1
|
Ouyang M, Xing Y, Zhang S, Li L, Pan Y, Deng L. Development of FRET Biosensor to Characterize CSK Subcellular Regulation. BIOSENSORS 2024; 14:206. [PMID: 38667199 PMCID: PMC11048185 DOI: 10.3390/bios14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Yujie Xing
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shumin Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Liting Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| |
Collapse
|
2
|
Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sci Signal 2023; 16:eabn8668. [PMID: 37402225 PMCID: PMC10544828 DOI: 10.1126/scisignal.abn8668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.
Collapse
Affiliation(s)
- Sho Sendo
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - William B. Kiosses
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Shen Yang
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dennis J. Wu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel W. K. Lee
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lin Liu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Allison J. Vela
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Eugenio Santelli
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Nunzio Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Glucose-mediated N-glycosylation of RPTPα affects its subcellular localization and Src activation. Oncogene 2023; 42:1058-1071. [PMID: 36765146 DOI: 10.1038/s41388-023-02622-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.
Collapse
|
4
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Nakano M, Yahiro K, Yamasaki E, Kurazono H, Akada J, Yamaoka Y, Niidome T, Hatakeyama M, Suzuki H, Yamamoto T, Moss J, Isomoto H, Hirayama T. Helicobacter pylori VacA, acting through receptor protein tyrosine phosphatase α, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521. Dis Model Mech 2017; 9:1473-1481. [PMID: 27935824 PMCID: PMC5200893 DOI: 10.1242/dmm.025361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)α, a VacA receptor, reduced VacA-induced Src phosphorylation. Src is responsible for tyrosine phosphorylation of CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA) variant C (EPIYA-C) motif in Helicobacterpylori-infected gastric epithelial cells, resulting in binding of CagA to SHP-2 phosphatase. Challenging AZ-521 cells with wild-type H. pylori induced phosphorylation of CagA, but this did not occur when challenged with a vacA gene-disrupted mutant strain. CagA phosphorylation was observed in cells infected with a vacA gene-disrupted mutant strain after addition of purified VacA, suggesting that VacA is required for H. pylori-induced CagA phosphorylation. Following siRNA-mediated RPTPα knockdown in AZ-521 cells, infection with wild-type H. pylori and treatment with VacA did not induce CagA phosphorylation. Taken together, these results support our conclusion that VacA mediates CagA phosphorylation through RPTPα in AZ-521 cells. These data indicate the possibility that Src phosphorylation induced by VacA is mediated through RPTPα, resulting in activation of Src, leading to CagA phosphorylation at Tyr972 in AZ-521 cells. Summary: The authors show a newly identified role of VacA in Helicobacter pylori infection through induction of tyrosine phosphorylation of CagA acting through the VacA receptor RPTPα.
Collapse
Affiliation(s)
- Masayuki Nakano
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan .,Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Eiki Yamasaki
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hisao Kurazono
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Takuro Niidome
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Hidekazu Suzuki
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
6
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
7
|
Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains. Biochem Soc Trans 2017; 44:1295-1303. [PMID: 27911712 DOI: 10.1042/bst20160141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
Abstract
Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function.
Collapse
|
8
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Xu J, Kurup P, Foscue E, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway. J Neurochem 2015; 134:629-41. [PMID: 25951993 DOI: 10.1111/jnc.13160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/05/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ethan Foscue
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Ruvolo PP. The Interplay between PP2A and microRNAs in Leukemia. Front Oncol 2015; 5:43. [PMID: 25750899 PMCID: PMC4335100 DOI: 10.3389/fonc.2015.