1
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
2
|
Cheng IH, Pi WC, Hsu CH, Guo Y, Lai JL, Wang GG, Chung BC, Roeder RG, Chen WY. TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes. Cell Death Discov 2024; 10:244. [PMID: 38773077 PMCID: PMC11109217 DOI: 10.1038/s41420-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.
Collapse
Affiliation(s)
- I-Hsin Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hao Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jun-Lin Lai
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Gang G Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Bon-Chu Chung
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 2023; 69:289-300. [PMID: 37947853 PMCID: PMC10716077 DOI: 10.1007/s00294-023-01277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal β-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.
Collapse
Affiliation(s)
- Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Stefan Hintze
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Munich, Germany
| | - Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
4
|
Bondra ER, Rine J. Context-dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2023; 120:e2304343120. [PMID: 37769255 PMCID: PMC10556627 DOI: 10.1073/pnas.2304343120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Repressor Activator Protein (Rap1), and Sir proteins. Despite an understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high-resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bidirectional HMLα promoter, bound its recognition sequence in silenced chromatin, and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HMLα in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the role of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HMLα when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability.
Collapse
Affiliation(s)
- Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Bondra ER, Rine J. Context dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539937. [PMID: 37214837 PMCID: PMC10197613 DOI: 10.1101/2023.05.08.539937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Rap1, and Sir proteins. Despite a vast understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bi-directional HML α promoter, bound its recognition sequence in silenced chromatin and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HML α in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a novel role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HML α when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability. Significance Statement The coarse partitioning of the genome into regions of active euchromatin and repressed heterochromatin is an important, and conserved, level gene expression regulation in eukaryotes. Repressor Activator Protein (Rap1) is a transcription factor that promotes the activation of genes when recruited to promoters, and aids in the establishment of heterochromatin through interactions with silencer elements. Here, we investigate the role of Rap1 when bound to a promoter in silent chromatin and dissect the context-specific epigenetic cues that regulate the dual properties of this transcription factor. Together, our data highlight the importance of protein-protein interactions and local chromatin state on transcription factor function.
Collapse
Affiliation(s)
- Eliana R Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
6
|
Mittal C, Lang O, Lai WKM, Pugh BF. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 2022; 36:985-1001. [PMID: 36302553 PMCID: PMC9732905 DOI: 10.1101/gad.350026.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.
Collapse
Affiliation(s)
- Chitvan Mittal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Olivia Lang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
7
|
Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proc Natl Acad Sci U S A 2022; 119:2120219119. [PMID: 35115407 PMCID: PMC8833210 DOI: 10.1073/pnas.2120219119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.
Collapse
|
8
|
Zhang L, Wang R, Xing Y, Xu Y, Xiong D, Wang Y, Yao S. Separable regulation of POW1 in grain size and leaf angle development in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2517-2531. [PMID: 34343399 PMCID: PMC8633490 DOI: 10.1111/pbi.13677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
Leaf angle is one of the key factors that determines rice plant architecture. However, the improvement of leaf angle erectness is often accompanied by unfavourable changes in other traits, especially grain size reduction. In this study, we identified the pow1 (put on weight 1) mutant that leads to increased grain size and leaf angle, typical brassinosteroid (BR)-related phenotypes caused by excessive cell proliferation and cell expansion. We show that modulation of the BR biosynthesis genes OsDWARF4 (D4) and D11 and the BR signalling gene D61 could rescue the phenotype of leaf angle but not grain size in the pow1 mutant. We further demonstrated that POW1 functions in grain size regulation by repressing the transactivation activity of the interacting protein TAF2, a highly conserved member of the TFIID transcription initiation complex. Down-regulation of TAF2 rescued the enlarged grain size of pow1 but had little effect on the increased leaf angle phenotype of the mutant. The separable functions of the POW1-TAF2 and POW1-BR modules in grain size and leaf angle control provide a promising strategy for designing varieties with compact plant architecture and increased grain size, thus promoting high-yield breeding in rice.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yide Xing
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yufang Xu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- College of Life ScienceHenan Agricultural UniversityZhengzhouChina
| | - Dunping Xiong
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
11
|
What do Transcription Factors Interact With? J Mol Biol 2021; 433:166883. [PMID: 33621520 DOI: 10.1016/j.jmb.2021.166883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Although we have made significant progress, we still possess a limited understanding of how genomic and epigenomic information directs gene expression programs through sequence-specific transcription factors (TFs). Extensive research has settled on three general classes of TF targets in metazoans: promoter accessibility via chromatin regulation (e.g., SAGA), assembly of the general transcription factors on promoter DNA (e.g., TFIID), and recruitment of RNA polymerase (Pol) II (e.g., Mediator) to establish a transcription pre-initiation complex (PIC). Here we discuss TFs and their targets. We also place this in the context of our current work with Saccharomyces (yeast), where we find that promoters typically lack an architecture that supports TF function. Moreover, yeast promoters that support TF binding also display interactions with cofactors like SAGA and Mediator, but not TFIID. It is unknown to what extent all genes in metazoans require TFs and their cofactors.
