1
|
Babl V, Girke P, Kruse S, Pinz S, Hannig K, Schächner C, Hergert K, Wittner M, Seufert W, Milkereit P, Tschochner H, Griesenbeck J. Establishment of closed 35S ribosomal RNA gene chromatin in stationary Saccharomyces cerevisiae cells. Nucleic Acids Res 2024; 52:12208-12226. [PMID: 39373531 PMCID: PMC11551728 DOI: 10.1093/nar/gkae838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae. This reduction correlates with characteristic changes in rRNA gene chromatin structure from a transcriptionally active 'open' state to a non-transcribed 'closed' state. The conserved lysine deacetylase Rpd3 was shown to be required for this chromatin transition. We found that Rpd3 is needed for tight repression of Pol I transcription upon growth to stationary phase as a prerequisite for the establishment of the closed chromatin state. We provide evidence that Rpd3 regulates Pol I transcription by adjusting cellular levels of the Pol I preinitiation complex component core factor (CF). Importantly, our study identifies CF as the complex limiting the number of open rRNA genes in exponentially growing and stationary cells.
Collapse
Affiliation(s)
- Virginia Babl
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Girke
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sebastian Kruse
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sophia Pinz
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Katharina Hannig
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Christopher Schächner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Kristin Hergert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manuel Wittner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Wolfgang Seufert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Bi X. Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins. World J Biol Chem 2024; 15:97938. [PMID: 39156122 PMCID: PMC11325855 DOI: 10.4331/wjbc.v15.i1.97938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/08/2024] Open
Abstract
Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures, which is facilitated by linker histone H1. Formation of chromatin compacts and protects the genome, but also hinders DNA transactions. Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions. The high mobility group box (HMGB) proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion. They play a major role in chromatin dynamics. The Saccharomyces cerevisiae (yeast hereafter) HMGB protein Hmo1 contains two HMGB motifs. However, unlike a canonical HMGB protein that has an acidic C-terminus, Hmo1 ends with a lysine rich, basic, C-terminus, resembling linker histone H1. Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions. For instance, Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones. Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome. This minireview reviews the functions of Hmo1 and the underlying mechanisms, highlighting recent discoveries.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
3
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
4
|
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13020288. [PMID: 36830657 PMCID: PMC9952952 DOI: 10.3390/biom13020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Restricting ribosome biosynthesis and assembly in response to nutrient starvation is a universal phenomenon that enables cells to survive with limited intracellular resources. When cells experience starvation, nutrient signaling pathways, such as the target of rapamycin (TOR) and protein kinase A (PKA), become quiescent, leading to several transcription factors and histone modification enzymes cooperatively and rapidly repressing ribosomal genes. Fission yeast has factors for heterochromatin formation similar to mammalian cells, such as H3K9 methyltransferase and HP1 protein, which are absent in budding yeast. However, limited studies on heterochromatinization in ribosomal genes have been conducted on fission yeast. Herein, we shed light on and compare the regulatory mechanisms of ribosomal gene transcription in two species with the latest insights.
Collapse
|
5
|
Kumar S, Mashkoor M, Grove A. Yeast Crf1p: An activator in need is an activator indeed. Comput Struct Biotechnol J 2022; 20:107-116. [PMID: 34976315 PMCID: PMC8688861 DOI: 10.1016/j.csbj.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Ribosome biogenesis is an energetically costly process, and tight regulation is required for stoichiometric balance between components. This requires coordination of RNA polymerases I, II, and III. Lack of nutrients or the presence of stress leads to downregulation of ribosome biogenesis, a process for which mechanistic target of rapamycin complex I (mTORC1) is key. mTORC1 activity is communicated by means of specific transcription factors, and in yeast, which is a primary model system in which transcriptional coordination has been delineated, transcription factors involved in regulation of ribosomal protein genes include Fhl1p and its cofactors, Ifh1p and Crf1p. Ifh1p is an activator, whereas Crf1p has been implicated in maintaining the repressed state upon mTORC1 inhibition. Computational analyses of evolutionary relationships have indicated that Ifh1p and Crf1p descend from a common ancestor. Here, we discuss recent evidence, which suggests that Crf1p also functions as an activator. We propose a model that consolidates available experimental evidence, which posits that Crf1p functions as an alternate activator to prevent the stronger activator Ifh1p from re-binding gene promoters upon mTORC1 inhibition. The correlation between retention of Crf1p in related yeast strains and duplication of ribosomal protein genes suggests that this backup activation may be important to ensure gene expression when Ifh1p is limiting. With ribosome biogenesis as a hallmark of cell growth, failure to control assembly of ribosomal components leads to several human pathologies. A comprehensive understanding of mechanisms underlying this process is therefore of the essence.
Collapse
Key Words
- CK2, casein kinase 2
- Crf1, corepressor with forkhead like
- Crf1p
- FHA, forkhead-associated
- FHB, forkhead-binding
- FKBP, FK506 binding protein
- Fhl1, forkhead like
- Fpr1, FK506-sensitive proline rotamase
- Gene regulation
- Hmo1, high mobility group
- Ifh1, interacts with forkhead like
- Ifh1p
- RASTR, ribosome assembly stress response
- RP, ribosomal protein
- Rap1, repressor/activator protein
- RiBi, ribosome biogenesis
- Ribosomal protein
- Ribosome biogenesis
- Sfp1, split finger protein
- WGD, whole genome duplication
- mTORC1
- mTORC1, mechanistic target of rapamycin complex 1
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Schächner C, Merkl PE, Pilsl M, Schwank K, Hergert K, Kruse S, Milkereit P, Tschochner H, Griesenbeck J. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes. Methods Mol Biol 2022; 2533:25-38. [PMID: 35796980 PMCID: PMC9761505 DOI: 10.1007/978-1-0716-2501-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.
