1
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
2
|
Brown G. Deregulation of All- Trans Retinoic Acid Signaling and Development in Cancer. Int J Mol Sci 2023; 24:12089. [PMID: 37569466 PMCID: PMC10419198 DOI: 10.3390/ijms241512089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer stem cells are the root cause of cancer, which, in essence, is a developmental disorder. All-trans retinoic acid (ATRA) signaling via ligand-activation of the retinoic acid receptors (RARs) plays a crucial role in tissue patterning and development during mammalian embryogenesis. In adults, active RARγ maintains the pool of hematopoietic stem cells, whereas active RARα drives myeloid cell differentiation. Various findings have revealed that ATRA signaling is deregulated in many cancers. The enzymes for ATRA synthesis are downregulated in colorectal, gastric, lung, and oropharyngeal cancers. ATRA levels within breast, ovarian, pancreatic, prostate, and renal cancer cells were lower than within their normal counterpart cells. The importance is that 0.24 nM ATRA activates RARγ (for stem cell stemness), whereas 100 times more is required to activate RARα (for differentiation). Moreover, RARγ is an oncogene regarding overexpression within colorectal, cholangiocarcinoma, hepatocellular, ovarian, pancreatic, and renal cancer cells. The microRNA (miR) 30a-5p downregulates expression of RARγ, and miR-30a/miR-30a-5p is a tumor suppressor for breast, colorectal, gastric, hepatocellular, lung, oropharyngeal, ovarian, pancreatic, prostate, and renal cancer. These complementary findings support the view that perturbations to ATRA signaling play a role in driving the abnormal behavior of cancer stem cells. Targeting ATRA synthesis and RARγ has provided promising approaches to eliminating cancer stem cells because such agents have been shown to drive cell death.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
5
|
Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem 2021; 65:887-899. [PMID: 34296739 DOI: 10.1042/ebc20200168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,β,γ) and three retinoid X receptor (RXRα,β,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.
Collapse
|
6
|
Nishimoto K, Toya Y, Davis CR, Tanumihardjo SA, Welham NV. Dynamics of vitamin A uptake, storage, and utilization in vocal fold mucosa. Mol Metab 2020; 40:101025. [PMID: 32473404 PMCID: PMC7322172 DOI: 10.1016/j.molmet.2020.101025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Extrahepatic vitamin A is housed within organ-specific stellate cells that support local tissue function. These cells have been reported in the vocal fold mucosa (VFM) of the larynx; however, it is unknown how vitamin A reaches and is disseminated among VFM target cells, how VFM storage and utilization vary as a function of total body stores, and how these parameters change in the context of pathology. Therefore, in this study, we investigated fundamental VFM vitamin A uptake and metabolism. Methods Using cadaveric tissue and serum from human donors representing the full continuum of clinical vitamin A status, we established a concentration range and analyzed the impact of biologic and clinical covariates on VFM vitamin A. We additionally conducted immunodetection of vitamin A-associated markers and pharmacokinetic profiling of orally dosed α-retinyl ester (a chylomicron tracer) in rats. Results Serum vitamin A was a significant predictor of human VFM concentrations, suggesting that VFM stores may be rapidly metabolized in situ and replenished from the circulatory pool. On a vitamin A-sufficient background, dosed α-vitamin A was detected in rat VFM in both ester and alcohol forms, showing that, in addition to plasma retinol and local stellate cell stores, VFM can access and process postprandial retinyl esters from circulating chylomicra. Both α forms were rapidly depleted, confirming the high metabolic demand for vitamin A within VFM. Conclusion This thorough physiological analysis validates VFM as an extrahepatic vitamin A repository and characterizes its unique uptake, storage, and utilization phenotype. Vocal fold mucosa (VFM) is a bone fide extrahepatic vitamin A repository in the larynx. VFM rapidly metabolizes vitamin A and can directly access postprandial retinyl esters from chylomicra. The VFM vitamin A uptake, storage, and utilization phenotype appears to be comparable in humans and rats.
Collapse
Affiliation(s)
- Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Yutaka Toya
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
7
|
Czimmerer Z, Halasz L, Nagy L. Unorthodox Transcriptional Mechanisms of Lipid-Sensing Nuclear Receptors in Macrophages: Are We Opening a New Chapter? Front Endocrinol (Lausanne) 2020; 11:609099. [PMID: 33362723 PMCID: PMC7758493 DOI: 10.3389/fendo.2020.609099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Work over the past 30 years has shown that lipid-activated nuclear receptors form a bridge between metabolism and immunity integrating metabolic and inflammatory signaling in innate immune cells. Ligand-induced direct transcriptional activation and protein-protein interaction-based transrepression were identified as the most common mechanisms of liganded-nuclear receptor-mediated transcriptional regulation. However, the integration of different next-generation sequencing-based methodologies including chromatin immunoprecipitation followed by sequencing and global run-on sequencing allowed to investigate the DNA binding and ligand responsiveness of nuclear receptors at the whole-genome level. Surprisingly, these studies have raised the notion that a major portion of lipid-sensing nuclear receptor cistromes are not necessarily responsive to ligand activation. Although the biological role of the ligand insensitive portion of nuclear receptor cistromes is largely unknown, recent findings indicate that they may play roles in the organization of chromatin structure, in the regulation of transcriptional memory, and the epigenomic modification of responsiveness to other microenvironmental signals in macrophages. In this review, we will provide an overview and discuss recent advances of our understanding of lipid-activated nuclear receptor-mediated non-classical or unorthodox actions in macrophages.
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- *Correspondence: Laszlo Nagy,
| |
Collapse
|
8
|
Genomic and non-genomic pathways are both crucial for peak induction of neurite outgrowth by retinoids. Cell Commun Signal 2019; 17:40. [PMID: 31046795 PMCID: PMC6498645 DOI: 10.1186/s12964-019-0352-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) is the active metabolite of vitamin A and essential for many physiological processes, particularly the induction of cell differentiation. In addition to regulating genomic transcriptional activity via RA receptors (RARs) and retinoid X receptors (RXRs), non-genomic mechanisms of RA have been described, including the regulation of ERK1/2 kinase phosphorylation, but are poorly characterised. In this study, we test the hypothesis that genomic and non-genomic mechanisms of RA are regulated independently with respect to the involvement of ligand-dependent RA receptors. A panel of 28 retinoids (compounds with vitamin A-like activity) showed a marked disparity in genomic (gene expression) versus non-genomic (ERK1/2 phosphorylation) assays. These results demonstrate that the capacity of a compound to activate gene transcription does not necessarily correlate with its ability to regulate a non-genomic activity such as ERK 1/2 phosphorylation. Furthermore, a neurite outgrowth assay indicated that retinoids that could only induce either genomic, or non-genomic activities, were not strong promoters of neurite outgrowth, and that activities with respect to both transcriptional regulation and ERK1/2 phosphorylation produced maximum neurite outgrowth. These results suggest that the development of effective retinoids for clinical use will depend on the selection of compounds which have maximal activity in non-genomic as well as genomic assays.
