1
|
Wright K, Han DJ, Song R, de Silva K, Plain KM, Purdie AC, Shepherd A, Chin M, Hortle E, Wong JJL, Britton WJ, Oehlers SH. Zebrafish tsc1 and cxcl12a increase susceptibility to mycobacterial infection. Life Sci Alliance 2024; 7:e202302523. [PMID: 38307625 PMCID: PMC10837051 DOI: 10.26508/lsa.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.
Collapse
Affiliation(s)
- Kathryn Wright
- https://ror.org/0384j8v12 Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
- https://ror.org/0384j8v12 Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Darryl Jy Han
- https://ror.org/036wvzt09 A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renhua Song
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Kumudika de Silva
- https://ror.org/0384j8v12 Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Karren M Plain
- https://ror.org/0384j8v12 Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Auriol C Purdie
- https://ror.org/0384j8v12 Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Ava Shepherd
- https://ror.org/0384j8v12 Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Maegan Chin
- https://ror.org/0384j8v12 Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Elinor Hortle
- https://ror.org/0384j8v12 Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation and University of Technology Sydney, Sydney, Australia
| | - Justin J-L Wong
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Warwick J Britton
- https://ror.org/0384j8v12 Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- https://ror.org/0384j8v12 Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- https://ror.org/0384j8v12 Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- https://ror.org/036wvzt09 A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
2
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
4
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
5
|
Hua X, Li Y, Pentaparthi SR, McGrail DJ, Zou R, Guo L, Shrawat A, Cirillo KM, Li Q, Bhat A, Xu M, Qi D, Singh A, McGrath F, Andrews S, Aung KL, Das J, Zhou Y, Lodi A, Mills GB, Eckhardt SG, Mendillo ML, Tiziani S, Wu E, Huang JH, Sahni N, Yi SS. Landscape of MicroRNA Regulatory Network Architecture and Functional Rerouting in Cancer. Cancer Res 2023; 83:59-73. [PMID: 36265133 PMCID: PMC9811166 DOI: 10.1158/0008-5472.can-20-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/15/2020] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.
Collapse
Affiliation(s)
- Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sairahul R. Pentaparthi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Daniel J. McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Zou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aditya Shrawat
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Bhat
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Min Xu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Ashok Singh
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Francis McGrath
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Steven Andrews
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yunyun Zhou
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Portland, Oregon
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefano Tiziani
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, Texas
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
6
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
7
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
8
|
Rencelj A, Gvozdenovic N, Cemazar M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol Oncol 2021; 55:379-392. [PMID: 34821131 PMCID: PMC8647792 DOI: 10.2478/raon-2021-0042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production. CONCLUSIONS In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
Collapse
Affiliation(s)
- Andrej Rencelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nada Gvozdenovic
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
9
|
Xu Q, Zhang Q, Dong M, Yu Y. MicroRNA-638 inhibits the progression of breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World J Surg Oncol 2021; 19:247. [PMID: 34416888 PMCID: PMC8379838 DOI: 10.1186/s12957-021-02363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies had shown that microRNA-638 (miR-638) exhibited different effects in malignant tumors. Moreover, the function of miR-638 has not been reported in breast cancer. Hence, we designed this research to explore the function of miR-638 in breast cancer. Methods Firstly, miR-638 expressions were measured in breast cancer tissues via RT-qPCR. Protein expressions were detected through immunocytochemical (IHC) assay and western blot analysis. Then, Cell Counting Kit-8 (CCK-8) assay and Transwell assay were conducted to observe proliferation and motility of the cells. Dual luciferase assay was performed to confirm the binding site between miR-638 and Homeobox protein Hox-A9 (HOXA9). Results Reduced expression of miR-638 was detected in breast cancer. And low miR-638 expression was related to poor prognosis in patients with breast cancer. Functionally, the viability, migration, and invasion of the breast cancer cells were suppressed by miR-638 overexpression. Furthermore, miR-638 can directly bind to HOXA9, and increased expression of HOXA9 was also detected in breast cancer. In particular, HOXA9 upregulation can impair anti-tumor effect of miR-638 in breast cancer, and miR-638 can hinder the Wnt/β-cadherin pathway and epithelial-mesenchymal transition (EMT) in breast cancer. Conclusion miR-638 inhibits breast cancer progression through binding to HOXA9.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Qianqian Zhang
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Mengli Dong
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Yuan Yu
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China.
| |
Collapse
|
10
|
Alterations in microRNA Expression during Hematopoietic Stem Cell Mobilization. BIOLOGY 2021; 10:biology10070668. [PMID: 34356523 PMCID: PMC8301406 DOI: 10.3390/biology10070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Lymphoproliferative disorders comprise a heterogeneous group of hematological malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The key element in this process is the effective mobilization of hematopoietic cells from the marrow niche to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an important regulatory role. This study investigated the expression of selected miRNAs in patients with multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was tested at two time points before the initiation of mobilization and on the day of the first apheresis. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization. Abstract microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis, and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+ cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas) were determined during mobilization for an autologous hematopoietic stem cell transplantation. The miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p. On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels and the number of CD34+ cells in peripheral blood. A negative correlation was observed between hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers, defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than “high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization.
Collapse
|
11
|
Exosomes of Mesenchymal Stem Cells as a Proper Vehicle for Transfecting miR-145 into the Breast Cancer Cell Line and Its Effect on Metastasis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516078. [PMID: 34307654 PMCID: PMC8263260 DOI: 10.1155/2021/5516078] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
Background Despite recent advances in scientific knowledge and clinical practice, management, and treatment of breast cancer, as one of the leading causes of female mortality, breast cancer remains a major burden. Recently, methods employing stem cells and their derivatives, i.e., exosomes, in gene-based therapies hold great promise. Since these natural nanovesicles are able to transmit crucial cellular information which can be engineered to have robust delivery and targeting capacity, they are considered one of the modes of intercellular communication. miR-145, one of the downregulated microRNAs (miRNAs) in various cancers, can regulate tumor cell invasion, metastasis, apoptosis, and proliferation and stem cell differentiation. Objectives The aim of this study was to investigate the role of exosomes secreted from adipose tissue-derived mesenchymal stem cells (MSCs) for miR-145 transfection into breast cancer cells in order to weaken their expansion and metastasis. Methods Here, we exploited the exosomes from adipose tissue-derived mesenchymal stem cells (MSC-Exo) to deliver miR-145 in the T-47D breast cancer cell line. Lentiviral vectors of miR-145-pLenti-III-enhanced green fluorescent protein (eGFP) and empty pLenti-III-eGFP as the backbone were used to transfect MSCs and T-47D cells. In order to find the efficiency of exosomes as a delivery vehicle, the expression level of some miR-145 target genes, including Rho-Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), Matrix Metalloproteinase 9 (MMP9), and Tumor Protein p53 (TP53), was compared in all treatment groups (T-47D cells treated by miR-145-transfected MSCs and their derivatives or their backbone) and control group (untransfected T-47D cells) using real-time PCR. Results The obtained data represented the inhibitory effect of miR-145 on apoptosis induction and metastasis in both direct miR-treated groups. However, exosome-mediated delivery caused an improved anticancer property of miR-145. Conclusion Restoration of miR-145 using MSC-Exo can be considered a potential novel therapeutic strategy in breast cancer in the future.