Collapse
Affiliation(s)
- Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Kristin Hergert
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Sebastian Kruse
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
7
|
Cao W, Zhao W, Yang B, Wang X, Shen Y, Wei T, Qin W, Li Z, Bao X. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:142. [PMID: 34301255 PMCID: PMC8305865 DOI: 10.1186/s12934-021-01633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vanillin is one of the important phenolic inhibitors in Saccharomyces cerevisiae for bioconversion of lignocellulosic materials and has been reported to inhibit the translation process in cells. In our previous studies, it was confirmed that the deletion of the transcription factor gene YRR1 enhanced vanillin resistance by promoting some translation-related processes at the transcription level. In this work, we investigated the effects of proteomic changes upon induction of vanillin stress and deletion of YRR1 to provide unique perspectives from a transcriptome analysis for comprehending the mechanisms of YRR1 deletion in the protective response of yeast to vanillin. RESULTS In wild-type cells, vanillin reduced two dozens of ribosomal proteins contents while upregulated proteins involved in glycolysis, oxidative phosphorylation, and the pentose phosphate pathway in cells. The ratios of NADPH/NADP+ and NADH/NAD+ were increased when cells responded to vanillin stress. The differentially expressed proteins perturbed by YRR1 deletion were much more abundant than and showed no overlaps with transcriptome changes, indicating that Yrr1 affects the synthesis of certain proteins. Forty-eight of 112 upregulated proteins were involved in the stress response, translational and transcriptional regulation. YRR1 deletion increased the expression of HAA1-encoding transcriptional activator, TMA17-encoding proteasome assembly chaperone and MBF1-encoding coactivator at the protein level, as confirmed by ELISA. Cultivation data showed that the overexpression of HAA1 and TMA17 enhanced resistance to vanillin in S. cerevisiae. CONCLUSIONS Cells conserve energy by decreasing the content of ribosomal proteins, producing more energy and NAD(P)H for survival in response to vanillin stress. Yrr1 improved vanillin resistance by increasing the protein quantities of Haa1, Tma17 and Mbf1. These results showed the response of S. cerevisiae to vanillin and how YRR1 deletion increases vanillin resistance at the protein level. These findings may advance our knowledge of how YRR1 deletion protects yeast from vanillin stress and offer novel targets for genetic engineering of designing inhibitor-resistant ethanologenic yeast strains.
Collapse
Affiliation(s)
- Wenyan Cao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Weiquan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Bolun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Xinning Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China.
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, China
| |
Collapse
|
8
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
9
|
Zencir S, Dilg D, Rueda MP, Shore D, Albert B. Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Res 2020; 48:11408-11420. [PMID: 33084907 PMCID: PMC7672434 DOI: 10.1093/nar/gkaa852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated. We demonstrate here that all RPGs are regulated by two distinct, but complementary mechanisms driven by the TFs Ifh1 and Sfp1, both of which are required for maximal expression in optimal conditions and coordinated downregulation upon stress. At the majority of RPG promoters, Ifh1-dependent regulation predominates, whereas Sfp1 plays the major role at all other genes. We also uncovered an unexpected protein homeostasis-dependent binding property of Hmo1 at RPG promoters. Finally, we show that the Ifh1 paralog Crf1, previously described as a transcriptional repressor, can act as a constitutive RPG activator. Our study provides a more complete picture of RPG regulation and may serve as a paradigm for unravelling RPG regulation in multicellular eukaryotes.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Daniel Dilg
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Maria Paula Rueda
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Shu WJ, Chen R, Yin ZH, Li F, Zhang H, Du HN. Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions. Nucleic Acids Res 2020; 48:8360-8373. [PMID: 32619236 PMCID: PMC7470948 DOI: 10.1093/nar/gkaa558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.
Collapse
Affiliation(s)
- Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Zhao-Hong Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China
| |
Collapse
|
12
|
Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, Kokubo T. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1008865. [PMID: 32603360 PMCID: PMC7357790 DOI: 10.1371/journal.pgen.1008865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 07/13/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.
Collapse
Affiliation(s)
- Koji Kasahara
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| | - Risa Nakayama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Taichiro Ishige
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Tetsuro Kokubo
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
13
|
Matos-Perdomo E, Machín F. Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer. Cells 2019; 8:cells8080779. [PMID: 31357498 PMCID: PMC6721496 DOI: 10.3390/cells8080779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast Saccharomyces cerevisiae, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Tenerife, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Santa María de Guía, Gran Canaria, Spain.