Collapse
|
12
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
13
|
Kassem S, Ferrari P, Hughes AL, Soudet J, Rando OJ, Strubin M. Histone exchange is associated with activator function at transcribed promoters and with repression at histone loci. SCIENCE ADVANCES 2020; 6:6/36/eabb0333. [PMID: 32917590 PMCID: PMC7467701 DOI: 10.1126/sciadv.abb0333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/15/2020] [Indexed: 05/14/2023]
Abstract
Transcription in eukaryotes correlates with major chromatin changes, including the replacement of old nucleosomal histones by new histones at the promoters of genes. The role of these histone exchange events in transcription remains unclear. In particular, the causal relationship between histone exchange and activator binding, preinitiation complex (PIC) assembly, and/or subsequent transcription remains unclear. Here, we provide evidence that histone exchange at gene promoters is not simply a consequence of PIC assembly or transcription but instead is mediated by activators. We further show that not all activators up-regulate gene expression by inducing histone turnover. Thus, histone exchange does not simply correlate with transcriptional activity, but instead reflects the mode of action of the activator. Last, we show that histone turnover is not only associated with activator function but also plays a role in transcriptional repression at the histone loci.
Collapse
Affiliation(s)
- Sari Kassem
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland
| | - Paolo Ferrari
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland
| | - Amanda L Hughes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michel Strubin
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland.
| |
Collapse
|
14
|
Trypanosoma brucei RAP1 Has Essential Functional Domains That Are Required for Different Protein Interactions. mSphere 2020; 5:5/1/e00027-20. [PMID: 32102938 PMCID: PMC7045384 DOI: 10.1128/msphere.00027-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing. RAP1 is a telomere protein that is well conserved from protozoa to mammals. It plays important roles in chromosome end protection, telomere length control, and gene expression/silencing at both telomeric and nontelomeric loci. Interaction with different partners is an important mechanism by which RAP1 executes its different functions in yeast. The RAP1 ortholog in Trypanosoma brucei is essential for variant surface glycoprotein (VSG) monoallelic expression, an important aspect of antigenic variation, where T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. Like other RAP1 orthologs, T. brucei RAP1 (TbRAP1) has conserved functional domains, including BRCA1 C terminus (BRCT), Myb, MybLike, and RAP1 C terminus (RCT). To study functions of various TbRAP1 domains, we established a strain in which one endogenous allele of TbRAP1 is flanked by loxP repeats, enabling its conditional deletion by Cre-mediated recombination. We replaced the other TbRAP1 allele with various mutant alleles lacking individual functional domains and examined their nuclear localization and protein interaction abilities. The N terminus, BRCT, and RCT of TbRAP1 are required for normal protein levels, while the Myb and MybLike domains are essential for normal cell growth. Additionally, the Myb domain of TbRAP1 is required for its interaction with T. brucei TTAGGG repeat-binding factor (TbTRF), while the BRCT domain is required for its self-interaction. Furthermore, the TbRAP1 MybLike domain contains a bipartite nuclear localization signal that is required for its interaction with importin α and its nuclear localization. Interestingly, RAP1’s self-interaction and the interaction between RAP1 and TRF are conserved from kinetoplastids to mammals. However, details of the interaction interfaces have changed throughout evolution. IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing.
Collapse
|
15
|
Challal D, Barucco M, Kubik S, Feuerbach F, Candelli T, Geoffroy H, Benaksas C, Shore D, Libri D. General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation. Mol Cell 2019; 72:955-969.e7. [PMID: 30576657 DOI: 10.1016/j.molcel.2018.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.