Collapse
|
9
|
RAC1 Takes the Lead in Solid Tumors. Cells 2019; 8:cells8050382. [PMID: 31027363 PMCID: PMC6562738 DOI: 10.3390/cells8050382] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Three GTPases, RAC, RHO, and Cdc42, play essential roles in coordinating many cellular functions during embryonic development, both in healthy cells and in disease conditions like cancers. We have presented patterns of distribution of the frequency of RAC1-alteration(s) in cancers as obtained from cBioPortal. With this background data, we have interrogated the various functions of RAC1 in tumors, including proliferation, metastasis-associated phenotypes, and drug-resistance with a special emphasis on solid tumors in adults. We have reviewed the activation and regulation of RAC1 functions on the basis of its sub-cellular localization in tumor cells. Our review focuses on the role of RAC1 in cancers and summarizes the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of RAC1-PAK targeting agents.
Collapse
|
10
|
Liu J, Huang JG, Zeng JZ. Targeting Non-Genomic Activity of Retinoic Acid Receptor-Gamma by Acacetin. Methods Mol Biol 2019; 2019:15-31. [PMID: 31359386 DOI: 10.1007/978-1-4939-9585-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Retinoic acid receptors (RARs) are ligand-dependent transcription factors of nuclear hormone receptor superfamily (NR). They are important pharmacological targets and current drug development paradigms are largely based on their nuclear transcription mechanism (genomic action). However, the side effects and limited therapeutic efficacy of retinoid-like drugs with such strategy remain a problem in clinical practice. Increasing evidences have demonstrated that many NRs including RARs can act outside the nucleus in a transcription-independent manner (non-genomic action), which are often implicated in human pathological conditions, suggesting that targeting to the non-genomic signaling of NRs is an alternative method for drug discovery. We recently reported that acacetin could antagonize the non-genomic action of RARγ via tipping the balance of AKT-p53 driven by RARγ from tumor promoting to tumor suppressive effect. This chapter provides methodology for identification of acacetin as a ligand and regulator of non-genomic signaling of RARγ. These laboratory protocols should be helpful for those researchers and beginners who are passionate about identifying chemical leads to probe the non-genomic roles of RARs and other NRs for developing new therapeutic technologies.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jian-Gang Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Ogasawara S, Chuman Y, Michiba T, Kamada R, Imagawa T, Sakaguchi K. Inhibition of protein phosphatase PPM1D enhances retinoic acid-induced differentiation in human embryonic carcinoma cell line. J Biochem 2018; 165:471-477. [PMID: 30576481 DOI: 10.1093/jb/mvy119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sari Ogasawara
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Yoshiro Chuman
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Takahiro Michiba
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan
| |
Collapse
|
12
|
Chowdhury P, Powell RT, Stephan C, Uray IP, Talley T, Karki M, Tripathi DN, Park YS, Mancini MA, Davies P, Dere R. Bexarotene - a novel modulator of AURKA and the primary cilium in VHL-deficient cells. J Cell Sci 2018; 131:jcs.219923. [PMID: 30518623 PMCID: PMC6307881 DOI: 10.1242/jcs.219923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Loss of the gene von Hippel–Lindau (VHL) is associated with loss of primary cilia and is causally linked to elevated levels of Aurora kinase A (AURKA). We developed an image-based high-throughput screening (HTS) assay using a dual-labeling image analysis strategy that identifies both the cilium and the basal body. By using this strategy, we screened small-molecule compounds for the targeted rescue of cilia defects associated with VHL deficiency with high accuracy and reproducibility. Bexarotene was identified and validated as a positive regulator of the primary cilium. Importantly, the inability of an alternative retinoid X receptor (RXR) agonist to rescue ciliogenesis, in contrast to bexarotene, suggested that multiple bexarotene-driven mechanisms were responsible for the rescue. We found that bexarotene decreased AURKA expression in VHL-deficient cells, thereby restoring the ability of these cells to ciliate in the absence of VHL. Finally, bexarotene treatment reduced the propensity of subcutaneous lesions to develop into tumors in a mouse xenograft model of renal cell carcinoma (RCC), with a concomitant decrease in activated AURKA, highlighting the potential of bexarotene treatment as an intervention strategy in the clinic to manage renal cystogenesis associated with VHL deficiency and elevated AURKA expression. Highlighted Article: An image-based screen using a dual labeling strategy identified bexarotene, a rexinoid, as a novel modulator of the primary cilium in VHL-deficient cells.
Collapse
Affiliation(s)
- Pratim Chowdhury
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ivan P Uray
- Department of Clinical Oncology, University of Debrecen, Debrecen 4032, Hungary
| | - Tia Talley
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Sung Park
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Girardi CS, Rostirolla DC, Lini FJM, Brum PO, Delgado J, Ribeiro CT, Teixeira AA, Peixoto DO, Heimfarth L, Kunzler A, Moreira JCF, Gelain DP. Nuclear RXRα and RXRβ receptors exert distinct and opposite effects on RA-mediated neuroblastoma differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:317-328. [PMID: 30529222 DOI: 10.1016/j.bbamcr.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRβ and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear. We firstly investigated both RXRs and RARs expression profiles during RA-mediated neuronal differentiation of human neuroblastoma cell line SH-SY5Y, and found varying levels of retinoid receptors transcript and protein contents along the process. In order to understand the roles of the expression of distinct RXR subtypes to RA signal transduction, we performed siRNA-mediated silencing of RXRα and RXRβ during the first stages of SH-SY5Y differentiation. Our results showed that RXRα is required for RA-induced neuronal differentiation of SH-SY5Y cells, since its silencing compromised cell cycle arrest and prevented the upregulation of neuronal markers and the adoption of neuronal morphology. Besides, silencing of RXRα affected the phosphorylation of ERK1/2. By contrast, silencing of RXRβ improved neurite extension and led to increased expression of tau and synaptophysin, suggesting that RXRβ may negatively regulate neuronal parameters related to neurite outgrowth and function. Our results indicate distinct functions for RXR subtypes during RA-dependent neuronal differentiation and reveal new perspectives for studying such receptors as clinical targets in therapies aiming at restoring neuronal function.