| |
Collapse
|
14
|
Cheng Z, Brar GA. Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 2019; 47:5061-5073. [PMID: 30937450 PMCID: PMC6547411 DOI: 10.1093/nar/gkz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Ribosome biogenesis (RiBi) is an extremely energy intensive process that is critical for gene expression. It is thus highly regulated, including through the tightly coordinated expression of over 200 RiBi genes by positive and negative transcriptional regulators. We investigated RiBi regulation as cells initiated meiosis in budding yeast and noted early transcriptional activation of RiBi genes, followed by their apparent translational repression 1 hour (h) after stimulation to enter meiosis. Surprisingly, in the representative genes examined, measured translational repression depended on their promoters rather than mRNA regions. Further investigation revealed that the signature of this regulation in our data depended on pre-treating cells with the translation inhibitor, cycloheximide (CHX). This treatment, at 1 h in meiosis, but not earlier, rapidly resulted in accumulation of RiBi mRNAs that were not translated. This effect was also seen in with CHX pre-treatment of cells grown in media lacking amino acids. For NSR1, this effect depended on the -150 to -101 region of the promoter, as well as the RiBi transcriptional repressors Dot6 and Tod6. Condition-specific RiBi mRNA accumulation was also seen with translation inhibitors that are dissimilar from CHX, suggesting that this phenomenon might represent a feedback response to global translation inhibition.
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Malbec R, Chami B, Aeschbach L, Ruiz Buendía GA, Socol M, Joseph P, Leïchlé T, Trofimenko E, Bancaud A, Dion V. µLAS: Sizing of expanded trinucleotide repeats with femtomolar sensitivity in less than 5 minutes. Sci Rep 2019; 9:23. [PMID: 30631115 PMCID: PMC6328573 DOI: 10.1038/s41598-018-36632-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
We present µLAS, a lab-on-chip system that concentrates, separates, and detects DNA fragments in a single module. µLAS speeds up DNA size analysis in minutes using femtomolar amounts of amplified DNA. Here we tested the relevance of µLAS for sizing expanded trinucleotide repeats, which cause over 20 different neurological and neuromuscular disorders. Because the length of trinucleotide repeats correlates with the severity of the diseases, it is crucial to be able to size repeat tract length accurately and efficiently. Expanded trinucleotide repeats are however genetically unstable and difficult to amplify. Thus, the amount of amplified material to work with is often limited, making its analysis labor-intensive. We report the detection of heterogeneous allele lengths in 8 samples from myotonic dystrophy type 1 and Huntington disease patients with up to 750 CAG/CTG repeats in five minutes or less. The high sensitivity of the method allowed us to minimize the number of amplification cycles and thus reduce amplification artefacts without compromising the detection of the expanded allele. These results suggest that µLAS can speed up routine molecular biology applications of repetitive sequences and may improve the molecular diagnostic of expanded repeat disorders.
Collapse
Affiliation(s)
- Rémi Malbec
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Bayan Chami
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Lorène Aeschbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
| | - Gustavo A Ruiz Buendía
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
| | - Marius Socol
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Thierry Leïchlé
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Evgeniya Trofimenko
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, Lausanne, 1005, Switzerland
| | - Aurélien Bancaud
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France.
| | - Vincent Dion
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland.
| |
Collapse
|
16
|
HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Curr Genet 2018; 64:1205-1213. [PMID: 29713761 DOI: 10.1007/s00294-018-0842-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.
Collapse
|
17
|
Gómez-Herreros F, Margaritis T, Rodríguez-Galán O, Pelechano V, Begley V, Millán-Zambrano G, Morillo-Huesca M, Muñoz-Centeno MC, Pérez-Ortín JE, de la Cruz J, Holstege FCP, Chávez S. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 2017. [PMID: 28637236 PMCID: PMC5737610 DOI: 10.1093/nar/gkx529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Thanasis Margaritis
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Macarena Morillo-Huesca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
18
|
de la Cruz J, Gómez-Herreros F, Rodríguez-Galán O, Begley V, de la Cruz Muñoz-Centeno M, Chávez S. Feedback regulation of ribosome assembly. Curr Genet 2017; 64:393-404. [PMID: 29022131 DOI: 10.1007/s00294-017-0764-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Ribosome biogenesis is a crucial process for growth and constitutes the major consumer of cellular resources. This pathway is subjected to very stringent regulation to ensure correct ribosome manufacture with a wide variety of environmental and metabolic changes, and intracellular insults. Here we summarise our current knowledge on the regulation of ribosome biogenesis in Saccharomyces cerevisiae by particularly focusing on the feedback mechanisms that maintain ribosome homeostasis. Ribosome biogenesis in yeast is controlled mainly at the level of the production of both pre-rRNAs and ribosomal proteins through the transcriptional and post-transcriptional control of the TORC1 and protein kinase A signalling pathways. Pre-rRNA processing can occur before or after the 35S pre-rRNA transcript is completed; the switch between these two alternatives is regulated by growth conditions. The expression of both ribosomal proteins and the large family of transacting factors involved in ribosome biogenesis is co-regulated. Recently, it has been shown that the synthesis of rRNA and ribosomal proteins, but not of trans-factors, is coupled. Thus the so-called CURI complex sequesters specific transcription factor Ifh1 to repress ribosomal protein genes when rRNA transcription is impaired. We recently found that an analogue system should operate to control the expression of transacting factor genes in response to actual ribosome assembly performance. Regulation of ribosome biogenesis manages situations of imbalanced ribosome production or misassembled ribosomal precursors and subunits, which have been closely linked to distinct human diseases.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - María de la Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
19
|
Grove A. Control of RNA polymerase II-transcribed genes by direct binding of TOR kinase. Curr Genet 2017; 64:131-135. [DOI: 10.1007/s00294-017-0738-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
|
20
|
Panday A, Gupta A, Srinivasa K, Xiao L, Smith MD, Grove A. DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene. Mol Biol Cell 2017; 28:2449-2459. [PMID: 28701348 PMCID: PMC5576907 DOI: 10.1091/mbc.e17-01-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 01/29/2023] Open
Abstract
In yeast, Hmo1p is important for communicating target of rapamycin (TOR) kinase activity to downstream targets. Results show that TOR kinase controls expression of the HMO1 gene and that an important component of this regulation is its direct association with the HMO1 gene. The implications are that TOR kinase may have more elaborate nuclear functions. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II–transcribed gene.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ashish Gupta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Kavitha Srinivasa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Mathew D Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
