1
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Sun R, Fisher RP. The CDK9-SPT5 Axis in Control of Transcription Elongation by RNAPII. J Mol Biol 2025; 437:168746. [PMID: 39147127 PMCID: PMC11649480 DOI: 10.1016/j.jmb.2024.168746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.
Collapse
Affiliation(s)
- Rui Sun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| |
Collapse
|
3
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Harteveld CL, Achour A, Fairuz Mohd Hasan NF, Legebeke J, Arkesteijn SJG, ter Huurne J, Verschuren M, Bhagwandien-Bisoen S, Schaap R, Vijfhuizen L, el Idrissi H, Babbs C, Higgs DR, Koopmann TT, Vrettou C, Traeger-Synodinos J, Baas F. Loss-of-Function Variants in SUPT5H as Modifying Factors in Beta-Thalassemia. Int J Mol Sci 2024; 25:8928. [PMID: 39201615 PMCID: PMC11354595 DOI: 10.3390/ijms25168928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
It is well known that modifiers play a role in ameliorating or exacerbating disease phenotypes in patients and carriers of recessively inherited disorders such as sickle cell disease and thalassemia. Here, we give an overview of the literature concerning a recently described association in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers and patients.
Collapse
Affiliation(s)
- Cornelis L. Harteveld
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Ahlem Achour
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 3000, Tunisia
| | - Nik Fatma Fairuz Mohd Hasan
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
- Department of Pathology, Hospital Raja Perempuan Zainab II, Kota Bharu 15400, Malaysia
| | - Jelmer Legebeke
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Sandra J. G. Arkesteijn
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Jeanet ter Huurne
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Maaike Verschuren
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Sharda Bhagwandien-Bisoen
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Rianne Schaap
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Linda Vijfhuizen
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Hakima el Idrissi
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Christian Babbs
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Douglas R. Higgs
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Tamara T. Koopmann
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 115 27 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 115 27 Athens, Greece
| | - Frank Baas
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
5
|
Zuber PK, Said N, Hilal T, Wang B, Loll B, González-Higueras J, Ramírez-Sarmiento CA, Belogurov GA, Artsimovitch I, Wahl MC, Knauer SH. Concerted transformation of a hyper-paused transcription complex and its reinforcing protein. Nat Commun 2024; 15:3040. [PMID: 38589445 PMCID: PMC11001881 DOI: 10.1038/s41467-024-47368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a β-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.
Collapse
Affiliation(s)
- Philipp K Zuber
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nelly Said
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| | - Stefan H Knauer
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany.
- Bristol-Myers Squibb GmbH & Co. KGaA, Munich, Germany.
| |
Collapse
|
6
|
Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Comput Struct Biotechnol J 2022; 20:5824-5837. [PMID: 36382197 PMCID: PMC9630627 DOI: 10.1016/j.csbj.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
7
|
Fong N, Sheridan RM, Ramachandran S, Bentley DL. The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model. Mol Cell 2022; 82:3632-3645.e4. [PMID: 36206739 PMCID: PMC9555879 DOI: 10.1016/j.molcel.2022.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/24/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
The pause-release model of transcription proposes that 40-100 bases from the start site RNA Pol II pauses, followed by release into productive elongation. Pause release is facilitated by the PTEFb phosphorylation of the RNA Pol II elongation factor, Spt5. We mapped paused polymerases by eNET-seq and found frequent pausing in zones that extend ∼0.3-3 kb into genes even when PTEFb is inhibited. The fraction of paused polymerases or pausing propensity declines gradually over several kb and not abruptly as predicted for a discrete pause-release event. Spt5 depletion extends pausing zones, suggesting that it promotes the maturation of elongation complexes to a low-pausing state. The expression of mutants after Spt5 depletion showed that phosphomimetic substitutions in the CTR1 domain diminished pausing throughout genes. By contrast, mutants that prevent the phosphorylation of the Spt5 RNA-binding domain strengthened pausing. Thus, distinct Spt5 phospho-isoforms set the balance between pausing and elongation.
Collapse
Affiliation(s)
- Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Srinivas Ramachandran
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Abstract
Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yelizaveta Mochalova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
9
|
Song A, Chen FX. The pleiotropic roles of SPT5 in transcription. Transcription 2022; 13:53-69. [PMID: 35876486 PMCID: PMC9467590 DOI: 10.1080/21541264.2022.2103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Collapse
Affiliation(s)
- Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| |
Collapse
|
10
|
A BRD4-mediated elongation control point primes transcribing RNA polymerase II for 3'-processing and termination. Mol Cell 2021; 81:3589-3603.e13. [PMID: 34324863 DOI: 10.1016/j.molcel.2021.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.