Collapse
Affiliation(s)
- Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil.
| | - Diana Carolina Rostirolla
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Fernanda Janini Mota Lini
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Pedro Ozorio Brum
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Jeferson Delgado
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Alexsander Alves Teixeira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Daniel Oppermann Peixoto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Luana Heimfarth
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| |
Collapse
|
14
|
All-trans-retinoic acid activates the pro-invasive Src-YAP-Interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action. Sci Rep 2018; 8:7047. [PMID: 29728589 PMCID: PMC5935706 DOI: 10.1038/s41598-018-25526-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.
Collapse
|
15
|
Ashton A, Stoney PN, Ransom J, McCaffery P. Rhythmic Diurnal Synthesis and Signaling of Retinoic Acid in the Rat Pineal Gland and Its Action to Rapidly Downregulate ERK Phosphorylation. Mol Neurobiol 2018. [PMID: 29520716 PMCID: PMC6153719 DOI: 10.1007/s12035-018-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.
Collapse
Affiliation(s)
- Anna Ashton
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Patrick N Stoney
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jemma Ransom
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Peter McCaffery
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK.
| |
Collapse
|
16
|
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol 2017; 34:369-94. [PMID: 27168242 DOI: 10.1146/annurev-immunol-041015-055427] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| |
Collapse
|
17
|
Zhang X, Yuan X, Chen L, Wei H, Chen J, Li T. The change in retinoic acid receptor signaling induced by prenatal marginal vitamin A deficiency and its effects on learning and memory. J Nutr Biochem 2017; 47:75-85. [PMID: 28570942 DOI: 10.1016/j.jnutbio.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/29/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
This study investigated the prenatal marginal vitamin A deficiency (mVAD)-related impairment in learning and memory and the interactions between RARα, Src and NR1. Learning and memory were assessed in adult rats that were exposed to prenatal mVAD with Morris water maze. The average escape time was longer in mVAD rats, and they passed the hidden platform fewer times during the memory retention test than normal vitamin A intake (VAN) rats. The mRNA and protein levels of RARα, Src and NR1 in mVAD rats were significantly lower than those in VAN rats. RARα and Src, but not NR1, were in the same protein complex. RA treatment-induced increase in RARα, Src and NR1 expressions in mVAD neurons was much lower than that in VAN neurons. Overexpression of RARα gene in VAN neurons induced an increase in RARα, Src and NR1 expressions, while silencing of RARα gene induced a decrease in expressions of RARα and Src, but not that of of NR1. In mVAD neurons, however, overexpression of RARα did not induce an increase in NR1 expression, while silencing of RARα gene had no effect on Src and NR1 expressions. Furthermore, inhibition of Src was associated with a decrease in NR1 expression but not that of RARα. Prenatal mVAD was associated with impaired learning and memory in adult rats. It is possible that mVAD-related decrease in RARα led to a decrease in Src expression, which in turn down-regulated NR1 expression and Ca2+ influx and eventually caused learning and memory deficits.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China; China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Xingang Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China; China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Lijun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China; China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China; Clinical Psychology Department, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jie Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China; China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China; Children's Nutrition Research Center, Chongqing, P.R. China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China; China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China.
| |
Collapse
|
18
|
Uchibe K, Son J, Larmour C, Pacifici M, Enomoto-Iwamoto M, Iwamoto M. Genetic and pharmacological inhibition of retinoic acid receptor γ function promotes endochondral bone formation. J Orthop Res 2017; 35:1096-1105. [PMID: 27325507 PMCID: PMC6900928 DOI: 10.1002/jor.23347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ-null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ-null mice. The antagonist-induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle-treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ-null mice, and increases in pSmad1/5/8 levels and Id1-luc activity were observed in RARγ antagonist-treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096-1105, 2017.
Collapse
Affiliation(s)
- Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jiyeon Son
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
19
|
Zeng W, Zhang C, Cheng H, Wu YL, Liu J, Chen Z, Huang JG, Ericksen RE, Chen L, Zhang H, Wong AST, Zhang XK, Han W, Zeng JZ. Targeting to the non-genomic activity of retinoic acid receptor-gamma by acacetin in hepatocellular carcinoma. Sci Rep 2017; 7:348. [PMID: 28336971 PMCID: PMC5428017 DOI: 10.1038/s41598-017-00233-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/15/2017] [Indexed: 02/08/2023] Open
Abstract
We recently demonstrated that retinoic acid receptor-γ (RARγ) is overexpressed and acts as a tumor promoter in hepatocellular carcinoma (HCC). The oncogenic activity of RARγ is mainly attributed to its physiological interaction with p85α regulatory subunit of PI3K leading to constitutive activation of AKT. Here we report RARγ as a negative regulator of p53 signaling and thus extend the oncogenic potential of RARγ to a new role in controlling the balance between AKT and p53. A natural flavonoid acacetin is then identified to be capable of modulating RARγ-dependent AKT-p53 network. It specifically binds to RARγ and inhibits all-trans retinoic acid (atRA) stimulation of RARγ transactivation. However, the anticancer action of acacetin is independent on its modulation of RARγ-driven transcriptional activity. Acacetin induces cancer cell apoptosis through antagonizing the non-genomic effect of RARγ on AKT and p53. When bound to RARγ, acacetin prevents RARγ from its activation of AKT followed by recovery of the normal p53 signaling. Given the implication of AKT-p53 dysregulation in most HCC, targeting the non-genomic signaling of RARγ that switches AKT-p53 from a pro-survival to a pro-apoptotic program in cancer cells should be a promising strategy for developing novel anti-HCC drugs.