Collapse
Affiliation(s)
- Drice Challal
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France; Université Paris Saclay, Ecole doctorale Structure et Dynamique des Systèmes Vivants, 91190 Gif sur Yvette, France
| | - Mara Barucco
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525 Paris, France
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hélène Geoffroy
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Chaima Benaksas
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
16
|
Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore D. Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Mol Cell 2019; 71:89-102.e5. [PMID: 29979971 DOI: 10.1016/j.molcel.2018.05.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
17
|
Wu ACK, Patel H, Chia M, Moretto F, Frith D, Snijders AP, van Werven FJ. Repression of Divergent Noncoding Transcription by a Sequence-Specific Transcription Factor. Mol Cell 2018; 72:942-954.e7. [PMID: 30576656 PMCID: PMC6310685 DOI: 10.1016/j.molcel.2018.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
Abstract
Many active eukaryotic gene promoters exhibit divergent noncoding transcription, but the mechanisms restricting expression of these transcripts are not well understood. Here, we demonstrate how a sequence-specific transcription factor represses divergent noncoding transcription at highly expressed genes in yeast. We find that depletion of the transcription factor Rap1 induces noncoding transcription in a large fraction of Rap1-regulated gene promoters. Specifically, Rap1 prevents transcription initiation at cryptic promoters near its binding sites, which is uncoupled from transcription regulation in the protein-coding direction. We further provide evidence that Rap1 acts independently of previously described chromatin-based mechanisms to repress cryptic or divergent transcription. Finally, we show that divergent transcription in the absence of Rap1 is elicited by the RSC chromatin remodeler. We propose that a sequence-specific transcription factor limits access of basal transcription machinery to regulatory elements and adjacent sequences that act as divergent cryptic promoters, thereby providing directionality toward productive transcription.
Collapse
Affiliation(s)
- Andrew C K Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Minghao Chia
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Frith
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
18
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
19
|
TOR Facilitates the Targeting of the 19S Proteasome Subcomplex To Enhance Transcription Complex Assembly at the Promoters of the Ribosomal Protein Genes. Mol Cell Biol 2018; 38:MCB.00469-17. [PMID: 29712756 DOI: 10.1128/mcb.00469-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
TOR (target of rapamycin) has been previously implicated in transcriptional stimulation of the ribosomal protein (RP) genes via enhanced recruitment of NuA4 (nucleosome acetyltransferase of H4) to the promoters. However, it is not clearly understood how TOR enhances NuA4 recruitment to the promoters of the RP genes. Here we show that TOR facilitates the recruitment of the 19S proteasome subcomplex to the activator to enhance the targeting of NuA4 to the promoters of the RP genes. NuA4, in turn, promotes the recruitment of TFIID (transcription factor IID, composed of TATA box-binding protein [TBP] and a set of TBP-associated factors [TAFs]) and RNA polymerase II to the promoters of the RP genes to enhance transcriptional initiation. Therefore, our results demonstrate that TOR facilitates the recruitment of the 19S proteasome subcomplex to the promoters of the RP genes to promote the targeting of NuA4 for enhanced preinitiation complex (PIC) formation and consequently transcriptional initiation, hence illuminating TOR regulation of RP gene activation. Further, our results reveal that TOR differentially regulates PIC formation (and hence transcription) at the non-RP genes, thus demonstrating a complex regulation of gene activation by TOR.
Collapse
|
20
|
Watanabe K, Kokubo T. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. PLoS One 2017; 12:e0188435. [PMID: 29176831 PMCID: PMC5703507 DOI: 10.1371/journal.pone.0188435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022] Open
Abstract
In Saccharomyces cerevisiae, core promoters of class II genes contain a TATA element, either a TATA box (TATA[A/T]A[A/T][A/G]) or TATA-like element (1 or 2 bp mismatched version of the TATA box). The TATA element directs the assembly of the preinitiation complex (PIC) to ensure accurate transcriptional initiation. It has been proposed the PIC is assembled by two distinct pathways in which TBP is delivered by TFIID or SAGA, leading to the widely accepted model that these complexes mediate transcription mainly from TATA-like element- or TATA box-containing promoters, respectively. Although both complexes are involved in transcription of nearly all class II genes, it remains unclear how efficiently SAGA mediates transcription from TATA-like element-containing promoters independently of TFIID. We found that transcription from the TATA box-containing AGP1 promoter was greatly stimulated in a Spt3p-dependent manner after inactivation of Taf1p/TFIID. Thus, this promoter provides a novel experimental system in which to evaluate SAGA-mediated transcription from TATA-like element(s). We quantitatively measured transcription from various TATA-like elements in the Taf1p-dependent CYC1 promoter and Taf1p-independent AGP1 promoter. The results revealed that SAGA could mediate transcription from at least some TATA-like elements independently of Taf1p/TFIID, and that Taf1p-dependence or -independence is highly robust with respect to variation of the TATA sequence. Furthermore, chimeric promoter mapping revealed that Taf1p-dependence or independence was conferred by the upstream activating sequence (UAS), whereas Spt3p-dependent transcriptional stimulation after inactivation of Taf1p/TFIID was specific to the AGP1 promoter and dependent on core promoter regions other than the TATA box. These results suggest that TFIID and/or SAGA are regulated in two steps: the UAS first specifies TFIID or SAGA as the predominant factor on a given promoter, and then the core promoter structure guides the pertinent factor to conduct transcription in an appropriate manner.