21
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
22
|
Kasahara K, Higashino A, Unzai S, Yoshikawa H, Kokubo T. Oligomerization of Hmo1 mediated by box A is essential for DNA binding in vitro and in vivo. Genes Cells 2016; 21:1333-1352. [PMID: 27860073 DOI: 10.1111/gtc.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
Hmo1, a member of HMGB family proteins in Saccharomyces cerevisiae, binds to and regulates the transcription of genes encoding ribosomal RNA and ribosomal proteins. The functional motifs of Hmo1 include two HMG-like motifs, box A and box B, and a C-terminal tail. To elucidate the molecular roles of the HMG-like boxes in DNA binding in vivo, we analyzed the DNA-binding activity of various Hmo1 mutants using ChIP or reporter assays that enabled us to conveniently detect Hmo1 binding to the promoter of RPS5, a major target gene of Hmo1. Our mutational analyses showed that box B is a bona fide DNA-binding motif and that it also plays other important roles in cell growth. However, box A, especially its first α-helix, contributes to DNA binding of Hmo1 by inducing self-assembly of Hmo1. Intriguingly, box A mediated formation of oligomers of more than two proteins on DNA in vivo. Furthermore, duplication of the box B partially alleviates the requirement for box A. These findings suggest that the principal role of box A is to assemble multiple box B in the appropriate orientation, thereby stabilizing the binding of Hmo1 to DNA and nucleating specific chromosomal architecture on its target genes.
Collapse
Affiliation(s)
- Koji Kasahara
- Isotope Center, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Ayako Higashino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | - Tetsuro Kokubo
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
23
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
24
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
25
|
Chen H, Workman JJ, Strahl BD, Laribee RN. Histone H3 and TORC1 prevent organelle dysfunction and cell death by promoting nuclear retention of HMGB proteins. Epigenetics Chromatin 2016; 9:34. [PMID: 27540414 PMCID: PMC4989345 DOI: 10.1186/s13072-016-0083-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Background How cells respond and adapt to environmental changes, such as nutrient flux, remains poorly understood. Evolutionarily conserved nutrient signaling cascades can regulate chromatin to contribute to genome regulation and cell adaptation, yet how they do so is only now beginning to be elucidated. In this study, we provide evidence in yeast that the conserved nutrient regulated target of rapamycin complex 1 (TORC1) pathway, and the histone H3N-terminus at lysine 37 (H3K37), function collaboratively to restrict specific chromatin-binding high mobility group box (HMGB) proteins to the nucleus to maintain cellular homeostasis and viability. Results Reducing TORC1 activity in an H3K37 mutant causes cytoplasmic localization of the HMGB Nhp6a, organelle dysfunction, and both non-traditional apoptosis and necrosis. Surprisingly, under nutrient-rich conditions the H3K37 mutation increases basal TORC1 signaling. This effect is prevented by individual deletion of the genes encoding HMGBs whose cytoplasmic localization increases when TORC1 activity is repressed. This increased TORC1 signaling also can be replicated in cells by overexpressing the same HMGBs, thus demonstrating a direct and unexpected role for HMGBs in modulating TORC1 activity. The physiological consequence of impaired HMGB nuclear localization is an increased dependence on TORC1 signaling to maintain viability, an effect that ultimately reduces the chronological longevity of H3K37 mutant cells under limiting nutrient conditions. Conclusions TORC1 and histone H3 collaborate to retain HMGBs within the nucleus to maintain cell homeostasis and promote longevity. As TORC1, HMGBs, and H3 are evolutionarily conserved, our study suggests that functional interactions between the TORC1 pathway and histone H3 in metazoans may play a similar role in the maintenance of homeostasis and aging regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0083-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, UT Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jason J Workman
- Department of Pathology and Laboratory Medicine, UT Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, UT Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
26
|
Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1004-13. [DOI: 10.1016/j.bbagrm.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023]
|
27
|
Panday A, Grove A. The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics Chromatin 2016; 9:13. [PMID: 27030801 PMCID: PMC4812653 DOI: 10.1186/s13072-016-0062-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background Eukaryotic chromatin consists of nucleosome core particles connected by linker DNA of variable length. Histone H1 associates with the linker DNA to stabilize the higher-order chromatin structure and to modulate the ability of regulatory factors to access their nucleosomal targets. In Saccharomyces cerevisiae, the protein with greatest sequence similarity to H1 is Hho1p. However, during vegetative growth, hho1∆ cells do not show any discernible cell growth defects or the changes in bulk chromatin structure that are characteristic of chromatin from multicellular eukaryotes in which H1 is depleted. In contrast, the yeast high mobility group (HMGB) protein HMO1 has been reported to compact chromatin, as evidenced by increased nuclease sensitivity in hmo1∆ cells. HMO1 has an unusual domain architecture compared to vertebrate HMGB proteins in that the HMG domains are followed by a lysine-rich extension instead of an acidic domain. We address here the hypothesis that HMO1 serves the role of H1 in terms of chromatin compaction and that this function requires the lysine-rich extension. Results We show here that HMO1 fulfills this function of a linker histone. For histone H1, chromatin compaction requires its basic C-terminal domain, and we find that the same pertains to HMO1, as deletion of its C-terminal lysine-rich extension renders chromatin nuclease sensitive. On rDNA, deletion of both HMO1 and Hho1p is required for significantly increased nuclease sensitivity. Expression of human histone H1 completely reverses the nuclease sensitivity characteristic of chromatin isolated from hmo1∆ cells. While chromatin remodeling events associated with repair of DNA double-strand breaks occur faster in the more dynamic chromatin environment created by the hmo1 deletion, expression of human histone H1 results in chromatin remodeling and double-strand break repair similar to that observed in wild-type cells. Conclusion Our data suggest that S. cerevisiae HMO1 protects linker DNA from nuclease digestion, a property also characteristic of mammalian linker histone H1. Notably, association with HMO1 creates a less dynamic chromatin environment that depends on its lysine-rich domain. That HMO1 has linker histone function has implications for investigations of chromatin structure and function as well as for evolution of proteins with roles in chromatin compaction.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
28
|
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-26. [PMID: 27016735 PMCID: PMC5291244 DOI: 10.1093/nar/gkw194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.