Collapse
Affiliation(s)
- Wenjun Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chunyun Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zekun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jian-Gang Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Russell Erick Ericksen
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liqun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Haiping Zhang
- Department of Pathology, The First Hospital of Xiamen, Xiamen, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Xiao-Kun Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jin-Zhang Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016; 76:3813-25. [PMID: 27325643 DOI: 10.1158/0008-5472.can-15-2882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The Hippo-Yap pathway conveys oncogenic signals, but its regulation during cancer development is not well understood. Here, we identify the nuclear receptor RARγ as a regulator of the Hippo-Yap pathway in colorectal tumorigenesis and metastasis. RARγ is downregulated in human colorectal cancer tissues, where its expression correlates inversely with tumor size, TNM stage, and distant metastasis. Functional studies established that silencing of RARγ drove colorectal cancer cell growth, invasion, and metastatic properties both in vitro and in vivo Mechanistically, RARγ controlled Hippo-Yap signaling to inhibit colorectal cancer development, acting to promote phosphorylation and binding of Lats1 to its transcriptional coactivator Yap and thereby inactivating Yap target gene expression. In clinical specimens, RARγ expression correlated with overall survival outcomes and expression of critical Hippo-Yap pathway effector molecules in colorectal cancer patients. Collectively, our results defined RARγ as tumor suppressor in colorectal cancer that acts by restricting oncogenic signaling by the Hippo-Yap pathway, with potential implications for new approaches to colorectal cancer therapy. Cancer Res; 76(13); 3813-25. ©2016 AACR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Hippo Signaling Pathway
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Qing-Hua Ji
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Feng Zhou
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Yue Cao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Weng XQ, Sheng Y, Ge DZ, Wu J, Shi L, Cai X. RAF-1/MEK/ERK pathway regulates ATRA-induced differentiation in acute promyelocytic leukemia cells through C/EBPβ, C/EBPε and PU.1. Leuk Res 2016; 45:68-74. [DOI: 10.1016/j.leukres.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
22
|
Zhu X, Wang W, Zhang X, Bai J, Chen G, Li L, Li M. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation. PLoS One 2015; 10:e0143255. [PMID: 26571119 PMCID: PMC4646487 DOI: 10.1371/journal.pone.0143255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients.
Collapse
Affiliation(s)
- Xinfeng Zhu
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Wenxue Wang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| | - Xia Zhang
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Jianhua Bai
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Gang Chen
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Li Li
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan Province, 650011, P. R. China
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan Province, 650091, P. R. China
| |
Collapse
|
23
|
All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:404368. [PMID: 26557664 PMCID: PMC4628773 DOI: 10.1155/2015/404368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted.
Collapse
|
24
|
Abstract
Early in the age of modern medicine the consequences of vitamin A deficiency drew attention to the fundamental link between retinoid-dependent homeostatic regulation and malignant hyperproliferative diseases. The term "retinoid" includes a handful of endogenous and a large group of synthetic derivatives of vitamin A. These multifunctional lipid-soluble compounds directly regulate target genes of specific biological functions and critical signaling pathways to orchestrate complex functions from vision to development, metabolism, and inflammation. Many of the retinoid activities on the cellular level have been well characterized and translated to the regulation of processes like differentiation and cell death, which play critical roles in the outcome of malignant transformation of tissues. In fact, retinoid-based differentiation therapy of acute promyelocytic leukemia was one of the first successful examples of molecularly targeted treatment strategies. The selectivity, high receptor binding affinity and the ability of retinoids to directly modulate gene expression programs present a distinct pharmacological opportunity for cancer treatment and prevention. However, to fully exploit their potential, the adverse effects of retinoids must be averted. In this review we provide an overview of the biology of retinoid (activated by nuclear retinoic acid receptors [RARs]) and rexinoid (engaged by nuclear retinoid X receptors [RXRs]) action concluded from a long line of preclinical studies, in relation to normal and transformed states of cells. We will also discuss the past and current uses of retinoids in the treatment of malignancies, the potential of rexinoids in the cancer prevention setting, both as single agents and in combinations.
Collapse
Affiliation(s)
- Iván P Uray
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ethan Dmitrovsky
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
26
|
Pan-PI-3 kinase inhibitor SF1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol 2015; 75:595-608. [DOI: 10.1007/s00280-014-2639-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 11/17/2014] [Indexed: 01/05/2023]
|
27
|
Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia 2014; 16:43-72. [PMID: 24563619 DOI: 10.1593/neo.131694] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) pathway, in addition to its pro-proliferative and antiapoptotic effects on tumor cells, contributes to DNA damage repair (DDR). We hypothesized that GDC-0980, a dual PI3K-mammalian target of rapamycin (mTOR) inhibitor, would induce an efficient antitumor effect in BRCA-competent triple negative breast cancer (TNBC) model when combined with ABT888 and carboplatin. Mechanism-based in vitro studies demonstrated that GDC-0980 treatment alone or in combination led to DNA damage (increased pγH2AX(S139); Western blot, immunofluorescence), gain in poly ADP-ribose (PAR), and a subsequent sensitization of BRCA-competent TNBC cells to ABT888 plus carboplatin with a time-dependent 1) decrease in proliferation signals (pAKTT308/S473, pP70S6KT421/S424, pS6RPS235/236), PAR/poly(ADP-ribose) polymerase (PARP) ratios, PAR/pγH2AX ratios, live/dead cell ratios, cell cycle progression, and three-dimensional clonogenic growths and 2) increase in apoptosis markers (cleaved caspases 3 and 9, a pro-apoptotic BH3-only of Bcl-2 family (BIM), cleaved PARP, annexin V). The combination was effective in vitro in BRCA-wild-type PIK3CA-H1047R-mutated BT20 and PTEN-null HCC70 cells. The combination blocked the growth of established xenograft tumors by 80% to 90% with a concomitant decrease in tumor Ki67, CD31, phosphorylated vascular endothelial growth factor receptor, pS6RPS235/236, and p4EBP1T37/46 as well as an increase in cleaved caspase 3 immunohistochemistry (IHC) levels. Interestingly, a combination with GDC-0941, a pan-PI3K inhibitor, failed to block the tumor growth in MDA-MB231. Results demonstrate that the dual inhibition of PI3K and mTOR regulates DDR. In a BRCA-competent model, GDC-0980 enhanced the antitumor activity of ABT888 plus carboplatin by inhibiting both tumor cell proliferation and tumor-induced angiogenesis along with an increase in the tumor cell apoptosis. This is the first mechanism-based study to demonstrate the integral role of the PI3K-AKT-mTOR pathway in DDR-mediated antitumor action of PARP inhibitor in TNBC.