Collapse
|
12
|
MicroRNA-205-5p targets the HOXD9-Snail1 axis to inhibit triple negative breast cancer cell proliferation and chemoresistance. Aging (Albany NY) 2021; 13:3945-3956. [PMID: 33428601 PMCID: PMC7906129 DOI: 10.18632/aging.202363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
MicroRNA-205 (miR-205) is believed to be related to the progress of tumors. HOXD9 has been proved to be expressed abnormally in several kinds of cancers. However, the role of miR-205 and HOXD9 in breast cancer remains unclear. The biological role of miR-205 in breast cancer cell proliferation and chemoresistance was investigated. The expression of miR-205 in clinical tissues and breast cancer cell lines were analyzed using quantitative real-time PCR test (qRT-PCR). Overexpression and knockdown models of miR-205 were established to study cell proliferation and chemotherapy-resistant. Moreover, the potential relationships between miR-205 and HOXD9/Snail1 were measured using qRT-PCR, western blot, and chemotherapy-resistant study. miR-205 was lowly expressed in breast cancer tissues and cell lines. Overexpression of miR-205 could inhibit cell proliferation and chemotherapy-resistance. Moreover, we proved that miR-205 could target the HOXD9-Snail1 axis to suppress triple negative breast cancer cell proliferation and chemoresistance. The activation of Snail1 gene by HOXD9 was also proved in this study. The present study may provide a novel insight for the therapeutic strategies of breast cancer through targeting miR-205/HOXD9/Snail1.
Collapse
|
13
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Arabkari V, Amirizadeh N, Nikougoftar M, Soleimani M. microRNA expression profiles in two- and three-dimensional culture conditions of human-umbilical-cord blood-derived CD34 + cells. J Cell Physiol 2019; 234:20072-20084. [PMID: 30953369 DOI: 10.1002/jcp.28606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Human umbilical cord blood (HUCB) is a suitable source of hematopoietic stem cells (HSCs) for therapeutic transplantation. Different approaches have been used to expand the number of HSCs to increase the rate of HSC transplantation success in patients, such as using different cocktails of cytokines, feeder cell layers, and biocompatible scaffolds. microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. They play crucial roles in hematopoiesis including stem cell proliferation, differentiation, stemness, and self-renewal properties. Here, we studied the UCB-derived CD34+ cell expansion and the miRNA signatures of CD34+ cells on two- and three-dimensional (2D and 3D) culture conditions. We successfully expanded the UCB-derived CD34+ cells in both liquid culture (2D) and on aminated polyethersulfone nanofiber scaffolds (3D). Next, we identified the miRNA signature of CD34+ cells and their target genes. We found 58 dysregulated miRNAs in 3D culture condition and 34 dysregulated miRNAs in 2D culture condition when compared to the freshly isolated CD34+ cells. Various types of target genes were also predicted in both conditions using two online databases.
Collapse
Affiliation(s)
- Vahid Arabkari
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Choi Y, Hur EH, Moon JH, Goo BK, Choi DR, Lee JH. Expression and prognostic significance of microRNAs in Korean patients with myelodysplastic syndrome. Korean J Intern Med 2019; 34:390-400. [PMID: 29132200 PMCID: PMC6406090 DOI: 10.3904/kjim.2016.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 06/17/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Various alterations of microRNA (miRNA) expression have been reported in myelodysplastic syndrome (MDS). We aimed to investigate the unique patterns and prognostic significance of miRNA expression in Korean patients with MDS. METHODS Bone marrow mononuclear cells were collected from eight healthy controls and 26 patients with MDS, and miRNAs were isolated and assessed via quantitative real-time polymerase chain reaction for selected miRNAs, including miR-21, miR-124a, miR-126, miR-146b-5p, miR-155, miR-182, miR-200c, miR-342-5p, miR-708, and Let-7a. RESULTS MiR-124a, miR-155, miR-182, miR-200c, miR-342-5p, and Let-7a were significantly underexpressed in patients with MDS, compared to healthy controls. MiR-21, miR-126, 146b-5p, and miR-155 transcript levels were significantly lower in international prognostic scoring system lower (low and intermediate-1) risk MDS than in higher (intermediate-2 and high) risk MDS. Higher expression levels of miR-126 and miR-155 correlated with significantly shorter overall survival and leukemia-free survival. Higher miR-124a expression also tended to be related to shorter survivals. CONCLUSION Although our study was limited by the relatively small number of patients included, we identified several miRNAs associated with pathogenesis, leukemic transformation, and prognosis in MDS.
Collapse
Affiliation(s)
- Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Hyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Ro Choi
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Je-Hwan Lee, M.D. Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3218 Fax: +82-2-3010-6885 E-mail:
| |
Collapse
|
16
|
Park SM, Cho H, Thornton AM, Barlowe TS, Chou T, Chhangawala S, Fairchild L, Taggart J, Chow A, Schurer A, Gruet A, Witkin MD, Kim JH, Shevach EM, Krivtsov A, Armstrong SA, Leslie C, Kharas MG. IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell 2019; 24:153-165.e7. [PMID: 30472158 PMCID: PMC6602096 DOI: 10.1016/j.stem.2018.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Leukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia. IKZF2 is highly expressed in leukemic stem cells (LSCs), and its deficiency results in defective LSC function. IKZF2 depletion in acute myeloid leukemia (AML) cells reduced colony formation, increased differentiation and apoptosis, and delayed leukemogenesis. Gene expression, chromatin accessibility, and direct IKZF2 binding in MLL-AF9 LSCs demonstrate that IKZF2 regulates a HOXA9 self-renewal gene expression program and inhibits a C/EBP-driven differentiation program. Ectopic HOXA9 expression and CEBPE depletion rescued the effects of IKZF2 depletion. Thus, our study shows that IKZF2 regulates the AML LSC program and provides a rationale to therapeutically target IKZF2 in myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Self Renewal
- Chromatin/genetics
- Chromatin/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Sun-Mi Park
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyunwoo Cho
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela M Thornton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Trevor S Barlowe
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Chou
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sagar Chhangawala
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren Fairchild
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Taggart
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Chow
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandria Schurer
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antoine Gruet
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Witkin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Andrei Krivtsov
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Interplay between regulation by methylation and noncoding RNAs in cancers. Eur J Cancer Prev 2018; 27:418-424. [PMID: 29557800 DOI: 10.1097/cej.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer is one of the most important health problems today; therefore, many researchers are focusing on exploring the mechanisms underlying its development and treatment. The field of cancer epigenetics has flourished in recent decades, and studies have shown that different epigenetic events, such as DNA methylation, histone modification, and noncoding RNA regulation, work together to influence cancer development and progression. In this short review, we summarize the interactions between methylation and noncoding RNAs that affect cancer development.