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase family whose members have been implicated in tumor suppression in many cancer models. In many cancers, loss of PP2A activity has been associated with tumorigenesis and drug resistance. Loss of PP2A results in failure to turn off survival signaling cascades that drive drug resistance such as those regulated by protein kinase B. PP2A is responsible for modulating function and controlling expression of tumor suppressors such as p53 and oncogenes such as BCL2 and MYC. Thus, PP2A has diverse functions regulating cell survival. The importance of microRNAs (miRs) is emerging in cancer biology. A role for miR regulation of PP2A is not well understood; however, recent studies suggest a number of clinically significant miRs such as miR-155 and miR-19 may include PP2A targets. We have recently found that a PP2A B subunit (B55α) can regulate a number of miRs in acute myeloid leukemia cells. The identification of a miR/PP2A axis represents a novel regulatory pathway in cellular homeostasis. The ability of miRs to suppress specific PP2A targets and for PP2A to control such miRs can add an extra level of control in signaling that could be used as a rheostat for many signaling cascades that maintain cellular homeostasis. As such, loss of PP2A or expression of miRs relevant for PP2A function could promote tumorigenesis or at least result in drug resistance. In this review, we will cover the current state of miR regulation of PP2A with a focus on leukemia. We will also briefly discuss what is known of PP2A regulation of miR expression.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
11
|
Fang XQ, Liu XF, Yao L, Chen CQ, Lin JF, Gu ZD, Ni PH, Zheng XM, Fan QS. Focal adhesion kinase regulates the phosphorylation protein tyrosine phosphatase-α at Tyr789 in breast cancer cells. Mol Med Rep 2015; 11:4303-8. [PMID: 25625869 DOI: 10.3892/mmr.2015.3262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)‑α regulates the phosphorylation of focal adhesion kinase (FAK), which is important in cellular signal transduction and integration of proteins. It has been demonstrated that a FAK‑Del33 mutation (deletion of exon 33; KF437463) in breast cancer tissues regulates cell migration through FAK/Src signaling activation. However, the detailed pathway for Src activation with FAK‑Del33 remains to be elucidated. The present study used a retroviral expression system to examine changes in PTPα phosphorylation affected by the FAK‑Del33 protein in breast cancer cells. Small interfering (si)RNA targeting PTPα interfered with the phosphorylation of Src. Wound‑healing and migration assays were performed to identify cell morphology and quantitative analysis was performed by examining band color depth in western blot analysis. Significant differences were observed in the phosphorylation level of PTPα at Tyr789 between the FAK‑Del33 and the wild‑type breast cancer cells, suggesting that FAK regulated the phosphorylation level of PTPα at Tyr789 in breast cancer mutant FAK‑Del33 cells. The gene expression profile with FAK siRNA did not alter the levels of phosphorylation in other mutants, including autophosphorylation disability (Y397F), ATP kinase dominant negative (K454R) and protein 4.1, ezrin, radixin, moesin domain attenuate (Δ375). FAK RNAi inhibited the activity of the FAK‑Del33 at the Src site and rescued the elevated cell migration and invasion. The present study demonstrated for the first time, to the best of our knowledge, an increase in the phosphorylation level of PTPα‑Tyr789 by its upstream activator, FAK‑Del33, leading to Src activation in certain breast cancer cells, which has significant implications for metastatic potential.
Collapse
Affiliation(s)
- Xu-Qian Fang
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiang-Fan Liu
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling Yao
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Chang-Qiang Chen
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Jia-Fei Lin
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhi-Dong Gu
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei-Hua Ni
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xin-Min Zheng
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Qi-Shi Fan
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
12
|
Spring K, Lapointe L, Caron C, Langlois S, Royal I. Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cell Signal 2014; 26:1283-93. [DOI: 10.1016/j.cellsig.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
|
13
|
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors. J Neurosci 2013; 33:14369-78. [PMID: 24005290 DOI: 10.1523/jneurosci.1954-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.
Collapse
|
14
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
15
|
Wang J, Yu L, Zheng X. PTPα-mediated Src activation by EGF in human breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:320-9. [PMID: 23532252 DOI: 10.1093/abbs/gmt005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphatase alpha (PTPα) functions as an activator of Src by dephosphorylating Tyr527/530, a critical negative regulatory site. The increase of PTPα catalytic activity requires its phosphorylation at Ser180 and/or Ser204 and its dissociation from PTPα/Grb2 complex. Here, we show that epidermal growth factor (EGF) stimulation increases the ability of PTPα to activate Src by dephosphorylating Tyr530 in BT-20 and SKBR3 breast cancer cell lines. Treatment of these cells with EGF transiently decreased the association of PTPα with Grb2 and enhanced PTPα catalytic activity via Ser180 and Ser204 phosphorylation that was blocked by the protein kinase C delta (PKCδ) inhibitor rottlerin or knockdown of PKCδ by siRNA or by the overexpression of PTPαS180A/S204A mutant. PTPα siRNA blocked EGF-mediated Src activation in cancer cells and inhibited on colony formation, whereas control siRNA did not. These results suggested that PTPα links activation of epidermal growth factor receptor (EGFR) signaling with Src activation and may provide a novel therapeutic target for treatment of breast cancer.