Collapse
|
28
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
29
|
Rochette-Egly C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:66-75. [PMID: 24768681 DOI: 10.1016/j.bbalip.2014.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A, a fat-soluble vitamin, plays key roles in cell growth and differentiation by activating nuclear receptors, RARs (α, β and γ), which are ligand dependent regulators of transcription. The past years highlighted several novelties in the field that increased the complexity of RA effects. Indeed, in addition to its classical genomic effects, RA also has extranuclear and non-transcriptional effects. RA induces the rapid and transient activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of RARs at a conserved serine residue located in the N-terminal domain and their coregulators. In order to investigate the relevance of RARs' phosphorylation in cell differentiation, mouse embryonic stem (mES) cells were used as a model. When treated with RA, these pluripotent cells give rise to neuronal cells. Cells invalidated for each RAR were generated as well as stable rescue lines expressing RARs mutated in phosphor acceptor sites. Such a strategy revealed that RA-induced neuronal differentiation involves the RARγ2 subtype and requires RARγ2 phosphorylation. Moreover, in gene expression profiling experiments, the phosphorylated form of RARγ2 was found to regulate a small subset of genes through binding a novel RA response element consisting of two direct repeats with a 7 base pair spacer. These new findings suggest an important role for RAR phosphorylation during cell differentiation, and pave the way for further investigations with other cell types and during embryonic development. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
30
|
Piskunov A, Al Tanoury Z, Rochette-Egly C. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected. Subcell Biochem 2014; 70:103-127. [PMID: 24962883 DOI: 10.1007/978-94-017-9050-5_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Collapse
Affiliation(s)
- Aleksandr Piskunov
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France,
| | | | | |
Collapse
|
31
|
Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G, Tang W, Catzavelos C, Kerstann KF, Sledge GW, Abramovitz M, Bouzyk M, De P, Leyland-Jones BR. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 2013; 13:537. [PMID: 24209998 PMCID: PMC4226307 DOI: 10.1186/1471-2407-13-537] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/21/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited treatment options and lack of proven effective targeted therapies. METHODS We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease. RESULTS The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt signaling components in our cohort and others. These observations were supported by upregulation of experimentally induced oncogenic Wnt/β-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional blockade of Wnt/β-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or β-catenin (functional read out of Wnt/β-catenin pathway) SiRNA mediated genetic manipulation demonstrated that a functional perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration, F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from β-catenin transfected mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here. Patients identified by the Wnt/β-catenin classifier had a greater risk of lung and brain, but not bone metastases. CONCLUSION These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific metastatic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Brian R Leyland-Jones
- Edith Sanford Breast Cancer, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD 57104, USA.
| |
Collapse
|
32
|
Addae C, Cheng H, Martinez-Ceballos E. Effect of the environmental pollutant hexachlorobenzene (HCB) on the neuronal differentiation of mouse embryonic stem cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5244-56. [PMID: 24157519 PMCID: PMC3823326 DOI: 10.3390/ijerph10105244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/06/2013] [Accepted: 02/16/2013] [Indexed: 11/21/2022]
Abstract
Exposure to persistent environmental pollutants may constitute an important factor on the onset of a number of neurological disorders such as autism, Parkinson’s disease, and Attention Deficit Disorder (ADD), which have also been linked to reduced GABAergic neuronal function. GABAergic neurons produce γ-aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in the brain. However, the lack of appropriate models has hindered the study of suspected environmental pollutants on GABAergic function. In this work, we have examined the effect of hexachlorobenzene (HCB), a persistent and bioaccumulative environmental pollutant, on the function and morphology of GABAergic neurons generated in vitro from mouse embryonic stem (ES) cells. We observed that: (1) treatment with 0.5 nM HCB did not affect cell viability, but affected the neuronal differentiation of ES cells; (2) HCB induced the production of reactive oxygen species (ROS); and (3) HCB repressed neurite outgrowth in GABAergic neurons, but this effect was reversed by the ROS scavenger N-acetylcysteine (NAC). Our study also revealed that HCB did not significantly interfere with the function of K+ ion channels in the neuronal soma, which indicates that this pollutant does not affect the maturation of the GABAergic neuronal soma. Our results suggest a mechanism by which environmental pollutants interfere with normal GABAergic neuronal function and may promote the onset of a number of neurological disorders such as autism and ADD.
Collapse
Affiliation(s)
- Cynthia Addae
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; E-Mail:
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-225-771-3606; Fax: +1-225-771-3606
| |
Collapse
|
33
|
Dey N, Young B, Abramovitz M, Bouzyk M, Barwick B, De P, Leyland-Jones B. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner. PLoS One 2013; 8:e77425. [PMID: 24143235 PMCID: PMC3797090 DOI: 10.1371/journal.pone.0077425] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/02/2013] [Indexed: 01/22/2023] Open
Abstract
Mutations of genes in tumor cells of Triple Negative subset of Breast Cancer (TNBC) deregulate pathways of signal transduction. The loss of tumor suppressor gene PTEN is the most common first event associated with basal-like subtype (Martins, De, Almendro, Gonen, and Park, 2012). Here we report for the first time that the functional upregulation of secreted-MMP7, a transcriptional target of Wnt-β-catenin signature pathway in TNBC is associated to the loss of PTEN. We identified differential expression of mRNAs in several key-components genes, and transcriptional target genes of the Wnt-β-catenin pathway (WP), including beta-catenin, FZD7, DVL1, MMP7, c-MYC, BIRC5, CD44, PPARD, c-MET, and NOTCH1 in FFPE tumors samples from TNBC patients of two independent cohorts. A similar differential upregulation of mRNA/protein for beta-catenin, the functional readout of WP, and for MMP7, a transcriptional target gene of beta-catenin was observed in TNBC cell line models. Genetic or pharmacological attenuation of beta-catenin by SiRNA or WP modulators (XAV939 and sulindac sulfide) and pharmacological mimicking of PTEN following LY294002 treatment downregulated MMP7 levels as well as enzymatic function of the secreted MMP7 in MMP7 positive PTEN-null TNBC cells. Patient data revealed that MMP7 mRNA was high in only a subpopulation of TNBC, and this subpopulation was characterized by a concurrent low expression of PTEN mRNA. In cell lines, a high expression of casein-zymograph-positive MMP7 was distinguished by an absence of functional PTEN. A similar inverse relationship between MMP7 and PTEN mRNA levels was observed in the PAM50 data set (a correlation coefficient of -0.54). The PAM50 subtype and outcome data revealed that the high MMP7 group had low pCR (25%) and High Rd (74%) in clinical stage T3 pathologic response in contrast to the high pCR (40%) and low residual disease (RD) (60%) of the low MMP7 group.