Collapse
|
18
|
Xia D, Li X, Niu Q, Liu X, Xu W, Ma C, Gu H, Liu Z, Shi L, Tian X, Chen X, Zhang Y. MicroRNA-185 suppresses pancreatic cell proliferation by targeting transcriptional coactivator with PDZ-binding motif in pancreatic cancer. Exp Ther Med 2017; 15:657-666. [PMID: 29399068 PMCID: PMC5772449 DOI: 10.3892/etm.2017.5447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to compare the expression of transcriptional coactivator with the PDZ-binding motif (TAZ) in pancreatic cancer (PC) patients, and to investigate the regulation mechanisms of TAZ in the proliferation of PC. PC tissues and matched peritumoral tissues, pancreatic juice and serum were collected from PC patients who underwent pancreatectomy between June 2012 and December 2015 at the Affiliated Hospital of Qingdao University (Qingdao, China). Pancreatic juice and serum were collected from patients with chronic pancreatitis as a control. The levels of taz mRNA expression in the samples were examined by reverse-transcription quantitative polymerase chain reaction, and the protein expression of TAZ was assessed by western blot analysis and ELISA. MicroRNAs (miRNAs) that regulate TAZ expression were also predicted by bioinformatics analysis and validated by dual luciferase reporter and rescue assays. In addition, the proliferation of PC cells was evaluated after transfection with TAZ small interfering RNA (siRNA) or its upstream miRNA agomir. Expression of TAZ was significantly increased in the PC tissues, pancreatic juice and serum of PC patients at the mRNA and protein levels compared with controls (P<0.05). Furthermore, TAZ was predicted and verified to be a target of miRNA (miR)-185, and miR-185 and TAZ were inversely expressed in samples from PC patients (P<0.05). In addition, TAZ siRNA or agomiR-185 transfection significantly inhibited human pancreatic adenocarcinoma cell proliferation (P<0.05). However, overexpression of TAZ in the agomiR-185 group rescued the inhibition (P<0.05). Finally, the expression of TAZ effector proteins, namely ankyrin repeat domain-containing protein and cysteine-rich 61, were upregulated in PC tissues (P<0.05), but repressed following transfection of PC cells with agomiR-185 (P<0.05). Thus, miR-185 may regulate the proliferation of PC by targeting TAZ, making it a promising diagnostic marker for PC.
Collapse
Affiliation(s)
- Di Xia
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qinghui Niu
- Department of Infectious Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xishuang Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wanqun Xu
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chengtai Ma
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Huali Gu
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhenfang Liu
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lei Shi
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xintao Tian
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaoxue Chen
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yubao Zhang
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
19
|
Chen S, Yu J, Lv X, Zhang L. HOXA9 is critical in the proliferation, differentiation, and malignancy of leukaemia cells both in vitro and in vivo. Cell Biochem Funct 2017; 35:433-440. [PMID: 28961318 DOI: 10.1002/cbf.3293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Shibing Chen
- Department of Hematology; Yishui Center Hospital; Linyi Shandong Province China
| | - Juan Yu
- Department of Neurosurgery; Yishui Center Hospital; Linyi Shandong Province China
| | - Xin Lv
- Department of Hematology; Yishui Center Hospital; Linyi Shandong Province China
| | - Lijuan Zhang
- Department of Cardiology; Yishui Center Hospital; Linyi Shandong Province China
| |
Collapse
|
20
|
Martiáñez Canales T, de Leeuw DC, Vermue E, Ossenkoppele GJ, Smit L. Specific Depletion of Leukemic Stem Cells: Can MicroRNAs Make the Difference? Cancers (Basel) 2017; 9:cancers9070074. [PMID: 28665351 PMCID: PMC5532610 DOI: 10.3390/cancers9070074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
For over 40 years the standard treatment for acute myeloid leukemia (AML) patients has been a combination of chemotherapy consisting of cytarabine and an anthracycline such as daunorubicin. This standard treatment results in complete remission (CR) in the majority of AML patients. However, despite these high CR rates, only 30–40% (<60 years) and 10–20% (>60 years) of patients survive five years after diagnosis. The main cause of this treatment failure is insufficient eradication of a subpopulation of chemotherapy resistant leukemic cells with stem cell-like properties, often referred to as “leukemic stem cells” (LSCs). LSCs co-exist in the bone marrow of the AML patient with residual healthy hematopoietic stem cells (HSCs), which are needed to reconstitute the blood after therapy. To prevent relapse, development of additional therapies targeting LSCs, while sparing HSCs, is essential. As LSCs are rare, heterogeneous and dynamic, these cells are extremely difficult to target by single gene therapies. Modulation of miRNAs and consequently the regulation of hundreds of their targets may be the key to successful elimination of resistant LSCs, either by inducing apoptosis or by sensitizing them for chemotherapy. To address the need for specific targeting of LSCs, miRNA expression patterns in highly enriched HSCs, LSCs, and leukemic progenitors, all derived from the same patients’ bone marrow, were determined and differentially expressed miRNAs between LSCs and HSCs and between LSCs and leukemic progenitors were identified. Several of these miRNAs are specifically expressed in LSCs and/or HSCs and associated with AML prognosis and treatment outcome. In this review, we will focus on the expression and function of miRNAs expressed in normal and leukemic stem cells that are residing within the AML bone marrow. Moreover, we will review their possible prospective as specific targets for anti-LSC therapy.
Collapse
Affiliation(s)
- Tania Martiáñez Canales
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - David C de Leeuw
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Eline Vermue
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of haematopoietic cell fate decisions. They act by negatively regulating the expression of key immune development genes, thus contributing important logic elements to the regulatory circuitry. Deletion studies have made it increasingly apparent that they confer robustness to immune cell development, especially under conditions of environmental stress such as infectious challenge and ageing. Aberrant expression of certain miRNAs can lead to pathological consequences, such as autoimmunity and haematological cancers. In this Review, we discuss the mechanisms by which several miRNAs influence immune development and buffer normal haematopoietic output, first at the level of haematopoietic stem cells, then in innate and adaptive immune cells. We then discuss the pathological consequences of dysregulation of these miRNAs.