Collapse
|
11
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
12
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
13
|
Krasnopolsky S, Novikov A, Kuzmina A, Taube R. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194656. [PMID: 33333262 DOI: 10.1016/j.bbagrm.2020.194656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
Pivotal studies on the control of HIV transcription has laid the foundations for our understanding of how metazoan transcription is executed, and what are the factors that control this step. Part of this work established a role for DRB Sensitivity Inducing Factor (DSIF), consisting of Spt4 and Spt5, in promoting pause-release of RNA Polymerase II (Pol II) for optimal elongation. However, while there has been substantial progress in understanding the role of DSIF in mediating HIV gene transcription, its involvement in establishing viral latency has not been explored. Moreover, the effects of depleting Spt4 or Spt5, or simultaneously knocking down both subunits of DSIF have not been examined. In this study, we employed CRISPR interference (CRIPSRi) to knockdown the expression of Spt4, Spt5 or the entire DSIF complex, and monitored effects on HIV transcription and viral latency. Knocking down DSIF, or each of its subunits, inhibited HIV transcription, primarily at the step of Tat transactivation. This was accompanied by a decrease in promoter occupancy of Pol II and Cdk9, and to a lesser extent, AFF4. Interestingly, targeting the expression of one subunit of DSIF, reduced the protein stability of its counterpart partner. Moreover, depletion of Spt4, Spt5 or DSIF complex impaired cell growth, but did not cause cell death. Finally, knockdown of Spt4, Spt5 or DSIF, facilitated entry of HIV into latency. We conclude that each DSIF subunit plays a role in maintaining the stability of its other partner, achieving optimal function of the DSIF to enhance viral gene transcription.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alex Novikov
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
14
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
15
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
17
|
Spt5 Phosphorylation and the Rtf1 Plus3 Domain Promote Rtf1 Function through Distinct Mechanisms. Mol Cell Biol 2020; 40:MCB.00150-20. [PMID: 32366382 DOI: 10.1128/mcb.00150-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Rtf1 is a conserved RNA polymerase II (RNAPII) elongation factor that promotes cotranscriptional histone modification, RNAPII transcript elongation, and mRNA processing. Rtf1 function requires the phosphorylation of Spt5, an essential RNAPII processivity factor. Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), the catalytic component of positive transcription elongation factor b (P-TEFb). Rtf1 recognizes phosphorylated Spt5 (pSpt5) through its Plus3 domain. Since Spt5 is a unique target of Cdk9 and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. Here, we dissect Rtf1 regulation by pSpt5 in the fission yeast Schizosaccharomyces pombe We demonstrate that the Plus3 domain of Rtf1 (Prf1 in S. pombe) and pSpt5 are functionally distinct and that they act in parallel to promote Prf1 function. This alternate Plus3 domain function involves an interface that overlaps the pSpt5-binding site and that can interact with single-stranded nucleic acid or with the polymerase-associated factor (PAF) complex in vitro We further show that the C-terminal region of Prf1, which also interacts with PAF, has a similar parallel function with pSpt5. Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation.
Collapse
|
18
|
Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1. Cell Rep 2020; 26:1919-1933.e5. [PMID: 30759400 PMCID: PMC7236606 DOI: 10.1016/j.celrep.2019.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
The yeast protein Ipa1 was recently discovered to interact with the Ysh1
endonuclease of the prem-RNA cleavage and polyadenylation (C/P) machinery, and
Ipa1 mutation impairs 3′end processing. We report that Ipa1 globally
promotes proper transcription termination and poly(A) site selection, but with
variable effects on genes depending upon the specific configurations of
polyadenylation signals. Our findings suggest that the role of Ipa1 in
termination is mediated through interaction with Ysh1, since Ipa1 mutation leads
to decrease in Ysh1 and poor recruitment of the C/P complex to a transcribed
gene. The Ipa1 association with transcriptionally active chromatin resembles
that of elongation factors, and the mutant shows defective Pol II elongation
kinetics in vivo. Ysh1 overexpression in the Ipa1 mutant
rescues the termination defect, but not the mutant’s sensitivity to
6-azauracil, an indicator of defective elongation. Our findings support a model
in which an Ipa1/Ysh1 complex helps coordinate transcription elongation and
3′ end processing. The essential, uncharacterized Ipa1 protein was recently discovered to
interact with the Ysh1 endonuclease of the pre-mRNA cleavage and polyadenylation
machinery. Pearson et al. propose that the Ipa1/Ysh1 interaction provides the
cell with a means to coordinate and regulate transcription elongation with
3′ end processing in accordance with the cell’s needs.