Collapse
Affiliation(s)
- Kiyoshi Watanabe
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Kokubo
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Hintze S, Engelhardt M, van Diepen L, Witt E, Schüller HJ. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis. Mol Microbiol 2017; 106:876-890. [PMID: 28994223 DOI: 10.1111/mmi.13850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2.
Collapse
Affiliation(s)
- Stefan Hintze
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15a, D-17487 Greifswald, Germany
| | - Maike Engelhardt
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15a, D-17487 Greifswald, Germany
| | - Laura van Diepen
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15a, D-17487 Greifswald, Germany
| | - Eric Witt
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15a, D-17487 Greifswald, Germany
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15a, D-17487 Greifswald, Germany
| |
Collapse
|
22
|
Harari Y, Kupiec M. Mec1 ATR is needed for extensive telomere elongation in response to ethanol in yeast. Curr Genet 2017; 64:223-234. [PMID: 28780613 DOI: 10.1007/s00294-017-0728-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
Abstract
Telomere length homeostasis is essential for cell survival. In humans, telomeres shorten as a function of age. Short telomeres are known determinants of cell senescence and longevity. The yeast Saccharomyces cerevisiae expresses telomerase and maintains a strict telomere length homeostasis during vegetative growth. We have previously reported that different environmental signals promote changes in telomere length in S. cerevisiae. In particular, exposure to ethanol induces an extensive telomere elongation response due to a reduction in RAP1 mRNA and protein levels. Here we show that the reduction in Rap1 protein levels disrupts the physical interaction between Rap1 and Rif1, which in turn reduces the recruitment of these two proteins to telomeres during G2-phase. Although elongation of the shortest telomeres has been shown to depend on the Rif2 telomeric protein and on the Tel1(ATM) protein kinase, we show here that the extensive telomere elongation in response to ethanol exposure is Rif1 and Mec1 (ATR)-dependent. Our results fit a model in which Rif1 and Rap1 form a complex that is loaded onto telomeres at the end of S-phase. Reduced levels of the Rap1-Rif1 complex in ethanol lead to continuous telomere elongation in a Mec1-dependent process.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
23
|
Sinha I, Kumar S, Poonia P, Sawhney S, Natarajan K. Functional specialization of two paralogous TAF12 variants by their selective association with SAGA and TFIID transcriptional regulatory complexes. J Biol Chem 2017; 292:6047-6055. [PMID: 28275052 PMCID: PMC5391738 DOI: 10.1074/jbc.c116.768549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
TATA box-binding protein (TBP)-associated factors (TAFs), evolutionarily conserved from yeast to humans, play a central role during transcription initiation. A subset of TAF proteins is shared in transcription factor II D (TFIID) and SAGA transcription regulatory complexes. Although higher eukaryotes contain multiple TAF variants that specify tissue- and developmental stage-specific organization of TFIID or SAGA complexes, in unicellular genomes, however, each TAF is encoded by a single gene. Surprisingly, we found that the genome of Candida albicans, the predominant human fungal pathogen, contains two paralogous TAF12 genes, CaTAF12L and CaTAF12, encoding H2B-like histone-fold domain-containing variants. Of the available fungal genome sequences, only seven other closely related diploid pathogenic Candida genomes encode the two TAF12 paralogs. Using affinity purifications from C. albicans cell extracts, we demonstrate that CaTAF12L uniquely associates with the SAGA complex and CaTAF12 associates with the TFIID complex. We further show that CaTAF12, but not CaTAF12L, is essential for C. albicans growth. Conditional depletion of the two TAF12 variant proteins caused distinct cellular and colony phenotypes. Together our results define a specialized organization of the TAF12 variants and non-redundant roles for the two TAF12 variants in the unicellular C. albicans genome.