Collapse
Affiliation(s)
- Jiamin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | | |
Collapse
|
16
|
Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, and capillary formation. Blood 2012; 120:2745-56. [PMID: 22898603 DOI: 10.1182/blood-2011-12-398040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP-1/CD148 is a receptor-like protein tyrosine phosphatase with antiproliferative and tumor-suppressive functions. Interestingly, it also positively regulates Src family kinases in hematopoietic and endothelial cells, where we showed it promotes VE-cadherin-associated Src activation and endothelial cell survival upon VEGF stimulation. However, the molecular mechanism involved and its biologic functions in endothelial cells remain ill-defined. We demonstrate here that DEP-1 is phosphorylated in a Src- and Fyn-dependent manner on Y1311 and Y1320, which bind the Src SH2 domain. This allows DEP-1-catalyzed dephosphorylation of Src inhibitory Y529 and favors the VEGF-induced phosphorylation of Src substrates VE-cadherin and Cortactin. Accordingly, RNA interference (RNAi)-mediated knockdown of DEP-1 or expression of DEP-1 Y1311F/Y1320F impairs Src-dependent biologic responses mediated by VEGF including permeability, invasion, and branching capillary formation. In addition, our work further reveals that above a threshold expression level, DEP-1 can also dephosphorylate Src Y418 and attenuate downstream signaling and biologic responses, consistent with the quiescent behavior of confluent endothelial cells that express the highest levels of endogenous DEP-1. Collectively, our findings identify the VEGF-dependent phosphorylation of DEP-1 as a novel mechanism controlling Src activation, and show this is essential for the proper regulation of permeability and the promotion of the angiogenic response.
Collapse
|
17
|
Huang J, Yao L, Xu R, Wu H, Wang M, White BS, Shalloway D, Zheng X. Activation of Src and transformation by an RPTPα splice mutant found in human tumours. EMBO J 2011; 30:3200-11. [PMID: 21725282 DOI: 10.1038/emboj.2011.212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/07/2011] [Indexed: 11/09/2022] Open
Abstract
Receptor protein tyrosine phosphatase α (RPTPα)-mediated Src activation is required for survival of tested human colon and oestrogen receptor-negative breast cancer cell lines. To explore whether mutated RPTPα participates in human carcinogenesis, we sequenced RPTPα cDNAs from five types of human tumours and found splice mutants in ∼30% of colon, breast, and liver tumours. RPTPα245, a mutant expressed in all three tumour types, was studied further. Although it lacks any catalytic domain, RPTPα245 expression in the tumours correlated with Src tyrosine dephosphorylation, and its expression in rodent fibroblasts activated Src by a novel mechanism. This involved RPTPα245 binding to endogenous RPTPα (eRPTPα), which decreased eRPTPα-Grb2 binding and increased eRPTPα dephosphorylation of Src without increasing non-specific eRPTPα activity. RPTPα245-eRPTPα binding was blocked by Pro210 → Leu/Pro211 → Leu mutation, consistent with the involvement of the structural 'wedge' that contributes to eRPTPα homodimerization. RPTPα245-induced fibroblast transformation was blocked by either Src or eRPTPα RNAi, indicating that this required the dephosphorylation of Src by eRPTPα. The transformed cells were tumourigenic in nude mice, suggesting that RPTPα245-induced activation of Src in the human tumours may have contributed to carcinogenesis.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ye H, Zhao T, Tan YLJ, Liu J, Pallen CJ, Xiao ZC. Receptor-like protein-tyrosine phosphatase α enhances cell surface expression of neural adhesion molecule NB-3. J Biol Chem 2011; 286:26071-80. [PMID: 21622556 DOI: 10.1074/jbc.m110.214080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural adhesion molecule NB-3 plays an important role in the apical dendrite development of layer V pyramidal neurons in the visual cortex, and receptor-like protein-tyrosine phosphatase α (PTPα) mediates NB-3 signaling in this process. Here we investigated the role of PTPα in regulating cell surface expression of NB-3. We found that cortical neurons from PTPα knock-out mice exhibited a lower level of NB-3 at the cell surface. When expressed in COS1 cells, NB-3 was enriched in the Golgi apparatus with a low level of cell surface expression. However, co-expression of PTPα increased the cell surface distribution of NB-3. Further analysis showed that PTPα facilitated Golgi exit of NB-3 and stabilized NB-3 protein at the cell surface by preventing its release from the plasma membrane. The extracellular region of PTPα but not its catalytic activity is necessary for its effect on NB-3 expression. Thus, the PTPα-mediated increase of NB-3 level at the cell surface represents a novel function of PTPα in NB-3 signaling in neural development.
Collapse
Affiliation(s)
- Haihong Ye
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | |
Collapse
|