Collapse
Affiliation(s)
- Nandini Dey
- Edith Sanford Breast Cancer, Sanford Research, Sioux Falls, South Dakota, United States of America
- Internal Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Brandon Young
- Edith Sanford Breast Cancer, Sanford Research, Sioux Falls, South Dakota, United States of America
- The Scripps Research Institute Jupiter, Florida, United States of America
| | | | - Mark Bouzyk
- Human Genetics, Emory University, Atlanta, Georgia, United States of America
| | - Benjamin Barwick
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pradip De
- Edith Sanford Breast Cancer, Sanford Research, Sioux Falls, South Dakota, United States of America
- Internal Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Brian Leyland-Jones
- Edith Sanford Breast Cancer, Sanford Research, Sioux Falls, South Dakota, United States of America
- Internal Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
34
|
Huang GL, Luo Q, Rui G, Zhang W, Zhang QY, Chen QX, Shen DY. Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol 2013; 33:3416-25. [PMID: 23798555 PMCID: PMC3753848 DOI: 10.1128/mcb.00384-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 01/27/2023] Open
Abstract
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.
Collapse
Affiliation(s)
- Gui-Li Huang
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen Cancer Center, Xiamen, People's Republic of China
| | - Gang Rui
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen Cancer Center, Xiamen, People's Republic of China
| | - Wei Zhang
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Qiu-Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Dong-Yan Shen
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
35
|
Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol 2013. [PMID: 23798555 DOI: 10.1128/mcb.00384-13mcb.00384-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.
Collapse
|
36
|
Pradip D, Bouzyk M, Dey N, Leyland-Jones B. Dissecting GRB7-mediated signals for proliferation and migration in HER2 overexpressing breast tumor cells: GTP-ase rules. Am J Cancer Res 2013; 3:173-195. [PMID: 23593540 PMCID: PMC3623837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023] Open
Abstract
Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.
Collapse
Affiliation(s)
- De Pradip
- Edith Sanford Breast Cancer Research, Sanford Research/USDSioux Falls, SD
| | | | - Nandini Dey
- Edith Sanford Breast Cancer Research, Sanford Research/USDSioux Falls, SD
| | | |
Collapse
|
37
|
Kasimanickam VR, Kasimanickam RK, Rogers HA. Immunolocalization of retinoic acid receptor-alpha, -beta, and -gamma, in bovine and canine sperm. Theriogenology 2013; 79:1010-8. [PMID: 23465288 DOI: 10.1016/j.theriogenology.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/19/2013] [Accepted: 01/19/2013] [Indexed: 01/17/2023]
Abstract
Retinoic acid is an important regulator of cellular proliferation and differentiation. The action of retinoic acid is mediated by retinoic acid receptors (RARs) and the retinoid X receptors. The objective was to elucidate the protein localization and expression of RARα, RARβ, and RARγ in bull and dog sperm. Bull and dog sperm were subjected to an immunostaining procedure to determine presence of RARα, RARβ, and RARγ. We concluded that all three receptors were present in different regions of bull and dog sperm at varying levels. Protein expression in bull and dog sperm lysates was investigated using protein dot-blot analyses. The protein levels of RARα and RARγ were higher than the protein level of RARβ in bull and dog sperm. Protein sequences of RARα, RARβ, and RARγ for bull and dog were 98%, 89%, and 98%, respectively, on similarity alignment. In conclusion, the presence of RARα, RARβ, and RARγ receptors supported their role in sperm structure and function.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
38
|
Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 2013; 125:518-31. [PMID: 23398290 DOI: 10.1111/jnc.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
Vitamin A metabolite retinoic acid (RA) plays a major role in the aging adult brain plasticity. Conversely, chronic excess of glucocorticoids (GC) elicits some deleterious effects in the hippocampus. We questioned here the involvement of RA and GC in the expression of target proteins in hippocampal neurons. We investigated proteins involved either in the signaling pathways [RA receptor β (RARβ) and glucocorticoid receptor (GR)] or in neuron differentiation and plasticity [tissue transglutaminase 2 (tTG) and brain-derived neurotrophic factor (BDNF)] in a hippocampal cell line, HT22. We applied RA and/or dexamethasone (Dex) as activators of the pathways and investigated mRNA and protein expression of their receptors and of tTG and BDNF as well as tTG activity and BDNF secretion. Our results confirm the involvement of RA- and GC-dependent pathways and their interaction in our neuronal cell model. First, both pathways regulate the transcription and expression of own and reciprocal receptors: RA and Dex increased RARβ and decreased GR expressions. Second, Dex reduces the expression of tTG when associated with RA despite stimulating its expression when used alone. Importantly, when they are combined, RA counteracts the deleterious effect of glucocorticoids on BDNF regulation and thus may improve neuronal plasticity under stress conditions. In conclusion, GC and RA both interact through regulations of the two receptors, RARβ and GR. Furthermore, they both act, synergistically or oppositely, on other target proteins critical for neuronal plasticity, tTG and BDNF.
Collapse
Affiliation(s)
- Julie Brossaud
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
39
|
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54:1761-75. [PMID: 23440512 DOI: 10.1194/jlr.r030833] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin A or retinol is arguably the most multifunctional vitamin in the human body, as it is essential from embryogenesis to adulthood. The pleiotropic effects of vitamin A are exerted mainly by one active metabolite, all-trans retinoic acid (atRA), which regulates the expression of a battery of target genes through several families of nuclear receptors (RARs, RXRs, and PPARβ/δ), polymorphic retinoic acid (RA) response elements, and multiple coregulators. It also involves extranuclear and nontranscriptional effects, such as the activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of several actors of RA signaling. However, vitamin A itself proved recently to be active and RARs to be present in the cytosol to regulate translation and cell plasticity. These new concepts expand the scope of the biologic functions of vitamin A and RA.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
40
|
A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene 2011; 31:3333-45. [PMID: 22056876 DOI: 10.1038/onc.2011.499] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retinoic acid (RA) regulates several gene programs by nuclear RA receptors (RARs) that are ligand-dependent transcriptional transregulators. The basic mechanism for switching on transcription of cognate-target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes. In addition to these classical genomic effects, we recently demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway, with characteristic downstream consequences on the phosphorylation of RARs and the expression of their target genes. Here, we aimed at deciphering the underlying mechanism of the rapid non-genomic effects of RA. We highlighted a novel paradigm in which a fraction of the cellular RARα pool is present in membrane lipid rafts, where it forms complexes with G protein alpha Q (Gαq) in response to RA. This rapid RA-induced formation of RARα/Gαq complexes in lipid rafts is required for the activation of p38MAPK that occurs in response to RA. Accordingly, in RA-resistant cancer cells, characterized by the absence of p38MAPK activation, RARα present in membrane lipid rafts does not associate with Gαq, pointing out the essential contribution of RARα/Gαq complexes in RA signaling.