Collapse
|
22
|
Maetzig T, Ruschmann J, Lai CK, Ngom M, Imren S, Rosten P, Norddahl GL, von Krosigk N, Sanchez Milde L, May C, Selich A, Rothe M, Dhillon I, Schambach A, Humphries RK. A Lentiviral Fluorescent Genetic Barcoding System for Flow Cytometry-Based Multiplex Tracking. Mol Ther 2017; 25:606-620. [PMID: 28253481 DOI: 10.1016/j.ymthe.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.
Collapse
Affiliation(s)
- Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Courteney K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patricia Rosten
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Gudmundur L Norddahl
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Niklas von Krosigk
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lea Sanchez Milde
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Christopher May
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ishpreet Dhillon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
23
|
Yue S, Shi H, Han J, Zhang T, Zhu W, Zhang D. Prognostic value of microRNA-126 and CRK expression in gastric cancer. Onco Targets Ther 2016; 9:6127-6135. [PMID: 27785060 PMCID: PMC5066993 DOI: 10.2147/ott.s87778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miR)-126, acting as a tumor suppressor, has been reported to inhibit the invasion of gastric cancer cells in part by targeting v-crk sarcoma virus CT10 oncogene homologue (CRK). The aim of this study was to investigate the clinical significance of miR-126/CRK axis in gastric cancer. Methods miR-126 and CRK mRNA expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction in 220 self-pairs of gastric cancer and adjacent noncancerous tissues. Results Expression levels of miR-126 and CRK mRNA in gastric cancer tissues were, respectively, lower and higher than those in adjacent noncancerous tissues (both P<0.001). Low miR-126 expression and high CRK expression, alone or in combination, were all significantly associated with positive lymph node and distant metastases and advanced TNM stage of human gastric cancer (all P<0.05). We also found that the overall survival rates of the patients with low miR-126 expression and high CRK expression were, respectively, shorter than those with high miR-126 expression and low CRK expression. Interestingly, miR-126-low/CRK-high expression was associated with a significantly worse overall survival of all miR-126/CRK groups (P<0.001). Moreover, multivariate analysis identified miR-126 and/or CRK expression as independent prognostic factors for patients with gastric cancer. Notably, the prognostic relevance of miR-126 and/or CRK expression was more obvious in the subgroup of patients with TNM stage IV. Conclusion Dysregulation of miR-126/CRK axis may promote the malignant progression of human gastric cancer. miR-126 and CRK combined expression may serve as an independent predictor of overall survival in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Shun Yue
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Huichang Shi
- Department of Medical Oncology, The Second People's Hospital of Huai'an, Huai'an City
| | - Jun Han
- Department of Medical Oncology, Qinghai Province People's Hospital, Xining City, People's Republic of China
| | - Tiecheng Zhang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Weiguo Zhu
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Dahong Zhang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| |
Collapse
|
24
|
Polyamines release the let-7b-mediated suppression of initiation codon recognition during the protein synthesis of EXT2. Sci Rep 2016; 6:33549. [PMID: 27650265 PMCID: PMC5030709 DOI: 10.1038/srep33549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022] Open
Abstract
Proteoglycans (PGs), a family of glycosaminoglycan (GAG)-protein glycoconjugates, contribute to animal physiology through interactions between their glycan chains and growth factors, chemokines and adhesion molecules. However, it remains unclear how GAG structures are changed during the aging process. Here, we found that polyamine levels are correlated with the expression level of heparan sulfate (HS) in human skin. In cultured cell lines, the EXT1 and EXT2 enzymes, initiating HS biosynthesis, were stimulated at the translational level by polyamines. Interestingly, the initiation codon recognition by 43S preinitiation complex during EXT2 translation is suppressed by let-7b, a member of the let-7 microRNA family, through binding at the N-terminal amino acid coding sequence in EXT2 mRNA. Let-7b-mediated suppression of initiation codon depends on the length of 5'-UTR of EXT2 mRNA and its suppression is inhibited in the presence of polyamines. These findings provide new insights into the HS biosynthesis related to miRNA and polyamines.
Collapse
|
25
|
Roden C, Lu J. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2016; 2:183-196. [PMID: 27547713 PMCID: PMC4988405 DOI: 10.1007/s40778-016-0057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields.
Collapse
Affiliation(s)
- Christine Roden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Graduate Program in Biological and Biomedical Sciences, Yale University, New Haven, Connecticut 06510, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Yale Center for RNA Science and Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
26
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 2016; 97:47-55. [DOI: 10.1016/j.yjmcc.2016.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
27
|
Chen H, Jiang S, Wang L, Wang L, Wang H, Qiu L, Song L. Cgi-miR-92d indirectly regulates TNF expression by targeting CDS region of lipopolysaccharide-induced TNF-α factor 3 (CgLITAF3) in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 55:577-584. [PMID: 27346152 DOI: 10.1016/j.fsi.2016.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) mediated inflammatory response plays indispensable roles in organisms defending against the invaded bacteria, during which microRNAs have been found crucial by controlling multiple TNF-α-related genes. In the present study, cgi-miR-92d was annotated as a member of miR-17-92 family and could target the CDS region of lipopolysaccharide (LPS)-induced TNF-α factor (CgLITAF3) in oyster Crassostrea gigas. It was observed that cgi-miR-92d could be vigorously modulated by Vibrio splendidus or LPS stimulation while CgLITAF3 altered oppositely. Two putative binding sites of cgi-miR-92d were then found at CDS region of CgLITAF3. The interaction between cgi-miR-92d and CgLITAF3 was subsequently verified both in vitro and in vivo. As a result, a significant decrease of cellular luminescence was observed in CgLITAF3 luciferase reporter assay when cgi-miR-92d was overexpressed. The luminescent decrease was then recuperated when cgi-miR-92d inhibitor was co-transfected with miRNA mimics. Besides, CgLITAF3 transcripts were significantly down-regulated when cgi-miR-92d was overexpressed in vivo during V. splendidus challenge. Gain-of-function assay of CgLITAF3 was then conducted in HEK293T cells to verify its function. Consequently, a significant increase of TNF-α was observed during the assay. At the meantime, CgTNF was also down-regulated in gain-of-function assay of cgi-miR-92 in vivo, which was a member of TNF superfamily in oysters which could be robustly induced after pathogen stimulation. Together, these results verify the interaction between CgLITAF3 and cgi-miR-92d, which might dedicate crucially in the repaid activation of CgTNF expression during inflammatory response of oysters.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
28
|
MicroRNA-145 functions as a tumor suppressor by targeting matrix metalloproteinase 11 and Rab GTPase family 27a in triple-negative breast cancer. Cancer Gene Ther 2016; 23:258-65. [PMID: 27364572 DOI: 10.1038/cgt.2016.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/26/2022]
Abstract
Although increasing evidence has documented that microRNA-145 (miR-145) acts as a tumor suppressor in breast cancer, its exact role in triple-negative breast cancer (TNBC) remains poorly defined. In this study, the expression of miR-145 in human TNBC cells and samples from 30 patients was analyzed by stem-loop real-time PCR. We found that miR-145 was significantly downregulated in TNBC tissues and cells. Upregulating miR-145 in HCC1937 cells dramatically suppressed cell proliferation and induced G1-phase arrest, whereas MDA-MB-231 cells did not show growth inhibition. MiR-145 exhibited an inhibitory role in cell invasion through the post-transcriptional regulation of the novel targets MMP11 and Rab27a in TNBC cells. Additionally, miR-145 silencing could be reversed by 5-aza-2'-deoxycytidine (DAC). These results demonstrated that miR-145 has an inhibitory role in TNBC malignancy by targeting MMP11 and Rab27a, which might be potential therapeutic and diagnostic targets for TNBC.