Collapse
Affiliation(s)
- Beatrice Fermi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
29
|
Wang D, Mansisidor A, Prabhakar G, Hochwagen A. Condensin and Hmo1 Mediate a Starvation-Induced Transcriptional Position Effect within the Ribosomal DNA Array. Cell Rep 2016; 14:1010-1017. [PMID: 26832415 DOI: 10.1016/j.celrep.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
Repetitive DNA arrays are important structural features of eukaryotic genomes that are often heterochromatinized to suppress repeat instability. It is unclear, however, whether all repeats within an array are equally subject to heterochromatin formation and gene silencing. Here, we show that in starving Saccharomyces cerevisiae, silencing of reporter genes within the ribosomal DNA (rDNA) array is less pronounced in outer repeats compared with inner repeats. This position effect is linked to the starvation-induced contraction of the nucleolus. We show that the chromatin regulators condensin and Hmo1 redistribute within the rDNA upon starvation; that Hmo1, like condensin, is required for nucleolar contraction; and that the position effect partially depends on both proteins. Starvation-induced nucleolar contraction and differential desilencing of the outer rDNA repeats may provide a mechanism to activate rDNA-encoded RNAPII transcription units without causing general rDNA instability.
Collapse
Affiliation(s)
- Danni Wang
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
30
|
Abstract
The 137 ribosomal protein genes (RPG) of Saccharomyces provide a model for gene coregulation. Reja et al. examine the positional and functional organization of their regulators (Rap1, Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo. The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.
Collapse
Affiliation(s)
- Rohit Reja
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sujana Ghosh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Sanij E, Diesch J, Lesmana A, Poortinga G, Hein N, Lidgerwood G, Cameron DP, Ellul J, Goodall GJ, Wong LH, Dhillon AS, Hamdane N, Rothblum LI, Pearson RB, Haviv I, Moss T, Hannan RD. A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome Res 2015; 25:201-12. [PMID: 25452314 PMCID: PMC4315294 DOI: 10.1101/gr.176115.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
Mechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalized human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead, it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).
Collapse
Affiliation(s)
- Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia;
| | - Jeannine Diesch
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Analia Lesmana
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gretchen Poortinga
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadine Hein
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Grace Lidgerwood
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Donald P Cameron
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason Ellul
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Amardeep S Dhillon
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nourdine Hamdane
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, G1V 0A6, Canada; St-Patrick Research Group in Basic Oncology, Québec University Hospital Research Centre, Québec, QC, G1R 3S3, Canada
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104, USA
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Izhak Haviv
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Medicine, Bar-Ilan University, Zfat, 13100, Israel
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, G1V 0A6, Canada; St-Patrick Research Group in Basic Oncology, Québec University Hospital Research Centre, Québec, QC, G1R 3S3, Canada
| | - Ross D Hannan
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; School of Biomedical Sciences, University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
32
|
Higashino A, Shiwa Y, Yoshikawa H, Kokubo T, Kasahara K. Both HMG boxes in Hmo1 are essential for DNA binding in vitro and in vivo. Biosci Biotechnol Biochem 2014; 79:384-93. [PMID: 25410521 DOI: 10.1080/09168451.2014.978258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hmo1, a member of the high mobility group B family proteins in Saccharomyces cerevisiae, associates with the promoters of ribosomal protein genes (RPGs) to direct accurate transcriptional initiation. Here, to identify factors involved in the binding of Hmo1 to its targets and the mechanism of Hmo1-dependent transcriptional initiation, we developed a novel reporter system using the promoter of the RPG RPS5. A genetic screen did not identify any factors that influence Hmo1 binding, but did identify a number of mutations in Hmo1 that impair its DNA binding activity in vivo and in vitro. These results suggest that Hmo1 binds to its target promoters autonomously without any aid of additional factors. Furthermore, characterization of Hmo1 mutants showed that the box A domain plays a pivotal role in DNA binding and may be required for the recognition of structural properties of target promoters that occur in native chromatin.