Collapse
|
41
|
Buchanan FQ, Rochette-Egly C, Asson-Batres MA. Detection of variable levels of RARα and RARγ proteins in pluripotent and differentiating mouse embryonal carcinoma and mouse embryonic stem cells. Cell Tissue Res 2011; 346:43-51. [PMID: 21987218 DOI: 10.1007/s00441-011-1247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/12/2011] [Indexed: 01/24/2023]
Abstract
Pluripotent mouse embryonal carcinoma (mEC) and mouse embryonic stem (mES) cells differentiate into several cell lineages upon retinoic acid (RA) addition. Differentiation is facilitated, in part, by RA activation of nuclear RA receptors (RARs) that bind to DNA response elements located in the promoters of target genes. The purpose of the studies reported here was to immunolocalize RARα and RARγ protein in mEC and mES cells and in their RA-induced differentiated progeny. Fixed cells were reacted with three different RARα antibodies and one RARγ antibody. Pluripotent and differentiated mEC and mES cells showed positive nuclear immunoreactivity with all antibodies tested. Two RARα antibodies also showed positive reactivity in the cytoplasm. Surprisingly, our results revealed variability in immunofluorescence intensity and in RARα and RARγ distribution from one cell to the other, suggesting that RARα and RARγ protein levels were not synchronous throughout the cell population. The results indicate that RARα and RARγ are present in pluripotent and differentiating mEC and mES cells and suggest that the expression of these proteins is dynamic.
Collapse
|
42
|
Duong V, Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1023-31. [DOI: 10.1016/j.bbadis.2010.10.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 12/20/2022]
|
43
|
Carter CJ. The Fox and the Rabbits-Environmental Variables and Population Genetics (1) Replication Problems in Association Studies and the Untapped Power of GWAS (2) Vitamin A Deficiency, Herpes Simplex Reactivation and Other Causes of Alzheimer's Disease. ISRN NEUROLOGY 2011; 2011:394678. [PMID: 22389816 PMCID: PMC3263564 DOI: 10.5402/2011/394678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 4, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 0LG, UK
| |
Collapse
|
44
|
Goez HR, Scott O, Hasal S. Fetal exposure to alcohol, developmental brain anomaly, and vitamin a deficiency: a case report. J Child Neurol 2011; 26:231-4. [PMID: 21285041 DOI: 10.1177/0883073810380458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenatal alcohol exposure is a cause of congenital brain malformations such as hydrocephalus; however, a complete mechanism accounting for this phenomenon has yet to be discovered. We report a case of a newborn who was exposed to alcohol throughout pregnancy and presented with low serum vitamin A and hydrocephalus. To our knowledge, the connection between prenatal ethanol exposure, vitamin A deficiency, and a developmental brain anomaly has never been described in humans before. A possible mechanism may be mediated by disruption of the homeostasis of vitamin A, an important morphogen in the developing nervous system. This, in turn, compromises the activity of the floor plate, a structure in charge of polarization and midline formation in the neural tube. We conclude that vitamin A screening and supplementation might be recommended for newborns of mothers who ingested ethanol during pregnancy.
Collapse
Affiliation(s)
- Helly R Goez
- Division of Pediatric Neurology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
45
|
Peirce SK, Findley HW, Prince C, Dasgupta A, Cooper T, Durden DL. The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention. Cancer Chemother Pharmacol 2010; 68:325-35. [PMID: 20972874 PMCID: PMC3143317 DOI: 10.1007/s00280-010-1486-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/04/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Studies of SF1126, an RGDS targeted, water-soluble prodrug of LY294002, are currently nearing completion in two adult Phase I trials. Herein, we performed a preclinical evaluation of SF1126 as a PI-3K inhibitor for Phase I trials in the treatment of recurrent neuroblastoma (NB). METHODS The effects of SF1126 on pAkt-MDM2 cell signaling, proliferation, apoptosis, and migration were determined using a panel of NB cell lines, and anti-tumor activity was determined using a xenograft model of NB. RESULTS SF1126 blocks MDM2 activation, IGF-1 induced activation of Akt, and the upregulation of survivin induced by IGF-1. It also increases sensitivity to doxorubicin in vitro and was found to exhibit marked synergistic activity in combination with doxorubicin. Treatment disrupts the integrin αvβ3/αvβ5-mediated organization of the actin cytoskeleton as well as the α4β1/α5β1-mediated processes essential to metastasis. In vivo, SF1126 markedly inhibits tumor growth in NB xenografted mice (P < 0.05). CONCLUSIONS A pan PI-3 kinase inhibitor has potent antitumor activity and induces apoptosis in multiple neuroblastoma cell lines. The observed effects of SF1126 on the p-Akt-MDM2-survivin axis suggest a patient selection paradigm in which NB tumors with increased pAkt-MDM2-survivin signaling may predict response to SF1126 alone or in combination with standard chemotherapy regimens that contain anthracyclines.
Collapse
Affiliation(s)
- Susan K Peirce
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sakai Y, Dräger UC. Detection of retinoic acid catabolism with reporter systems and by in situ hybridization for CYP26 enzymes. Methods Mol Biol 2010; 652:277-94. [PMID: 20552435 DOI: 10.1007/978-1-60327-325-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Retinoic acid (RA), an active form of vitamin A, is essential for life in vertebrates, owing to its capacity of influencing expression of a sizable fraction of all genes and proteins. It functions via two modes: (1) as controlling ligand for specific transcription factors in the nucleus it stimulates or inhibits gene expression from RA response elements in gene promoters; (2) in non-genomic pathways it activates kinase-signaling cascades that converge with additional influences to regulate gene expression and mRNA translation. RA performs a critical role in morphogenesis of the developing embryo, which is reflected in spatio-temporally changing expression patterns of RA-synthesizing and RA-degrading enzymes and in its biophysical characteristics as a small diffusible lipid. Because its histological localization cannot be directly visualized for technical reasons, its sites of action in vivo are inferred from the locations of the metabolic enzymes and through use of two kinds of RA reporter systems. Here we explain techniques for use of RA reporter cells and RA reporter mice, and we describe in situ hybridization methods for the three major RA-degrading enzymes: CYP26A1, CYP26B1, and CYP26C1. Comparisons of the different indicators for sites of RA signaling demonstrate that local RA peaks and troughs are important for inferring some but not all locations of RA actions. When integrated within cells of living mice, expression of the RA reporter construct is rarely a simple measure of local RA levels, especially in the developing brain, but it appears to provide cues to an RA involvement in site-specific regulatory networks in combination with other spatial determinants.