Collapse
Affiliation(s)
- Ishani Sinha
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shambhu Kumar
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Poonia
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Sawhney
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishnamurthy Natarajan
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
24
|
Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. J Biol Chem 2017; 292:5705-5723. [PMID: 28196871 PMCID: PMC5392566 DOI: 10.1074/jbc.m117.779181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/13/2017] [Indexed: 01/06/2023] Open
Abstract
Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways.
Collapse
Affiliation(s)
- Amanda N Johnson
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - P Anthony Weil
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
25
|
Feigerle JT, Weil PA. The C Terminus of the RNA Polymerase II Transcription Factor IID (TFIID) Subunit Taf2 Mediates Stable Association of Subunit Taf14 into the Yeast TFIID Complex. J Biol Chem 2016; 291:22721-22740. [PMID: 27587401 DOI: 10.1074/jbc.m116.751107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
The evolutionarily conserved RNA polymerase II transcription factor D (TFIID) complex is composed of TATA box-binding protein (TBP) and 13 TBP-associated factors (Tafs). The mechanisms by which many Taf subunits contribute to the essential function of TFIID are only poorly understood. To address this gap in knowledge, we present the results of a molecular genetic dissection of the TFIID subunit Taf2. Through systematic site-directed mutagenesis, we have discovered 12 taf2 temperature-sensitive (ts) alleles. Two of these alleles display growth defects that can be strongly suppressed by overexpression of the yeast-specific TFIID subunit TAF14 but not by overexpression of any other TFIID subunit. In Saccharomyces cerevisiae, Taf14 is also a constituent of six other transcription-related complexes, making interpretation of its role in each of these complexes difficult. Although Taf14 is not conserved as a TFIID subunit in metazoans, it is conserved through its chromatin-binding YEATS domain. Based on the Taf2-Taf14 genetic interaction, we demonstrate that Taf2 and Taf14 directly interact and mapped the Taf2-Taf14 interaction domains. We used this information to identify a Taf2 separation-of-function variant (Taf2-ΔC). Although Taf2-ΔC no longer interacts with Taf14 in vivo or in vitro, it stably incorporates into the TFIID complex. In addition, purified Taf2-ΔC mutant TFIID is devoid of Taf14, making this variant a powerful reagent for determining the role of Taf14 in TFIID function. Furthermore, we characterized the mechanism through which Taf14 suppresses taf2ts alleles, shedding light on how Taf2-Taf14 interaction contributes to TFIID complex organization and identifying a potential role for Taf14 in mediating TFIID-chromatin interactions.
Collapse
Affiliation(s)
- Jordan T Feigerle
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - P Anthony Weil
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| |
Collapse
|
26
|
Abstract
The 137 ribosomal protein genes (RPG) of Saccharomyces provide a model for gene coregulation. Reja et al. examine the positional and functional organization of their regulators (Rap1, Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo. The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.
Collapse
Affiliation(s)
- Rohit Reja
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sujana Ghosh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
27
|
Abstract
The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which Sumo can regulate transcription. Although many individual substrates have been described that are sumoylated during the Sumo stress response, an emerging concept is modification of entire complexes or pathways by Sumo. This review focuses on the function and regulation of Sumo during the stress response.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Institute for Microbiology, Oslo University Hospital, Sognsvannsveien 20N-0027, Oslo, Norway
| |
Collapse
|
28
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Chymkowitch P, Nguéa AP, Aanes H, Koehler CJ, Thiede B, Lorenz S, Meza-Zepeda LA, Klungland A, Enserink JM. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 2015; 25:897-906. [PMID: 25800674 PMCID: PMC4448685 DOI: 10.1101/gr.185793.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/17/2015] [Indexed: 01/20/2023]
Abstract
Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Aurélie P Nguéa
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Håvard Aanes
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | | | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Susanne Lorenz
- Department of Tumor Biology, The Norwegian Radium Hospital, and Genomics Core Facility, Oslo University Hospital, NO-0310 Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, The Norwegian Radium Hospital, and Genomics Core Facility, Oslo University Hospital, NO-0310 Oslo, Norway
| | - Arne Klungland
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Jorrit M Enserink
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
30
|
Feldmann EA, Galletto R. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes. Biochemistry 2014; 53:7471-83. [PMID: 25382181 PMCID: PMC4263426 DOI: 10.1021/bi501049b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Saccharomyces cerevisiae repressor-activator protein
1 (Rap1) is an essential protein involved in multiple steps of DNA
regulation, as an activator in transcription, as a repressor at silencer
elements, and as a major component of the shelterin-like complex at
telomeres. All the known functions of Rap1 require the known high-affinity
and specific interaction of the DNA-binding domain with its recognition
sequences. In this work, we focus on the interaction of the DNA-binding
domain of Rap1 (Rap1DBD) with double-stranded DNA substrates.