Collapse
Affiliation(s)
- Ayako Higashino
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | | | | | | | | |
Collapse
|
33
|
Bosio MC, Negri R, Dieci G. Promoter architectures in the yeast ribosomal expression program. Transcription 2014; 2:71-77. [PMID: 21468232 DOI: 10.4161/trns.2.2.14486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis begins with the orchestrated expression of hundreds of genes, including the three large classes of ribosomal protein, ribosome biogenesis and snoRNA genes. Current knowledge about the corresponding promoters suggests the existence of novel class-specific transcriptional strategies and crosstalk between telomere length and cell growth control.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Dipartimento di Biochimica e Biologia Molecolare; Università degli Studi di Parma; Parma
| | | | | |
Collapse
|
34
|
mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol 2014; 36:113-20. [PMID: 25148809 DOI: 10.1016/j.semcdb.2014.08.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 02/06/2023]
Abstract
Ribosome biogenesis is critical for cells to generate the ribosomes they need for protein synthesis in order to survive, grow and proliferate. It is a complex process, involving the coordinated production of four different RNA species and about 80 proteins, as well as their assembly into functional ribosomal subunits. Given its high demand for amino acids and nucleotides, it is also a metabolically expensive process for the cell. The mammalian target of rapamycin complex 1 (mTORC1) is a protein kinases which is activated by nutrients, anabolic hormones and oncogenic signaling pathways. mTORC1 positively regulates several steps in ribosome biogenesis, including ribosomal RNA transcription, the synthesis of ribosomal proteins and other components required for ribosome assembly. mTORC1 can thus coordinate stimuli which promote ribosome production with the various steps involved in this process. Although important advances have been made in our understanding of mTORC1 signaling, major questions remain about the molecular mechanisms by which it regulates ribosome biogenesis.
Collapse
|
35
|
Murugesapillai D, McCauley MJ, Huo R, Nelson Holte MH, Stepanyants A, Maher LJ, Israeloff NE, Williams MC. DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin. Nucleic Acids Res 2014; 42:8996-9004. [PMID: 25063301 PMCID: PMC4132745 DOI: 10.1093/nar/gku635] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein–protein interactions.
Collapse
Affiliation(s)
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ran Huo
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Armen Stepanyants
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
36
|
Kim YK, Kim S, Shin YJ, Hur YS, Kim WY, Lee MS, Cheon CI, Verma DPS. Ribosomal protein S6, a target of rapamycin, is involved in the regulation of rRNA genes by possible epigenetic changes in Arabidopsis. J Biol Chem 2014; 289:3901-12. [PMID: 24302738 PMCID: PMC3924259 DOI: 10.1074/jbc.m113.515015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
The target of rapamycin (TOR) kinase pathway regulates various biological processes, including translation, synthesis of ribosomal proteins, and transcription of rRNA. The ribosomal protein S6 (RPS6) is one of the well known downstream components of the TOR pathway. Ribosomal proteins have been known to have diverse functions in regulating cellular metabolism as well as protein synthesis. So far, however, little is known about other possible role(s) of RPS6 in plants, besides being a component of the 40 S ribosomal subunit and acting as a target of TOR. Here, we report that RPS6 may have a novel function via interaction with histone deacetylase 2B (AtHD2B) that belongs to the plant-specific histone deacetylase HD2 family. RPS6 and AtHD2B were localized to the nucleolus. Co-expression of RPS6 and AtHD2B caused a change in the location of both RPS6 and AtHD2B to one or several nucleolar spots. ChIP analysis suggests that RPS6 directly interacts with the rRNA gene promoter. Protoplasts overexpressing both AtHD2B and RPS6 exhibited down-regulation of pre-18 S rRNA synthesis with a concomitant decrease in transcription of some of the ribosomal proteins, suggesting their direct role in ribosome biogenesis and plant development. This is consistent with the mutation in rps6b that results in reduction in 18 S rRNA transcription and decreased root growth. We propose that the interaction between RPS6 and AtHD2B brings about a change in the chromatin structure of rDNA and thus plays an important role in linking TOR signaling to rDNA transcription and ribosome biogenesis in plants.
Collapse
MESH Headings
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epigenesis, Genetic/physiology
- Genes, Plant/physiology
- Genes, rRNA/physiology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/physiology
- Protoplasts/cytology
- Protoplasts/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
| | - Sunghan Kim
- the Department of Plant Science, Seoul National University, Seoul 151-742, Korea, and
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | | | | | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | - Desh Pal S. Verma
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
37
|
Workman JJ, Chen H, Laribee RN. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 2014; 13:714-25. [PMID: 24526113 PMCID: PMC3979908 DOI: 10.4161/cc.28112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a well-known regulator of cell growth and proliferation in response to environmental stimuli and stressors. To date, the majority of mTORC1 studies have focused on its function as a cytoplasmic effector of translation regulation. However, recent studies have identified additional, nuclear-specific roles for mTORC1 signaling related to transcription of the ribosomal DNA (rDNA) and ribosomal protein (RP) genes, mitotic cell cycle control, and the regulation of epigenetic processes. As this area of study is still in its infancy, the purpose of this review to highlight these significant findings and discuss the relevance of nuclear mTORC1 signaling dysregulation as it pertains to health and disease.
