755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
DNA
polymerase (pol) ι is the most error-prone among the
Y-family polymerases that participate in translesion synthesis (TLS).
Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G,
8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently
with low fidelity. We assessed the biochemical effects of six reported
genetic variations of human pol ι on its TLS properties, using
the recombinant pol ι (residues 1–445) proteins and DNA
templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25
variant, which is the N-terminal truncation of 25
residues resulting from an initiation codon variant (c.3G > A)
and
also is the formerly misassigned wild-type, exhibited considerably
higher polymerase activity than wild-type with Mg2+ (but
not with Mn2+), coinciding with its steady-state kinetic
data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation
opposite templates (only with Mg2+). The R96G variant,
which lacks a R96 residue known to interact with the incoming nucleotide,
lost much of its polymerase activity, consistent with the kinetic
data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation
opposite templates either with Mg2+ or Mn2+,
except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The
Δ1–25 variant bound DNA 20- to 29-fold more tightly than
wild-type (with Mg2+), but the R96G variant bound DNA 2-fold
less tightly than wild-type. The DNA-binding affinity of wild-type,
but not of the Δ1–25 variant, was ∼7-fold stronger
with 0.15 mM Mn2+ than with Mg2+. The results
indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι,
whereas the Δ1–25 variation selectively and substantially
enhances the Mg2+-dependent TLS capability of pol ι,
emphasizing the potential translational importance of these pol ι
genetic variations, e.g., individual differences in TLS, mutation,
and cancer susceptibility to genotoxic carcinogens.
Collapse
Affiliation(s)
- Jinsook Kim
- Division of Pharmacology, Department of Molecular Cell Biology, and ‡Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ikehata H, Chang Y, Yokoi M, Yamamoto M, Hanaoka F. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst) 2014; 22:112-22. [PMID: 25128761 DOI: 10.1016/j.dnarep.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yumin Chang
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Masayuki Yamamoto
- Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
41
|
Abstract
Living cells are continually exposed to DNA-damaging agents that threaten their genomic integrity. Although DNA repair processes rapidly target the damaged DNA for repair, some lesions nevertheless persist and block genome duplication by the cell's replicase. To avoid the deleterious consequence of a stalled replication fork, cells use specialized polymerases to traverse the damage. This process, termed "translesion DNA synthesis" (TLS), affords the cell additional time to repair the damage before the replicase returns to complete genome duplication. In many cases, this damage-tolerance mechanism is error-prone, and cell survival is often associated with an increased risk of mutagenesis and carcinogenesis. Despite being tightly regulated by a variety of transcriptional and posttranslational controls, the low-fidelity TLS polymerases also gain access to undamaged DNA where their inaccurate synthesis may actually be beneficial for genetic diversity and evolutionary fitness.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-2910
| | | |
Collapse
|
42
|
Iguchi M, Osanai M, Hayashi Y, Koentgen F, Lee GH. The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice. Oncogene 2013; 33:3612-7. [DOI: 10.1038/onc.2013.331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/19/2013] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
|
43
|
Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, Zhi Y, Liu Y, Chen Z, Yang J. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS One 2013; 8:e69317. [PMID: 23922701 PMCID: PMC3724822 DOI: 10.1371/journal.pone.0069317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.
Collapse
Affiliation(s)
- Fang Yuan
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhigang Xu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, The Third Military Medical University, Chongqing, China
| | - Quanfang Wei
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Jin Yu
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhi
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Liu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| | - Jin Yang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| |
Collapse
|
44
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
45
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
46
|
Abstract
p63, a homologue of the tumor suppressor p53, is essential for the development of epidermis and limb. p63 is highly expressed in epithelial cell layer and acts as a molecular switch that initiates epithelial stratification. However, the mechanisms controlling p63 protein level is still far from fully understood. Here, we demonstrate a regulatory protein for the p63 activity. We found that Pirh2 E3 ubiquitin ligase physically interacts with p63 and targets p63 for polyubiquitination and subsequently proteasomal degradation. We also found that ectopic expression of Pirh2 in HaCaT cells suppresses cell proliferation. Consistent with this, we found that along with altered expression of ΔNp63 protein, ectopic expression of Pirh2 promotes, whereas knockdown of Pirh2 inhibits, keratinocyte differentiation. Collectively, our data suggest that Pirh2 plays a physiologically relevant role in keratinocyte differentiation through posttranslational modification of p63 protein.