Unexpectedly, we found that while Rap1DBD forms a high-affinity
1:1 complex with its DNA recognition site, it can also form lower-affinity
complexes with higher stoichiometries on DNA. These lower-affinity
interactions are independent of the presence of the recognition sequence,
and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity
binding mode, Rap1DBD likely binds in the conformation
observed in the available crystal structures. In the other alternative
lower-affinity binding mode, we propose that a single Myb-like domain
of the Rap1DBD makes interactions with DNA, allowing for
more than one protein molecule to bind to the DNA substrates. Our
findings suggest that the Rap1DBD does not simply target
the protein to its recognition sequence but rather it might be a possible
point of regulation.
Collapse
Affiliation(s)
- Erik A Feldmann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
31
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
32
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|
33
|
Workman JJ, Chen H, Laribee RN. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 2014; 13:714-25. [PMID: 24526113 PMCID: PMC3979908 DOI: 10.4161/cc.28112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a well-known regulator of cell growth and proliferation in response to environmental stimuli and stressors. To date, the majority of mTORC1 studies have focused on its function as a cytoplasmic effector of translation regulation. However, recent studies have identified additional, nuclear-specific roles for mTORC1 signaling related to transcription of the ribosomal DNA (rDNA) and ribosomal protein (RP) genes, mitotic cell cycle control, and the regulation of epigenetic processes. As this area of study is still in its infancy, the purpose of this review to highlight these significant findings and discuss the relevance of nuclear mTORC1 signaling dysregulation as it pertains to health and disease.
Collapse
Affiliation(s)
- Jason J Workman
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
34
|
Chen WY, Zhang J, Geng H, Du Z, Nakadai T, Roeder RG. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes Dev 2013; 27:1596-609. [PMID: 23873942 DOI: 10.1101/gad.216192.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID-E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 2013; 47:275-306. [PMID: 24016189 DOI: 10.1146/annurev-genet-021313-173730] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin in which a histone-binding protein complex [the SIR (silent information regulator) complex] represses gene transcription in a sequence-independent manner by spreading along nucleosomes, much like heterochromatin in higher eukaryotes. Recent advances in the biochemistry and structural biology of the SIR-chromatin system bring us much closer to a molecular understanding of yeast silent chromatin. Simultaneously, genome-wide approaches have shed light on the biological importance of this form of epigenetic repression. Here, we integrate genetic, structural, and cell biological data into an updated overview of yeast silent chromatin assembly.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | |
Collapse
|
36
|
Mechanisms of antisense transcription initiation from the 3' end of the GAL10 coding sequence in vivo. Mol Cell Biol 2013; 33:3549-67. [PMID: 23836882 DOI: 10.1128/mcb.01715-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3' end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation.
Collapse
|
37
|
Layer JH, Weil PA. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. J Biol Chem 2013; 288:23273-94. [PMID: 23814059 DOI: 10.1074/jbc.m113.486829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo.
Collapse
Affiliation(s)
- Justin H Layer
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
38
|
Ansari SA, Morse RH. Selective role of Mediator tail module in the transcription of highly regulated genes in yeast. Transcription 2012; 3:110-4. [PMID: 22771944 DOI: 10.4161/trns.19840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tail module subunits of Mediator complex are targets of activators both in yeast and metazoans. Here we discuss recent evidence from studies in yeast for tail module specificity for SAGA-dependent, TATA-containing genes including highly regulated stress response genes, and for independent recruitment and function of the tail module.