Collapse
Affiliation(s)
- Jason J Workman
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
38
|
Guo Z, Zhang S, Zhang H, Jin L, Zhao S, Yang W, Tang J, Wang D. Cloning, purification, crystallization and preliminary X-ray studies of HMO2 from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2014; 70:57-9. [PMID: 24419618 PMCID: PMC3943102 DOI: 10.1107/s2053230x13031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
The high-mobility group protein (HMO2) of Saccharomyces cerevisiae is a component of the chromatin-remodelling complex INO80, which is involved in double-strand break (DSB) repair. HMO2 can also bind DNA to protect it from exonucleolytic cleavage. Nevertheless, little structural information is available regarding these functions of HMO2. Since determination of three-dimensional structure is a powerful means to facilitate functional characterization, X-ray crystallography has been used to accomplish this task. Here, the expression, purification, crystallization and preliminary crystallographic analysis of HMO2 from S. cerevisiae are reported. The crystal belonged to space group P222, with unit-cell parameters a = 39.35, b = 75.69, c = 108.03 Å, and diffracted to a resolution of 3.0 Å. The crystals are most likely to contain one molecule in the asymmetric unit, with a VM value of 3.19 Å(3) Da(-1).
Collapse
Affiliation(s)
- Zhen Guo
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shaocheng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Li Jin
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Shasha Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Wei Yang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Jian Tang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| |
Collapse
|
39
|
Downey M, Knight B, Vashisht AA, Seller CA, Wohlschlegel JA, Shore D, Toczyski DP. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 2013; 23:1638-48. [PMID: 23973296 PMCID: PMC3982851 DOI: 10.1016/j.cub.2013.06.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND In eukaryotes, ribosome biosynthesis involves the coordination of ribosomal RNA and ribosomal protein (RP) production. In S. cerevisiae, the regulation of ribosome biosynthesis occurs largely at the level of transcription. The transcription factor Ifh1 binds at RP genes and promotes their transcription when growth conditions are favorable. Although Ifh1 recruitment to RP genes has been characterized, little is known about the regulation of promoter-bound Ifh1. RESULTS We used a novel whole-cell-extract screening approach to identify Spt7, a member of the SAGA transcription complex, and the RP transactivator Ifh1 as highly acetylated nonhistone species. We report that Ifh1 is modified by acetylation specifically in an N-terminal domain. These acetylations require the Gcn5 histone acetyltransferase and are reversed by the sirtuin deacetylases Hst1 and Sir2. Ifh1 acetylation is regulated by rapamycin treatment and stress and limits the ability of Ifh1 to act as a transactivator at RP genes. CONCLUSIONS Our data suggest a novel mechanism of regulation whereby Gcn5 functions to titrate the activity of Ifh1 following its recruitment to RP promoters to provide more than an all-or-nothing mode of transcriptional regulation. We provide insights into how the action of histone acetylation machineries converges with nutrient-sensing pathways to regulate important aspects of cell growth.
Collapse
Affiliation(s)
- Michael Downey
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - Britta Knight
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - Charles A. Seller
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - David Shore
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| |
Collapse
|
40
|
Albert B, Colleran C, Léger-Silvestre I, Berger AB, Dez C, Normand C, Perez-Fernandez J, McStay B, Gadal O. Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Res 2013; 41:10135-49. [PMID: 24021628 PMCID: PMC3905846 DOI: 10.1093/nar/gkt770] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosome biogenesis is a major metabolic effort for growing cells. In Saccharomyces cerevisiae, Hmo1, an abundant high-mobility group box protein (HMGB) binds to the coding region of the RNA polymerase I transcribed ribosomal RNAs genes and the promoters of ∼70% of ribosomal protein genes. In this study, we have demonstrated the functional conservation of eukaryotic HMGB proteins involved in ribosomal DNA (rDNA) transcription. We have shown that when expressed in budding yeast, human UBF1 and a newly identified Sp-Hmo1 (Schizosaccharomyces pombe) localize to the nucleolus and suppress growth defect of the RNA polymerase I mutant rpa49-Δ. Owing to the multiple functions of both proteins, Hmo1 and UBF1 are not fully interchangeable. By deletion and domains swapping in Hmo1, we identified essential domains that stimulate rDNA transcription but are not fully required for stimulation of ribosomal protein genes expression. Hmo1 is organized in four functional domains: a dimerization module, a canonical HMGB motif followed by a conserved domain and a C-terminal nucleolar localization signal. We propose that Hmo1 has acquired species-specific functions and shares with UBF1 and Sp-Hmo1 an ancestral function to stimulate rDNA transcription.