Collapse
|
29
|
Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 2016; 30:2662-72. [PMID: 27118674 DOI: 10.1096/fj.201600435rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.
Collapse
Affiliation(s)
| | | | - Helga E de Vries
- Blood-Brain Barrier Research Group, Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
30
|
Qian J, Tu R, Yuan L, Xie W. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2. Exp Cell Res 2016; 344:183-93. [PMID: 26844630 DOI: 10.1016/j.yexcr.2016.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023]
Abstract
Despite great progress for two decades in microRNAs (miRNAs), the direct regulation of host gene by intragenic (mostly intronic) miRNA is conceptually plausible but evidence-limited. Here, we report that intronic miR-932 could target its host gene via binding with coding sequence (CDS) region rather than regular 3'UTR. The conserved miR-932 is embedded in the fourth intron of Drosophila neuroligin2 (dnlg2), which encodes a synaptic cell adhesion molecule, DNlg2. In silico analysis predicted two putative miR-932 target sites locate in the CDS region of dnlg2 instead of regular 3'-UTR miRNA binding sites. Employing luciferase reporter assay, we further proved that the miR-932 regulates expression of its host gene dnlg2 via the binding CDS region of dnlg2. Consistently, we observed miR-932 downregulated expression of dnlg2 in S2 cell, and the repression of dnlg2 by miR-932 at both protein and RNA level. Furthermore, we found CDS-located site1 is dominant for regulating expression of host dnlg2 by miR-932. In addition to providing thorough examination of one intronic miRNA targeting the CDS region of its host gene, our genome-wide analysis indicated that nearly half of fruitfly and human intronic miRNAs may target their own host gene at coding region. This study would be valuable in elucidating the regulation of intronic miRNA on host gene, and provide new information about the biological context of their genomic arrangements and functions.
Collapse
Affiliation(s)
- Jinjun Qian
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjun Tu
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China.
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
31
|
Park H, Jekal SJ. MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2015. [DOI: 10.15324/kjcls.2015.47.4.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ho Park
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54638, Korea
| | - Seung Joo Jekal
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54638, Korea
| |
Collapse
|
32
|
Ebrahimi F, Gopalan V, Wahab R, Lu CT, Anthony Smith R, Lam AKY. Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp Cell Res 2015; 339:333-41. [DOI: 10.1016/j.yexcr.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/06/2015] [Accepted: 10/04/2015] [Indexed: 12/18/2022]
|
33
|
Yu SL, Lee DC, Sohn HA, Lee SY, Jeon HS, Lee JH, Park CG, Lee HY, Yeom YI, Son JW, Yoon YS, Kang J. Homeobox A9 directly targeted by miR-196b regulates aggressiveness through nuclear Factor-kappa B activity in non-small cell lung cancer cells. Mol Carcinog 2015; 55:1915-1926. [PMID: 26586336 DOI: 10.1002/mc.22439] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are recognized as crucial posttranscriptional regulators of gene expression, and play critical roles as oncogenes or tumor suppressors in various cancers. Here, we show that miR-196b is upregulated in mesenchymal-like-state non-small cell lung cancer (NSCLC) cells and lung cancer tissues. Moreover, miR-196b upregulation stimulates cell invasion and a change in cell morphology to a spindle shape via loss of cell-to-cell contacts. We identified homeobox A9 (HOXA9) as a target gene of miR-196b by using public databases such as TargetScan, miRDB, and microRNA.org. HOXA9 expression is inversely correlated with miR-196b levels in clinical NSCLC samples as compared to that in corresponding control samples, and with the migration and invasion of NSCLC cells. Ectopic expression of HOXA9 resulted in a suppression of miR-196b-induced cell invasion, and HOXA9 reexpression increased E-cadherin expression. Furthermore, HOXA9 potently attenuated the expression of snail family zinc finger 2 (SNAI2/SLUG) and matrix metallopeptidase 9 (MMP9) by controlling the binding of nuclear factor-kappa B to the promoter of SLUG and MMP9 genes, respectively. Therefore, we suggest that HOXA9 plays a central role in controlling the aggressive behavior of lung cancer cells and that miR-196b can serve as a potential target for developing anticancer agents. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Dong Chul Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun Ahm Sohn
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soo Young Lee
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Hyo Sung Jeon
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joon H Lee
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Young Il Yeom
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Yoo Sang Yoon
- Department of Thoracic Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Prognostic Role of MicroRNA-126 for Survival in Malignant Tumors: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2015; 2015:739469. [PMID: 26351404 PMCID: PMC4553299 DOI: 10.1155/2015/739469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Background. Increasing studies found that miR-126 expression may be associated with the prognosis of cancers. Here, we performed a meta-analysis to assess the prognostic role of miR-126 in different cancers. Methods. Eligible studies were identified by searching in PubMed, Embase, the Cochrane Library, CNKI, and Wan Fang databases up to March 2015. Pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated to investigate the correlation between miR-126 and survival of cancers. Results. Thirty studies including a total of 4497 participants were enrolled in this meta-analysis. The pooled results showed that high level of miR-126 was a predictor for favorable survival of carcinomas, with pooled HR of 0.77 (95% CI 0.64–0.93) for OS, 0.64 (95%CI 0.48–0.85) for DFS, and 0.70 (95% CI 0.50–0.98) for PFS/RFS/DSS. However, high level of circulating miR-126 predicted a significantly worse OS in patients with cancer (HR = 1.65, 95% CI 1.09–2.51). Conclusions. Our results indicated that miR-126 could act as a significant biomarker in the prognosis of various cancers.