Collapse
Affiliation(s)
- Suraiya A Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | | |
Collapse
|
39
|
Uprety B, Lahudkar S, Malik S, Bhaumik SR. The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo. Nucleic Acids Res 2011; 40:1969-83. [PMID: 22086954 PMCID: PMC3300024 DOI: 10.1093/nar/gkr977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies have implicated SAGA (Spt-Ada-Gcn5-acetyltransferase) and TFIID (Transcription factor-IID)-dependent mechanisms of transcriptional activation in yeast. SAGA-dependent transcriptional activation is further regulated by the 19S proteasome subcomplex. However, the role of the 19S proteasome subcomplex in transcriptional activation of the TFIID-dependent genes has not been elucidated. Therefore, we have performed a series of chromatin immunoprecipitation, mutational and transcriptional analyses at the TFIID-dependent ribosomal protein genes such as RPS5, RPL2B and RPS11B. We find that the 19S proteasome subcomplex is recruited to the promoters of these ribosomal protein genes, and promotes the association of NuA4 (Nucleosome acetyltransferase of histone H4) co-activator, but not activator Rap1p (repressor-activator protein 1). These observations support that the 19S proteasome subcomplex enhances the targeting of co-activator at the TFIID-dependent promoter. Such an enhanced targeting of NuA4 HAT (histone acetyltransferase) promotes the recruitment of the TFIID complex for transcriptional initiation. Collectively, our data demonstrate that the 19S proteasome subcomplex enhances the targeting of NuA4 HAT to activator Rap1p at the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional stimulation, hence providing a new role of the 19S proteasome subcomplex in establishing a specific regulatory network at the TFIID-dependent promoter for productive transcriptional initiation in vivo.
Collapse
Affiliation(s)
- Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University-School of Medicine, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
|
41
|
Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang C, Hemeryck-Walsh C, Pugh BF. A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 2011; 41:480-92. [PMID: 21329885 DOI: 10.1016/j.molcel.2011.01.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/28/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
Hundreds of different proteins regulate and implement transcription in Saccharomyces. Yet their interrelationships have not been investigated on a comprehensive scale. Here we determined the genome-wide binding locations of 200 transcription-related proteins, under normal and acute heat-shock conditions. This study distinguishes binding between distal versus proximal promoter regions as well as the 3' ends of genes for nearly all mRNA and tRNA genes. This study reveals (1) a greater diversity and specialization of regulation associated with the SAGA transcription pathway compared to the TFIID pathway, (2) new regulators enriched at tRNA genes, (3) a global co-occupancy network of >20,000 unique regulator combinations that show a high degree of regulatory interconnections among lowly expressed genes, (4) regulators of the SAGA pathway located largely distal to the core promoter and regulators of the TFIID pathway located proximally, and (5) distinct mobilization of SAGA- versus TFIID-linked regulators during acute heat shock.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Papai G, Weil PA, Schultz P. New insights into the function of transcription factor TFIID from recent structural studies. Curr Opin Genet Dev 2011; 21:219-24. [PMID: 21420851 DOI: 10.1016/j.gde.2011.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/18/2011] [Indexed: 01/31/2023]
Abstract
The general transcription factor IID is a key player in the early events of gene expression. TFIID is a multisubunit complex composed of the TATA binding protein and at least 13 TBP associated factors (TAfs) which recognize the promoter of protein coding genes in an activator dependant way. This review highlights recent findings on the molecular architecture and dynamics of TFIID. The structural analysis of functional transcription complexes formed by TFIID, TFIIA, activators and/or promoter DNA illuminates the faculty of TFIID to adjust to various promoter architectures and highlights its role as a platform for preinitiation complex assembly.
Collapse
Affiliation(s)
- Gabor Papai
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), U964 Inserm, UMR7104 CNRS-Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch, France
| | | | | |
Collapse
|
43
|
Kasahara K, Ohyama Y, Kokubo T. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region. Nucleic Acids Res 2011; 39:4136-50. [PMID: 21288884 PMCID: PMC3105432 DOI: 10.1093/nar/gkq1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5′- and 3′-boundaries of the PIC assembly zone.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan.
