1
|
Jin Y, Zhang C, Fang X, Fang C, Chen J, Du R, Hu Q, Dong L, Zhu Z, Wang T. SNAP25 protects primary cortical neurons from hypoxic-ischemic injury associated with CREB signal. IBRAIN 2021; 7:1-11. [PMID: 37786874 PMCID: PMC10528992 DOI: 10.1002/j.2769-2795.2021.tb00058.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 10/04/2023]
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) could induce exacerbated changes and unpredictable effects in brain cells, and the mechanism remains unclear. Methods HIE model was established in neonatal rats, Zea-Longa score and TTC staining were used to observe the neurobehavior and brain infarct volume in rats subjected to cerebral hypoxia-ischemia (HI). Primary cortical neurons were then cultured in vitro to establish an oxygen and glucose deprivation model. To determine the role of synaptosomal-associated protein-25 (SNAP25) in HIE, PC12 cells were cultured and effective siRNA fragments were screened, and SNAP25 was transfected into primary neurons. Then, quantitative real-time polymerase chain reaction was used to detect the mRNA expression level and immunofluorescence staining was used to observe the morphological changes of neurons before and after the injury. Finally, the abundance values of SNAP25 and its associated genes were filtered using the NCBI and GeneMANIA, respectively. Results HI leads to a decrease in neuronal number and an increase in SNAP25 expression. Whereas, the interference of SNAP25 caused marked decrease in neuronal number and the length of neurite. Moreover, the expression levels of CREB and SYP were significantly decreased after interference of SNAP25. Conclusion SNAP25 exhibited several neuroprotective effects to neuronal protection in neonatal cerebral HI by regulating CREB and SYP.
Collapse
Affiliation(s)
- Yuan Jin
- Institute of Neuroscience, Kunming Medical UniveristyKunmingYunnanChina
| | - Chao Zhang
- Department of AnesthesiologyGuizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xu Fang
- Department of AnesthesiologyGuizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang‐Le Fang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research CenterDepartment of AnesthesiologyDepartment of Cardiovascular DiseaseAffiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouSichuanChina
| | - Jie Chen
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research CenterDepartment of AnesthesiologyDepartment of Cardiovascular DiseaseAffiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouSichuanChina
| | - Ruo‐Lan Du
- Institute of Neuroscience, Kunming Medical UniveristyKunmingYunnanChina
| | - Qiao Hu
- Institute of Neuroscience, Kunming Medical UniveristyKunmingYunnanChina
| | - Liang Dong
- Department of AnesthesiologyGuizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyGuizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Hua Wang
- Institute of Neuroscience, Kunming Medical UniveristyKunmingYunnanChina
| |
Collapse
|
2
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nat Commun 2019; 10:5448. [PMID: 31784514 PMCID: PMC6884526 DOI: 10.1038/s41467-019-13224-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Amphisomes are organelles of the autophagy pathway that result from the fusion of autophagosomes with late endosomes. While biogenesis of autophagosomes and late endosomes occurs continuously at axon terminals, non-degradative roles of autophagy at boutons are barely described. Here, we show that in neurons BDNF/TrkB traffick in amphisomes that signal locally at presynaptic boutons during retrograde transport to the soma. This is orchestrated by the Rap GTPase-activating (RapGAP) protein SIPA1L2, which connects TrkB amphisomes to a dynein motor. The autophagosomal protein LC3 regulates RapGAP activity of SIPA1L2 and controls retrograde trafficking and local signaling of TrkB. Following induction of presynaptic plasticity, amphisomes dissociate from dynein at boutons enabling local signaling and promoting transmitter release. Accordingly, sipa1l2 knockout mice show impaired BDNF-dependent presynaptic plasticity. Taken together, the data suggest that in hippocampal neurons, TrkB-signaling endosomes are in fact amphisomes that during retrograde transport have local signaling capacity in the context of presynaptic plasticity. There is growing evidence that autophagy might serve specialized functions in neurons besides its role in protein homeostasis. In this study, authors demonstrate that axonal retrograde transport of BDNF/TrkB in neuronal amphisomes is involved in plasticity-relevant local signaling at presynaptic boutons and that SIPA1L2, a member of the SIPA1L family of neuronal RapGAPs, associates via LC3b to TrkB-containing amphisomes to regulate its motility and signaling at the axon terminals
Collapse
|
4
|
Mitsuhashi K, Ito D, Mashima K, Oyama M, Takahashi S, Suzuki N. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies. Sci Rep 2017; 7:16871. [PMID: 29203801 PMCID: PMC5715010 DOI: 10.1038/s41598-017-17209-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Kana Mitsuhashi
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Daisuke Ito