Collapse
|
35
|
Selective targeting of KRAS-mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-mutant cells. Oncotarget 2015; 5:7635-50. [PMID: 25245095 PMCID: PMC4202150 DOI: 10.18632/oncotarget.2284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors.
Collapse
|
36
|
Tomankova T, Petrek M, Gallo J, Kriegova E. MicroRNAs: Emerging Regulators of Immune-Mediated Diseases. Scand J Immunol 2015; 75:129-41. [PMID: 21988491 DOI: 10.1111/j.1365-3083.2011.02650.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) represent the most abundant class of regulators of gene expression in humans: they regulate one-third of human protein-coding genes. These small noncoding ∼22-nucleotides (nt)-long RNAs originate by multistep process from miRNA genes localized in the genomic DNA. To date, more than 1420 miRNAs have been identified in humans (miRBase v17). The main mechanism of miRNA action is the posttranscriptional regulation via RNA interference with their target mRNAs. The majority of target mRNAs (more than 80%) undergo degradation after recognition by complementary miRNA; the translational inhibition with little or no influence on mRNA levels has been also reported. Each miRNA may suppress multiple mRNA targets (average ∼200), and at the same time, one mRNA can be targeted by many miRNAs enabling to control a spectrum wide range of cellular processes. Recently, the role of miRNAs in the development of immune cells and the maintenance of immune system homeostasis gained attention, and the involvement of miRNAs in the pathogenesis of several immune system diseases has emerged. This review focuses on the role of miRNAs in autoimmune disorders (systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and psoriasis), inflammatory pathologies of distinct organ (atherosclerosis, osteoarthritis and atopic eczema) and/or systemic locations such as allergy. The role of miRNAs, their predicted and known mRNA targets and description of their actions in physiological immune reactions and in the pathological processes ongoing in immune-mediated human disorders will be discussed. Finally, miRNA-based diagnostics and therapeutic potentials will be highlighted.
Collapse
Affiliation(s)
- T Tomankova
- Laboratory of Immunogenomics and Immunoproteomics, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech RepublicDepartment of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - M Petrek
- Laboratory of Immunogenomics and Immunoproteomics, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech RepublicDepartment of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gallo
- Laboratory of Immunogenomics and Immunoproteomics, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech RepublicDepartment of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - E Kriegova
- Laboratory of Immunogenomics and Immunoproteomics, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech RepublicDepartment of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
37
|
Quann K, Jing Y, Rigoutsos I. Post-transcriptional regulation of BRCA1 through its coding sequence by the miR-15/107 group of miRNAs. Front Genet 2015; 6:242. [PMID: 26257769 PMCID: PMC4513244 DOI: 10.3389/fgene.2015.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by degrading their RNA targets or by repressing the translation of messenger RNAs (mRNAs). Initially thought to primarily target the 3' untranslated region (3'UTR) of mRNAs, miRNAs have since been shown to also target the 5'UTR and coding sequence (CDS). In this work, we focus on the post-transcriptional regulation of the BRCA1 gene, a major tumor suppressor and regulator of double-stranded break DNA repair and show that its mRNA is targeted by many members of the miR-15/107 group at a site located within the CDS. Ectopic expression of these miRNAs across a panel of nine cell lines demonstrated widespread suppression of BRCA1 mRNA levels. Additionally, by cloning a putative target site from BRCA1's amino acid CDS into a luciferase reporter plasmid we confirmed the direct interaction of these miRNAs with this BRCA1 target. We also examined the relationship between ectopic expression of these targeting miRNAs and BRCA1 protein levels in immortalized pancreatic epithelium (hTERT-HPNE), colorectal adenocarcinoma (HCT-116) and pancreatic adenocarcinoma (MIA PaCa-2) cell lines and found protein abundance to be variably regulated in a cell-type specific manner that was not necessarily concordant with mRNA transcript availability. Our findings reveal a previously unrecognized aspect of BRCA1's miRNA-mediated post-transcriptional regulation, namely the targeting of its amino acid coding region by the miR-15/107 group of miRNAs. The resulting regulation is apparently complex and cell-specific, an observation that may have implications for BRCA1-mediated DNA repair across tissue types.
Collapse
Affiliation(s)
- Kevin Quann
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
38
|
Das RP, Konkimalla VB, Rath SN, Hansa J, Jagdeb M. Elucidation of the Molecular Interaction between miRNAs and the HOXA9 Gene, Involved in Acute Myeloid Leukemia, by the Assistance of Argonaute Protein through a Computational Approach. Genomics Inform 2015; 13:45-52. [PMID: 26175662 PMCID: PMC4500798 DOI: 10.5808/gi.2015.13.2.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023] Open
Abstract
Acute myeloid leukemia is a well characterized blood cancer in which the unnatural growth of immature white blood cell takes place, where several genes transcription is regulated by the micro RNAs (miRNAs). Argonaute (AGO) protein is a protein family that binds to the miRNAs and mRNA complex where a strong binding affinity is crucial for its RNA silencing function. By understanding pattern recognition between the miRNAs-mRNA complex and its binding affinity with AGO protein, one can decipher the regulation of a particular gene and develop suitable siRNA for the same in disease condition. In the current work, HOXA9 gene has been selected from literature, whose deregulation is well-established in acute myeloid leukemia. Four miRNAs (mir-145, mir-126, let-7a, and mir-196b) have been selected to target mRNA of HOXA9 (NCBI accession No. NM_152739.3). The binding interaction between mRNAs and mRNA of HOXA9 gene was studied computationally. From result, it was observed mir-145 has highest affinity for HOXA9 gene. Furthermore, the interaction between miRNAs-mRNA duplex of all chosen miRNAs are docked with AGO protein (PDB ID: 3F73, chain A) to study their interaction at molecular level through an in silico approach. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding of AGO-assisted miRNA based gene silencing mechanism in HOXA9 gene associated in acute myeloid leukemia computationally.