Collapse
Affiliation(s)
- Benjamin Albert
- LBME du CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France, Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France and Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen H, Workman JJ, Tenga A, Laribee RN. Target of rapamycin signaling regulates high mobility group protein association to chromatin, which functions to suppress necrotic cell death. Epigenetics Chromatin 2013; 6:29. [PMID: 24044743 PMCID: PMC3766136 DOI: 10.1186/1756-8935-6-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved signal transduction pathway activated by environmental nutrients that regulates gene transcription to control cell growth and proliferation. How TORC1 modulates chromatin structure to control gene expression, however, is largely unknown. Because TORC1 is a major transducer of environmental information, defining this process has critical implications for both understanding environmental effects on epigenetic processes and the role of aberrant TORC1 signaling in many diseases, including cancer, diabetes, and cardiovascular disease. RESULTS To elucidate the role of TORC1 signaling in chromatin regulation, we screened a budding yeast histone H3 and H4 mutant library using the selective TORC1 inhibitor rapamycin to identify histone residues functionally connected to TORC1. Intriguingly, we identified histone H3 lysine 37 (H3K37) as a residue that is essential during periods of limited TORC1 activity. An H3K37A mutation resulted in cell death by necrosis when TORC1 signaling was simultaneously impaired. The induction of necrosis was linked to alterations in high mobility group (HMG) protein binding to chromatin. Furthermore, the necrotic phenotype could be recapitulated in wild-type cells by deregulating the model HMG proteins, Hmo1 or Ixr1, thus implicating a direct role for HMG protein deregulation as a stimulus for inducing necrosis. CONCLUSIONS This study identifies histone H3 and H4 residues functionally required for TORC1-dependent cell growth and proliferation that are also candidate epigenetic pathways regulated by TORC1 signaling. It also demonstrates a novel role for H3K37 and TORC1 in regulating the binding of select HMG proteins to chromatin and that HMG protein deregulation can initiate a necrotic cell death response. Overall, the results from this study suggest a possible model by which chromatin anchors HMG proteins during periods of limited TORC1 signaling, such as that which occurs during conditions of nutrient stress, to suppress necrotic cell death.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
42
|
Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Mol Cell Biol 2013; 33:2748-59. [PMID: 23689130 DOI: 10.1128/mcb.00112-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal DNA (rDNA) genes in eukaryotes are organized into multicopy tandem arrays and transcribed by RNA polymerase I. During cell proliferation, ∼50% of these genes are active and have a relatively open chromatin structure characterized by elevated accessibility to psoralen cross-linking. In Saccharomyces cerevisiae, transcription of rDNA genes becomes repressed and chromatin structure closes when cells enter the diauxic shift and growth dramatically slows. In this study, we found that nucleosomes are massively depleted from the active rDNA genes during log phase and reassembled during the diauxic shift, largely accounting for the differences in psoralen accessibility between active and inactive genes. The Rpd3L histone deacetylase complex was required for diauxic shift-induced H4 and H2B deposition onto rDNA genes, suggesting involvement in assembly or stabilization of the entire nucleosome. The Spt16 subunit of FACT, however, was specifically required for H2B deposition, suggesting specificity for the H2A/H2B dimer. Miller chromatin spreads were used for electron microscopic visualization of rDNA genes in an spt16 mutant, which was found to be deficient in the assembly of normal nucleosomes on inactive genes and the disruption of nucleosomes on active genes, consistent with an inability to fully reactivate polymerase I (Pol I) transcription when cells exit stationary phase.
Collapse
|
43
|
Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J. Chromatin states at ribosomal DNA loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:405-17. [PMID: 23291532 DOI: 10.1016/j.bbagrm.2012.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Stephan Hamperl
- Lehrstuhl Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Knutson BA, Hahn S. TFIIB-related factors in RNA polymerase I transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:265-73. [PMID: 22960599 DOI: 10.1016/j.bbagrm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023]
Abstract
Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Bruce A Knutson
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Ave. N, P.O. Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.
| | | |
Collapse
|
45
|
Shin YJ, Kim S, Du H, Choi S, Verma DPS, Cheon CI. Possible dual regulatory circuits involving AtS6K1 in the regulation of plant cell cycle and growth. Mol Cells 2012; 33:487-96. [PMID: 22526395 PMCID: PMC3887737 DOI: 10.1007/s10059-012-2275-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/27/2022] Open
Abstract
The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations.
Collapse
Affiliation(s)
- Yun-jeong Shin
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Hui Du
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Soonyoung Choi
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Desh Pal S. Verma
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210,
USA
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
46
|
|
47
|
Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first? GENETICS RESEARCH INTERNATIONAL 2012; 2012:276948. [PMID: 22567380 PMCID: PMC3335655 DOI: 10.1155/2012/276948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35-47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.
Collapse
|
48
|
Xiao L, Kamau E, Donze D, Grove A. Expression of yeast high mobility group protein HMO1 is regulated by TOR signaling. Gene 2011; 489:55-62. [DOI: 10.1016/j.gene.2011.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/19/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
49
|
Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011; 189:1177-201. [PMID: 22174183 PMCID: PMC3241408 DOI: 10.1534/genetics.111.133363] [Citation(s) in RCA: 646] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 12/16/2022] Open
Abstract
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology and National Centers of Competence in Research and Frontiers in Genetics and Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | | |
Collapse
|
50
|
Schneider DA. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 2011; 493:176-84. [PMID: 21893173 DOI: 10.1016/j.gene.2011.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Synthesis of the translation apparatus is a central activity in growing and/or proliferating cells. Because of its fundamental importance and direct connection to cell proliferation, ribosome synthesis has been a focus of ongoing research for several decades. As a consequence, much is known about the essential factors involved in this process. Many studies have shown that transcription of the ribosomal DNA by RNA polymerase I is a major target for cellular regulation of ribosome synthesis rates. The initiation of transcription by RNA polymerase I has been implicated as a regulatory target, however, recent studies suggest that the elongation step in transcription is also influenced and regulated by trans-acting factors. This review describes the factors required for rRNA synthesis and focuses on recent works that have begun to identify and characterize factors that influence transcription elongation by RNA polymerase I and its regulation.
Collapse
Affiliation(s)
- David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics, Room 442, Birmingham, AL 35294, USA.
| |
Collapse
|