Collapse
Affiliation(s)
- Yasuo Sakai
- Department of Plastic Surgery, Osaka University School of Medicine, Osaka, Japan
| | | |
Collapse
|
47
|
Fishel ML, Colvin ES, Luo M, Kelley MR, Robertson KA. Inhibition of the redox function of APE1/Ref-1 in myeloid leukemia cell lines results in a hypersensitive response to retinoic acid-induced differentiation and apoptosis. Exp Hematol 2010; 38:1178-88. [PMID: 20826193 DOI: 10.1016/j.exphem.2010.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/30/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The standard of care for promyelocytic leukemia includes use of the differentiating agent all-trans retinoic acid (RA) and chemotherapy. RA induces cell differentiation through retinoic acid receptor (RAR) transcription factors. Because redox mechanisms influence how readily transcription factors bind to DNA response elements (RARE), the impact of small molecule (E3330) inhibition of the redox regulatory protein, apurinic-apyrimidinic endonuclease/redox effector factor (APE1/Ref-1) on RAR DNA binding and function in RA-induced myeloid leukemia cell differentiation and apoptosis was investigated. MATERIALS AND METHODS The redox function of APE1 was studied using the small molecule inhibitor E3330 in HL-60 and PLB acute myeloid leukemia cells. Electrophoretic mobility shift assays were employed to determine effect of inhibitor on APE1/Ref-1 redox signaling function. Trypan blue assays, Annexin-V/propidium iodide and CD11b staining, and real-time polymerase chain reaction analyses were employed to determine survival, apoptosis, and differentiation status of cells in culture. RESULTS RARα binds to its RARE in a redox-dependent manner mediated by APE1/Ref-1 redox regulation. Redox-dependent RAR-RARE binding is blocked by E3330, a small molecule redox inhibitor of APE1/Ref-1. Combination treatment of RA + E3330 results in a profound hypersensitivity of myeloid leukemia cells to RA-induced differentiation and apoptosis. Additionally, redox inhibition by E3330 results in enhanced RAR target gene, BLR-1, expression in myeloid leukemia cells. CONCLUSIONS The redox function of APE1/Ref-1 regulates RAR binding to its DNA RAREs influencing the response of myeloid leukemia cells to RA-induced differentiation. Targeting of APE1/Ref-1 redox function may allow manipulation of the retinoid response with therapeutic implications.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 980 W. Walnut, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
48
|
Kumar A, Singh CK, DiPette DD, Singh US. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2010; 34:928-37. [PMID: 20201933 PMCID: PMC4502960 DOI: 10.1111/j.1530-0277.2010.01166.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. METHODS The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. RESULTS Findings from these studies demonstrated that ethanol exposure reduced the expression of RARalpha/gamma while it increased the expression of RXRalpha/gamma in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. CONCLUSION For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects caused by excessive ethanol exposure, such as in Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, 29209, USA
| | | | | | | |
Collapse
|
49
|
Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, Zhou H, Li WG, Cao X, Lin YY, He JY, Gao WW, Zhao Y, Xie L, Chen JB, Zhang XK, Zeng JZ. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res 2010; 70:2285-95. [PMID: 20197465 DOI: 10.1158/0008-5472.can-09-2968] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoic acid receptors (RAR; alpha, beta, and gamma), members of the nuclear receptor superfamily, mediate the pleiotropic effects of the vitamin A metabolite retinoic acid (RA) and derivatives (retinoids) in normal and cancer cells. Abnormal expression and function of RARs are often involved in the growth and development of cancer. However, the underlying molecular mechanisms remain largely elusive. Here, we report that levels of RARgamma were significantly elevated in tumor tissues from a majority of human hepatocellular carcinoma (HCC) and in HCC cell lines. Overexpression of RARgamma promoted colony formation by HCC cells in vitro and the growth of HCC xenografts in animals. In HepG2 cells, transfection of RARgamma enhanced, whereas downregulation of RARgamma expression by siRNA approach impaired, the effect of RA on inducing the expression of alpha-fetoprotein, a protein marker of hepatocarcinogenesis. In studying the possible mechanism by which overexpression of RARgamma contributed to liver cancer cell growth and transformation, we observed that RARgamma resided mainly in the cytoplasm of HCC cells, interacting with the p85alpha regulatory subunit of phosphatidylinositol 3-kinase (PI3K). The interaction between RARgamma and p85alpha resulted in activation of Akt and NF-kappaB, critical regulators of the growth and survival of cancer cells. Together, our results show that overexpression of RARgamma plays a role in the growth of HCC cells through nongenomic activation of the PI3K/Akt and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Ting-Dong Yan
- Institute for Biomedical Research, Xiamen University; First Hospital of Xiamen, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Han YH, Zhou H, Kim JH, Yan TD, Lee KH, Wu H, Lin F, Lu N, Liu J, Zeng JZ, Zhang XK. A unique cytoplasmic localization of retinoic acid receptor-gamma and its regulations. J Biol Chem 2009; 284:18503-14. [PMID: 19416983 PMCID: PMC2709335 DOI: 10.1074/jbc.m109.007708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/13/2009] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that extranuclear action of retinoid receptors is involved in mediating the pleiotropic effects of retinoids. However, whether they reside in the cytoplasm remains elusive. Here, we showed that retinoic acid receptor-gamma (RARgamma) was cytoplasmic in confluent cells, or when cells were released from serum depletion or treated with growth factors. In studying the regulation of RARgamma subcellular localization, we observed that ectopically overexpressed RARgamma was mainly cytoplasmic irrespective of serum concentration and cell density. The cytoplasmic retention of RARgamma was inhibited by ligand retinoic acid (RA). In addition, coexpression of retinoid X receptor-alpha (RXRalpha) resulted in nuclear localization of RARgamma through their heterodimerization. Mutagenesis studies revealed that a C-terminal fragment of RXRalpha potently prevents RA-induced RARgamma nuclear localization and transcriptional function. Furthermore, our results showed that the cytoplasmic retention of RARgamma was due to the presence of its unique N-terminal A/B domain, which was subject to regulation by p38 MAPK-mediated phosphorylation. Deletion or mutation of the N-terminal A/B domain largely impaired its cytoplasmic localization. Together, our data demonstrate that the subcellular localization of RARgamma is regulated by complex interactions among ligand binding, receptor phosphorylation, and receptor dimerizations.
Collapse
Affiliation(s)
- Young-Hoon Han
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hu Zhou
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Jin-Hee Kim
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Ting-dong Yan
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Kee-Ho Lee
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hua Wu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Feng Lin
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Na Lu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jie Liu
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jin-zhang Zeng
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Xiao-kun Zhang
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|