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kyoko Mashima
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Munenori Oyama
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinichi Takahashi
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norihiro Suzuki
- Departments of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y. The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 2017; 24:68. [PMID: 28870220 PMCID: PMC5584049 DOI: 10.1186/s12929-017-0367-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The type VI adenylyl cyclase (AC6) is a main contributor of cAMP production in the heart. The amino acid (aa) sequence of AC6 is highly homologous to that of another major cardiac adenylyl cyclase, AC5, except for its N-terminus (AC6-N, aa 1-86). Activation of AC6, rather than AC5, produces cardioprotective effects against heart failure, while the underlying mechanism remains to be unveiled. Using an AC6-null (AC6-/-) mouse and a knockin mouse with AC6-N deletion (AC6 ΔN/ΔN), we aimed to investigate the cardioprotective mechanism of AC6 in the heart. METHODS Western blot analysis and immunofluorescence staining were performed to determine the intracellular distribution of AC6, AC6-ΔN (a truncated AC6 lacking the first 86 amino acids), and STAT3 activation. Activities of AC6 and AC6-ΔN in the heart were assessed by cAMP assay. Apoptosis of cardiomyocytes were evaluated by the TUNEL assay and a propidium iodine-based survival assay. Fibrosis was examined by collagen staining. RESULTS Immunofluorescence staining revealed that cardiac AC6 was mainly anchored on the sarcolemmal membranes, while AC6-ΔN was redistributed to the sarcoplasmic reticulum. AC6ΔN/ΔN and AC6-/- mice had more apoptotic myocytes and cardiac remodeling than WT mice in experimental models of isoproterenol (ISO)-induced myocardial injury. Adult cardiomyocytes isolated from AC6ΔN/ΔN or AC6-/- mice survived poorly after exposure to ISO, which produced no effect on WT cardiomyocytes under the condition tested. Importantly, ISO treatment induced cardiac STAT3 phosphorylation/activation in WT mice, but not in AC6ΔN/ΔN and AC6-/- mice. Pharmacological blockage of PKA-, Src-, or STAT3- pathway markedly reduced the survival of WT myocytes in the presence of ISO, but did not affect those of AC6ΔN/ΔN and AC6-/- myocytes, suggesting an important role of AC6 in mediating cardioprotective action through the activation of PKA-Src-STAT3-signaling. CONCLUSIONS Collectively, AC6-N controls the anchorage of cardiac AC6 on the sarcolemmal membrane, which enables the coupling of AC6 with the pro-survival PKA-STAT3 pathway. Our findings may facilitate the development of novel therapies for heart failure.
Collapse
Affiliation(s)
- Yu-Shuo Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chien-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chen-Li Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Lin-Ping Lai
- Institute of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsiao
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
6
|
The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling. eNeuro 2017; 4:eN-NWR-0335-16. [PMID: 28317021 PMCID: PMC5356223 DOI: 10.1523/eneuro.0335-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
Membrane trafficking pathways must be exquisitely coordinated at synaptic terminals to maintain functionality, particularly during conditions of high activity. We have generated null mutations in the Drosophila homolog of pallidin, a central subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), to determine its role in synaptic development and physiology. We find that Pallidin localizes to presynaptic microtubules and cytoskeletal structures, and that the stability of Pallidin protein is highly dependent on the BLOC-1 components Dysbindin and Blos1. We demonstrate that the rapidly recycling vesicle pool is not sustained during high synaptic activity in pallidin mutants, leading to accelerated rundown and slowed recovery. Following intense activity, we observe a loss of early endosomes and a concomitant increase in tubular endosomal structures in synapses without Pallidin. Together, our data reveal that Pallidin subserves a key role in promoting efficient synaptic vesicle recycling and re-formation through early endosomes during sustained activity.
Collapse
|
7
|
Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 2016; 54:2189-2200. [PMID: 26941099 DOI: 10.1007/s12035-016-9810-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case-control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Dai
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Guo Chen
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
8
|
Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning. Sci Rep 2016; 6:22529. [PMID: 26932446 PMCID: PMC4773765 DOI: 10.1038/srep22529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023] Open
Abstract
The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca2+ and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6−/− mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus.