Collapse
Affiliation(s)
- Rohit Pritam Das
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751005, India
| | - Surya Narayan Rath
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| | - Jagadish Hansa
- Department of Surgical Oncology, IMS and SUM Hospital, SOA University, Bhubaneswar 751003, India
| | - Manaswini Jagdeb
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| |
Collapse
|
39
|
Fuentes E, Palomo I, Alarcón M. Platelet miRNAs and cardiovascular diseases. Life Sci 2015; 133:29-44. [PMID: 26003375 DOI: 10.1016/j.lfs.2015.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/25/2015] [Accepted: 04/21/2015] [Indexed: 01/04/2023]
Abstract
Activated platelets play a critical role in the acute complications of atherosclerosis that cause life-threatening ischemic events at late stages of the disease. The miRNAs are a novel class of small, non-coding RNAs that play a significant role in both inflammatory and cardiovascular diseases. The miRNAs are known to be present in platelets and exert important regulatory functions. Here we systematically examine the genes that are regulated by platelet miRNAs (miRNA-223,miRNA-126,miRNA-21, miRNA-24 and miRNA-197) and the association with cardiovascular disease risks. Platelet-secreted miRNAs could be novel biomarkers associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| |
Collapse
|
40
|
Shibayama Y, Kondo T, Ohya H, Fujisawa SI, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep 2015; 33:2176-82. [PMID: 25759982 PMCID: PMC4391586 DOI: 10.3892/or.2015.3839] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) have been shown to negatively regulate gene expression by binding to mRNAs, and they play an important role in various physiological processes and ma lignancies. A previous study identified mature miR-126-3p as an onco-microRNA that is generated from the pre-microRNA, miR-126. Although miR-126 also generates mature miR-126-5p, its function is less clear. In the present study, the relationship between miR-126-5p/3p expression levels and overall survival in 109 patients with acute myeloid leukemia (AML) who received intensive therapy were evaluated. Higher expression levels above the median value of miR-126-5p/3p were correlated with a poorer overall survival. The hazard ratio and 95% confidence intervals (95% CI) for the higher expression group relative to the lower expression group of miR-126-5p/3p were 2.098 (95% CI: 1.075–4.228) and 1.958 (95% CI: 1.001–3.927), respectively. An interaction was not observed between the hazard ratios of miR-126-5p and miR-126-3p (p=0.73). Transfection of the mimic miR-126-5p into the AML cell line, KG-1, resulted in a decrease in the sensitivity to cytarabin and the expression level of Klotho mRNA as well as the elevation in the phosphorylation of Akt. The results of the present study demonstrated that higher expression levels of miR-126-5p/3p in patients with AML resulted in a poorer prognosis. Furthermore, miR-126-5p elevated the phosphorylation of Akt.
Collapse
Affiliation(s)
- Yoshihiko Shibayama
- Education Research Center for Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takeshi Kondo
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Hiroki Ohya
- Laboratory of Clinical Pharmaceutics and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Shin-Ichi Fujisawa
- Department of Clinical Laboratory, Hokkaido University Hospital, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
41
|
Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 2015; 112:E1106-15. [PMID: 25713380 DOI: 10.1073/pnas.1420955112] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.
Collapse
|
42
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Zhou H, Rigoutsos I. MiR-103a-3p targets the 5' UTR of GPRC5A in pancreatic cells. RNA (NEW YORK, N.Y.) 2014; 20:1431-9. [PMID: 24984703 PMCID: PMC4138326 DOI: 10.1261/rna.045757.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/28/2014] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of their targets in a sequence-dependent manner. For protein-coding transcripts, miRNAs regulate expression levels through binding sites in either the 3' untranslated region (3' UTR) or the amino acid coding sequence (CDS) of the targeted messenger RNA (mRNA). Currently, for the 5' untranslated region (5' UTR) of mRNAs, very few naturally occurring examples exist whereby the targeting miRNA down-regulates the expression of the corresponding mRNA in a seed-dependent manner. Here we describe and characterize two miR-103a-3p target sites in the 5' UTR of GPRC5A, a gene that acts as a tumor suppressor in some cancer contexts and as an ongocene in other cancer contexts. In particular, we show that the interaction of miR-103a-3p with each of these two 5' UTR targets reduces the expression levels of both GPRC5A mRNA and GPRC5A protein in one normal epithelial and two pancreatic cancer cell lines. By ectopically expressing "sponges" that contain instances of the wild-type 5' UTR targets we also show that we can reduce miR-103a-3p levels and increase GPRC5A mRNA and protein levels. These findings provide some first knowledge on the post-transcriptional regulation of this tumor suppressor/oncogene and present additional evidence for the participation of 5' UTRs in miRNA driven post-transcriptional regulatory control.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
44
|
Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G, Alessandro R. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer 2014; 13:169. [PMID: 25015105 PMCID: PMC4105877 DOI: 10.1186/1476-4598-13-169] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/03/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Recent findings indicate that exosomes released from cancer cells contain microRNAs (miRNAs) that may be delivered to cells of tumor microenvironment. RESULTS To elucidate whether miRNAs secreted from chronic myelogenous leukemia cells (CML) are shuttled into endothelial cells thus affecting their phenotype, we first analysed miRNAs content in LAMA84 exosomes. Among the 124 miRNAs identified in LAMA84 exosomes, we focused our attention on miR-126 which was found to be over-overexpressed in exosomes compared with producing parental cells. Transfection of LAMA84 with Cy3-labelled miR-126 and co-culture of leukemia cells with endothelial cells (EC) confirmed that miR-126 is shuttled into HUVECs. The treatment of HUVECs with LAMA84 exosomes for 24 hours reduced CXCL12 and VCAM1 expression, both at the mRNA and protein level, and negatively modulated LAMA84 motility and cells adhesion. Transfection in HUVECs of miR-126 inhibitor reversed the decrease of CXCL12 and restored the motility and adhesion of LAMA84 cells while the over-expression of miR-126, showed opposite effects. CONCLUSION Our results show that the miR-126 shuttled by exosomes is biologically active in the target cells, and support the hypothesis that exosomal miRNAs have an important role in tumor-endothelial crosstalk occurring in the bone marrow microenvironment, potentially affecting disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Riccardo Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Sezione di Biologia e Genetica, Università di Palermo, Palermo, Italy.
| |
Collapse
|
45
|
Chen D, Fu LY, Zhang Z, Li G, Zhang H, Jiang L, Harrison AP, Shanahan HP, Klukas C, Zhang HY, Ruan Y, Chen LL, Chen M. Dissecting the chromatin interactome of microRNA genes. Nucleic Acids Res 2014; 42:3028-43. [PMID: 24357409 PMCID: PMC3950692 DOI: 10.1093/nar/gkt1294] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the role of higher-order chromatin structures in transcription of microRNA genes (MIRs) is evolving rapidly. Here we investigate the effect of 3D architecture of chromatin on the transcriptional regulation of MIRs. We demonstrate that MIRs have transcriptional features that are similar to protein-coding genes. RNA polymerase II-associated ChIA-PET data reveal that many groups of MIRs and protein-coding genes are organized into functionally compartmentalized chromatin communities and undergo coordinated expression when their genomic loci are spatially colocated. We observe that MIRs display widespread communication in those transcriptionally active communities. Moreover, miRNA-target interactions are significantly enriched among communities with functional homogeneity while depleted from the same community from which they originated, suggesting MIRs coordinating function-related pathways at posttranscriptional level. Further investigation demonstrates the existence of spatial MIR-MIR chromatin interacting networks. We show that groups of spatially coordinated MIRs are frequently from the same family and involved in the same disease category. The spatial interaction network possesses both common and cell-specific subnetwork modules that result from the spatial organization of chromatin within different cell types. Together, our study unveils an entirely unexplored layer of MIR regulation throughout the human genome that links the spatial coordination of MIRs to their co-expression and function.