| | | | | |
Collapse
|
44
|
Joo YJ, Kim JH, Kang UB, Yu MH, Kim J. Gcn4p-mediated transcriptional repression of ribosomal protein genes under amino-acid starvation. EMBO J 2010; 30:859-72. [PMID: 21183953 DOI: 10.1038/emboj.2010.332] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/16/2010] [Indexed: 11/09/2022] Open
Abstract
Gcn4p is a well-characterized bZIP transcription factor that activates more than 500 genes encoding amino acids and purine biosynthesis enzymes, and many stress-response genes under various stress conditions. Under these stresses, it had been shown that transcriptions of ribosomal protein (RP) genes were decreased. However, the detailed mechanism of this downregulation has not been elucidated. In this study, we present a novel mechanistic model for a repressive role of Gcn4p on RP transcription, especially under amino-acid starvation. It was found that Gcn4p bound directly to Rap1p, which in turn inhibited Esa1p-Rap1p binding. The inhibition of Esa1p recruitment to RP promoters ultimately reduced the level of histone H4 acetylation and RP transcription. These data revealed that Gcn4p has simultaneous dual roles as a repressor for RP genes as well as an activator for amino-acid biosynthesis genes. Moreover, our results showed evidence of a novel link between general control of amino-acid biosynthesis and ribosome biogenesis mediated by Gcn4p at an early stage of adaptation to amino-acid starvation.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Ganapathi M, Palumbo MJ, Ansari SA, He Q, Tsui K, Nislow C, Morse RH. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res 2010; 39:2032-44. [PMID: 21081559 PMCID: PMC3064788 DOI: 10.1093/nar/gkq1161] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The packaging of eukaryotic DNA into chromatin has profound consequences for gene regulation, as well as for other DNA transactions such as recombination, replication and repair. Understanding how this packaging is determined is consequently a pressing problem in molecular genetics. DNA sequence, chromatin remodelers and transcription factors affect chromatin structure, but the scope of these influences on genome-wide nucleosome occupancy patterns remains uncertain. Here, we use high resolution tiling arrays to examine the contributions of two general regulatory factors, Abf1 and Rap1, to nucleosome occupancy in Saccharomyces cerevisiae. These factors have each been shown to bind to a few hundred promoters, but we find here that thousands of loci show localized regions of altered nucleosome occupancy within 1 h of loss of Abf1 or Rap1 binding, and that altered chromatin structure can occur via binding sites having a wide range of affinities. These results indicate that DNA-binding transcription factors affect chromatin structure, and probably dynamics, throughout the genome to a much greater extent than previously appreciated.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Laboratory of Molecular Genetics, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Sugihara F, Kasahara K, Kokubo T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 39:59-75. [PMID: 20805245 PMCID: PMC3017598 DOI: 10.1093/nar/gkq741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, protein-coding genes are transcribed by RNA polymerase II (pol II) together with general transcription factors (GTFs). TFIID, the largest GTF composed of TATA element-binding protein (TBP) and 14 TBP-associated factors (TAFs), plays a critical role in transcription from TATA-less promoters. In metazoans, several core promoter elements other than the TATA element are thought to be recognition sites for TFIID. However, it is unclear whether functionally homologous elements also exist in TATA-less promoters in Saccharomyces cerevisiae. Here, we identify the cis-elements required to support normal levels of transcription and accurate initiation from sites within the TATA-less and TFIID-dependent RPS5 core promoter. Systematic mutational analyses show that multiple AT-rich sequences are required for these activities and appear to function as recognition sites for TFIID. A single copy of these sequences can support accurate initiation from the endogenous promoter, indicating that they carry highly redundant functions. These results show a novel architecture of yeast TATA-less promoters and support a model in which pol II scans DNA downstream from a recruited site, while searching for appropriate initiation site(s).
Collapse
Affiliation(s)
- Fuminori Sugihara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | |
Collapse
|
47
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:97-108. [PMID: 20800707 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
48
|
Papai G, Tripathi MK, Ruhlmann C, Layer JH, Weil PA, Schultz P. TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Nature 2010; 465:956-60. [PMID: 20559389 PMCID: PMC2900199 DOI: 10.1038/nature09080] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/13/2010] [Indexed: 01/20/2023]
Abstract
Transcription of eukaryotic mRNA encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (GTFs; TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter leading to preinitiation complex (PIC) formation and transcription1. In TFIID-dependent activation pathways, this TATA box Binding Protein (TBP)-containing GTF is first recruited on the promoter through interaction with activators1-3 and cooperates with TFIIA to form a committed PIC4. However, neither the mechanisms by which activation signals are communicated between these factors, nor the structural organization of the activated PIC are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TBP within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator binding site and the proximal promoter region, and this loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide important new structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.
Collapse
Affiliation(s)
- Gabor Papai
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, 67404 Illkirch, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
50
|
Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol Cell Biol 2010; 30:2376-90. [PMID: 20308326 DOI: 10.1128/mcb.01046-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.
Collapse
|