Collapse
|
9
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
10
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
11
|
Fenton RA, Murray F, Dominguez Rieg JA, Tang T, Levi M, Rieg T. Renal phosphate wasting in the absence of adenylyl cyclase 6. J Am Soc Nephrol 2014; 25:2822-34. [PMID: 24854272 PMCID: PMC4243352 DOI: 10.1681/asn.2013101102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/31/2014] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) enhance phosphate excretion by the proximal tubule of the kidney by retrieval of the sodium-dependent phosphate transporters (Npt2a and Npt2c) from the apical plasma membrane. PTH activates adenylyl cyclase (AC) through PTH 1 receptors and stimulates the cAMP/PKA signaling pathway. However, the precise role and isoform(s) of AC in phosphate homeostasis are not known. We report here that mice lacking AC6 (AC6(-/-)) have increased plasma PTH and FGF-23 levels compared with wild-type (WT) mice but comparable plasma phosphate concentrations. Acute activation of the calcium-sensing receptor or feeding a zero phosphate diet almost completely suppressed plasma PTH levels in both AC6(-/-) and WT mice, indicating a secondary cause for hyperparathyroidism. Pharmacologic blockade of FGF receptors resulted in a comparable increase in plasma phosphate between genotypes, whereas urinary phosphate remained significantly higher in AC6(-/-) mice. Compared with WT mice, AC6(-/-) mice had reduced renal Npt2a and Npt2c protein abundance, with approximately 80% of Npt2a residing in lysosomes. WT mice responded to exogenous PTH with redistribution of Npt2a from proximal tubule microvilli to intracellular compartments and lysosomes alongside a PTH-induced dose-response relationship for fractional phosphate excretion and urinary cAMP excretion. These responses were absent in AC6(-/-) mice. In conclusion, AC6 in the proximal tubule modulates cAMP formation, Npt2a trafficking, and urinary phosphate excretion, which are highlighted by renal phosphate wasting in AC6(-/-) mice.
Collapse
Affiliation(s)
- Robert A Fenton
- Interactions of Proteins in Epithelial Transport Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fiona Murray
- Department of Medicine, University of California San Diego, La Jolla, California
| | | | - Tong Tang
- Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Moshe Levi
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
12
|
Abstract
Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.
Collapse
|
13
|
Tsai LH, Gräff J. On the resilience of remote traumatic memories against exposure therapy-mediated attenuation. EMBO Rep 2014; 15:853-61. [PMID: 25027989 DOI: 10.15252/embr.201438913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How to attenuate traumatic memories has long been the focus of intensive research efforts, as traumatic memories are extremely persistent and heavily impinge on the quality of life. Despite the fact that traumatic memories are often not readily amenable to immediate intervention, surprisingly few studies have investigated treatment options for remote traumata in animal models. The few that have unanimously concluded that exposure therapy-based approaches, the most successful behavioral intervention for the attenuation of recent forms of traumata in humans, fail to effectively reduce remote fear memories. Here, we provide an overview of these animal studies with an emphasis on why remote traumatic memories might be refractory to behavioral interventions: A lack of neuroplasticity in brain areas relevant for learning and memory emerges as a common denominator of such resilience. We then outline the findings of a recent study in mice showing that by combining exposure therapy-like approaches with small molecule inhibitors of histone deacetylases (HDACis), even remote memories can be persistently attenuated. This pharmacological intervention reinstated neuroplasticity to levels comparable to those found upon successful attenuation of recent memories. Thus, HDACis-or any other agent capable of heightening neuroplasticity-in conjunction with exposure therapy-based treatments might constitute a promising approach to overcome remote traumata.
Collapse
Affiliation(s)
- Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Gräff
- Brain Mind Institute, School of Life Sciences Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 2014; 156:261-76. [PMID: 24439381 DOI: 10.1016/j.cell.2013.12.020] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 12/23/2013] [Indexed: 01/19/2023]
Abstract
Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.
Collapse
|
15
|
Wang W, Wang F, Liu J, Zhao W, Zhao Q, He M, Qian BJ, Xu Y, Liu R, Liu SJ, Liu W, Liu J, Zhou XF, Wang TH. SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 2014; 50:290-304. [PMID: 24519330 DOI: 10.1007/s12035-014-8642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 02/05/2023]
Abstract
Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Institute of Neurological Disease, Translation Neuroscience Center, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chien CL, Lin MS, Lai HL, Wu YS, Chang CP, Chen HM, Chang C, Su CK, Chern Y. Lack of type VI adenylyl cyclase (AC6) leads to abnormal sympathetic tone in neonatal mice. Exp Neurol 2013; 248:10-5. [DOI: 10.1016/j.expneurol.2013.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 02/07/2023]
|
17
|
LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med 2013; 45:e36. [PMID: 23949442 PMCID: PMC3789260 DOI: 10.1038/emm.2013.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 01/17/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Collapse
|
18
|
Lin YS, Cheng TH, Chang CP, Chen HM, Chern Y. Enhancement of brain-type creatine kinase activity ameliorates neuronal deficits in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:742-53. [DOI: 10.1016/j.bbadis.2013.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
|