Collapse
Affiliation(s)
- Dijun Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Liang-Yu Fu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Zhao Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Guoliang Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Hang Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Li Jiang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Andrew P. Harrison
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Hugh P. Shanahan
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Christian Klukas
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Hong-Yu Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Yijun Ruan
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Ling-Ling Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
46
|
Veerappa AM, N MM, Vishweswaraiah S, Lingaiah K, Suresh RV, Nachappa SA, Prashali N, Yadav SN, Srikanta MA, Manjegowda DS, Seshachalam KB, Ramachandra NB. Copy number variations burden on miRNA genes reveals layers of complexities involved in the regulation of pathways and phenotypic expression. PLoS One 2014; 9:e90391. [PMID: 24587348 PMCID: PMC3938728 DOI: 10.1371/journal.pone.0090391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are involved in post-transcriptional down-regulation of gene expression. Variations in miRNA genes can severely affect downstream-regulated genes and their pathways. However, population-specific burden of CNVs on miRNA genes and the complexities created towards the phenotype is not known. From a total of 44109 CNVs investigated from 1715 individuals across 12 populations using high-throughput arrays, 4007 miRNA-CNVs (∼ 9%) consisting 6542 (∼ 5%) miRNA genes with a total of 333 (∼ 5%) singleton miRNA genes were identified. We found miRNA-CNVs across the genomes of individuals showing multiple hits in many targets, co-regulated under the same pathway. This study proposes four mechanisms unraveling the many complexities in miRNA genes, targets and co-regulated miRNA genes towards establishment of phenotypic diversity.
Collapse
Affiliation(s)
- Avinash M. Veerappa
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Megha Murthy N
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Sangeetha Vishweswaraiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Kusuma Lingaiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Raviraj V. Suresh
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Somanna Ajjamada Nachappa
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Nelchi Prashali
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Sangeetha Nuggehalli Yadav
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Manjula Arsikere Srikanta
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Dinesh S. Manjegowda
- Department of Anatomy, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
- Nitte University Centre for Science Education & Research, K S Hegde Medical Academy, Nitte University, Deralakatte, Mangalore, Karnataka, India
| | | | - Nallur B. Ramachandra
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| |
Collapse
|
47
|
Saraiya AA, Li W, Wu J, Chang CH, Wang CC. The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog 2014; 10:e1003791. [PMID: 24586143 PMCID: PMC3937270 DOI: 10.1371/journal.ppat.1003791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
microRNAs (miRNA) have been detected in the deeply branched protist, Giardia lamblia, and shown to repress expression of the family of variant-specific surface proteins (VSPs), only one of which is expressed in Giardia trophozoite at a given time. Three next-generation sequencing libraries of Giardia Argonaute-associated small RNAs were constructed and analyzed. Analysis of the libraries identified a total of 99 new putative miRNAs with a size primarily in the 26 nt range similar to the size previously predicted by the Giardia Dicer crystal structure and identified by our own studies. Bioinformatic analysis identified multiple putative miRNA target sites in the mRNAs of all 73 VSPs. The effect of miRNA target sites within a defined 3′-region were tested on two vsp mRNAs. All the miRNAs showed partial repression of the corresponding vsp expression and were additive when the targeting sites were separately located. But the combined repression still falls short of 100%. Two other relatively short vsp mRNAs with 15 and 11 putative miRNA target sites identified throughout their ORFs were tested with their corresponding miRNAs. The results indicate that; (1) near 100% repression of vsp mRNA expression can be achieved through the combined action of multiple miRNAs on target sites located throughout the ORF; (2) the miRNA machinery could be instrumental in repressing the expression of vsp genes in Giardia; (3) this is the first time that all the miRNA target sites in the entire ORF of a mRNA have been tested and shown to be functional. Giardia lamblia is a protozoan parasite causing the diarrheal disease giardiasis. Variant-specific surface proteins (VSP) in Giardia are likely involved in its evasion of host immune response. Their expression is regulated by microRNAs (miRNA). To determine the full complement of miRNAs in Giardia, three cDNA libraries of Giardia Argonaute associated small RNAs were constructed and analyzed to identify a total of 105 miRNAs. Bioinformatic target identification showed that 102 of the 105 miRNAs find their putative target sites in vsp mRNAs. When only the target sites within the 3′ region,100 nts upstream of the stop codon, were tested against their corresponding miRNAs, however, only partial repression of VSP expression was observed. When all the miRNA target sites in the open reading frames of vsp mRNAs were examined, however, they all turned out to be functional. A saturation of them with the corresponding miRNAs resulted in a full repression of VSP expression, suggesting that this is the mechanism of miRNA repression of VSP expression in Giardia. The ability of miRNAs to regulate target sites throughout the entire open reading frame also provides the first indication that all the miRNA target sites in an mRNA are functional.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Jesse Wu
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chuan H. Chang
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Braekeleer ED, Douet-Guilbert N, Basinko A, Bris MJL, Morel F, Braekeleer MD. Hox gene dysregulation in acute myeloid leukemia. Future Oncol 2014; 10:475-95. [DOI: 10.2217/fon.13.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT: In humans, class I homeobox genes (HOX genes) are distributed in four clusters. Upstream regulators include transcriptional activators and members of the CDX family of transcription factors. HOX genes encode proteins and need cofactor interactions, to increase their specificity and selectivity. HOX genes contribute to the organization and regulation of hematopoiesis by controlling the balance between proliferation and differentiation. Changes in HOX gene expression can be associated with chromosomal rearrangements generating fusion genes, such as those involving MLL and NUP98, or molecular defects, such as mutations in NPM1 and CEBPA for example. Several miRNAs are involved in the control of HOX gene expression and their expression correlates with HOX gene dysregulation. HOX genes dysregulation is a dominant mechanism of leukemic transformation. A better knowledge of their target genes and the mechanisms by which their dysregulated expression contributes to leukemogenesis could lead to the development of new drugs.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Nathalie Douet-Guilbert
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Audrey Basinko
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Marie-Josée Le Bris
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Frédéric Morel
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Marc De Braekeleer
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| |
Collapse
|
49
|
miR-126 in human cancers: Clinical roles and current perspectives. Exp Mol Pathol 2014; 96:98-107. [DOI: 10.1016/j.yexmp.2013.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
|
50
|
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y, Tu Z, Dai Y. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene 2013; 530:278-86. [DOI: 10.1016/j.gene.2013.07.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023]
|