Collapse
|
47
|
Menezes MR, Sweasy JB. Mouse models of DNA polymerases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:645-665. [PMID: 23001998 DOI: 10.1002/em.21731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression.
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
48
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
49
|
Sharma S, Helchowski CM, Canman CE. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability. Mutat Res 2012. [PMID: 23195997 DOI: 10.1016/j.mrfmmm.2012.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells display numerous abnormal characteristics which are initiated and maintained by elevated mutation rates and genome instability. Chromosomal DNA is continuously surveyed for the presence of damage or blocked replication forks by the DNA Damage Response (DDR) network. The DDR is complex and includes activation of cell cycle checkpoints, DNA repair, gene transcription, and induction of apoptosis. Duplicating a damaged genome is associated with elevated risks to fork collapse and genome instability. Therefore, the DNA damage tolerance (DDT) pathway is also employed to enhance survival and involves the recruitment of translesion DNA synthesis (TLS) polymerases to sites of replication fork blockade or single stranded DNA gaps left after the completion of replication in order to restore DNA to its double stranded form before mitosis. TLS polymerases are specialized for inserting nucleotides opposite DNA adducts, abasic sites, or DNA crosslinks. By definition, the DDT pathway is not involved in the actual repair of damaged DNA, but provides a mechanism to tolerate DNA lesions during replication thereby increasing survival and lessening the chance for genome instability. However this may be associated with increased mutagenesis. In this review, we will describe the specialized functions of Y family polymerases (Rev1, Polη, Polι and Polκ) and DNA polymerase ζ in lesion bypass, mutagenesis, and prevention of genome instability, the latter due to newly appreciated roles in DNA repair. The recently described role of the Fanconi anemia pathway in regulating Rev1 and Polζ-dependent TLS is also discussed in terms of their involvement in TLS, interstrand crosslink repair, and homologous recombination.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Corey M Helchowski
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christine E Canman
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
50
|
Li S, Zhao Y, Wang JY. Analysis of Ig gene hypermutation in Ung(-/-)Polh(-/-) mice suggests that UNG and A:T mutagenesis pathway target different U:G lesions. Mol Immunol 2012; 53:214-7. [PMID: 22960197 DOI: 10.1016/j.molimm.2012.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
The activation-induced cytidine deaminase (AID) initiates Ig gene hypermutation by converting cytosine to uracil (U) and generating a U:G lesion. Genetic and biochemical studies suggest that the AID-triggered U:G lesions are processed by three mutagenic pathways to induce mutations at both C:G and A:T pairs. First, direct replication of the U:G lesion leads to C to T and G to A transitions. Second, U can be excised by the uracil DNA glycosylase (UNG) and the replication/processing of the resulting abasic site leads to transversions and transitions at C:G pairs. Third, the U:G lesion is recognized by an atypical mismatch repair (MMR) pathway which generates mutations at A:T pairs in a DNA polymerase η (POLH)-dependent manner. To further explore whether these three mutagenic pathways function competitively or independently, we have analyzed Ig gene hypermutation in mice deficient in both UNG and POLH. Compared with WT mice, UNG deficiency caused elevated frequency of C:G mutations, suggesting that UNG-mediated U excision led to error-free as well as error-prone repair. In contrast, UNG deficiency did not affect the frequency and patterns of A:T mutations, suggesting that the MMR did not target U:G lesions normally recognized and processed by UNG. In addition, POLH deficiency did not affect the frequency and patterns of C:G mutations and UNG POLH double deficiency showed an additive effect of single deficiency. Based on these observations and previous results, along with the recent finding that UNG excises AID-triggered U predominantly during G1 phase of the cell cycle, it appears that UNG and MMR targets U:G lesions generated during G1 and S phases of the cell cycle, respectively.
Collapse
Affiliation(s)
- Shuyin Li
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | |
Collapse
|