Collapse
|
19
|
Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism. Mol Cell 2019; 76:896-908.e4. [PMID: 31677974 DOI: 10.1016/j.molcel.2019.09.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Control of transcription speed, which influences many co-transcriptional processes, is poorly understood. We report that PNUTS-PP1 phosphatase is a negative regulator of RNA polymerase II (Pol II) elongation rate. The PNUTS W401A mutation, which disrupts PP1 binding, causes genome-wide acceleration of transcription associated with hyper-phosphorylation of the Spt5 elongation factor. Immediately downstream of poly(A) sites, Pol II decelerates from >2 kb/min to <1 kb/min, which correlates with Spt5 dephosphorylation. Pol II deceleration and Spt5 dephosphorylation require poly(A) site recognition and the PNUTS-PP1 complex, which is in turn necessary for transcription termination. These results lead to a model for termination, the "sitting duck torpedo" mechanism, where poly(A) site-dependent deceleration caused by PNUTS-PP1 and Spt5 dephosphorylation is required to convert Pol II into a viable target for the Xrn2 terminator exonuclease. Spt5 and its bacterial homolog NusG therefore have related functions controlling kinetic competition between RNA polymerases and the termination factors that pursue them.
Collapse
|
20
|
Lidschreiber M, Easter AD, Battaglia S, Rodríguez-Molina JB, Casañal A, Carminati M, Baejen C, Grzechnik P, Maier KC, Cramer P, Passmore LA. The APT complex is involved in non-coding RNA transcription and is distinct from CPF. Nucleic Acids Res 2019; 46:11528-11538. [PMID: 30247719 PMCID: PMC6265451 DOI: 10.1093/nar/gky845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Abstract
The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs.
Collapse
Affiliation(s)
- Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | | | - Sofia Battaglia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Carlo Baejen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pawel Grzechnik
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | | |
Collapse
|
21
|
Schäfer P, Tüting C, Schönemann L, Kühn U, Treiber T, Treiber N, Ihling C, Graber A, Keller W, Meister G, Sinz A, Wahle E. Reconstitution of mammalian cleavage factor II involved in 3' processing of mRNA precursors. RNA (NEW YORK, N.Y.) 2018; 24:1721-1737. [PMID: 30139799 PMCID: PMC6239180 DOI: 10.1261/rna.068056.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.
Collapse
Affiliation(s)
- Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Lars Schönemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Graber
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
22
|
Zuber PK, Hahn L, Reinl A, Schweimer K, Knauer SH, Gottesman ME, Rösch P, Wöhrl BM. Structure and nucleic acid binding properties of KOW domains 4 and 6-7 of human transcription elongation factor DSIF. Sci Rep 2018; 8:11660. [PMID: 30076330 PMCID: PMC6076269 DOI: 10.1038/s41598-018-30042-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022] Open
Abstract
The human transcription elongation factor DSIF is highly conserved throughout all kingdoms of life and plays multiple roles during transcription. DSIF is a heterodimer, consisting of Spt4 and Spt5 that interacts with RNA polymerase II (RNAP II). DSIF binds to the elongation complex and induces promoter-proximal pausing of RNAP II. Human Spt5 consists of a NusG N-terminal (NGN) domain motif, which is followed by several KOW domains. We determined the solution structures of the human Spt5 KOW4 and the C-terminal domain by nuclear magnetic resonance spectroscopy. In addition to the typical KOW fold, the solution structure of KOW4 revealed an N-terminal four-stranded β-sheet, previously designated as the KOW3-KOW4 linker. In solution, the C-terminus of Spt5 consists of two β-barrel folds typical for KOW domains, designated KOW6 and KOW7. We also analysed the nucleic acid and RNAP II binding properties of the KOW domains. KOW4 variants interacted with nucleic acids, preferentially single stranded RNA, whereas no nucleic acid binding could be detected for KOW6-7. Weak binding of KOW4 to the RNAP II stalk, which is comprised of Rpb4/7, was also detected, consistent with transient interactions between Spt5 and these RNAP II subunits.
Collapse
Affiliation(s)
- Philipp K Zuber
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany
| | - Lukas Hahn
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany
| | - Anne Reinl
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany
| | - Kristian Schweimer
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany
| | - Stefan H Knauer
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany.
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Paul Rösch
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany.,Forschungszentrum für Bio-Makromoleküle, Universitätsstr. 30, D-95447, Bayreuth, Germany
| | - Birgitta M Wöhrl
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr. 30, D-95447, Bayreuth, Germany.
| |
Collapse
|
23
|
Ehara H, Sekine SI. Architecture of the RNA polymerase II elongation complex: new insights into Spt4/5 and Elf1. Transcription 2018; 9:286-291. [PMID: 29624124 PMCID: PMC6150629 DOI: 10.1080/21541264.2018.1454817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transcription by RNA polymerase II (Pol II) is accomplished with the aid of numerous accessory factors specific to each transcriptional stage. The structure of the Pol II elongation complex (EC) bound with Spt4/5, Elf1, and TFIIS unveiled the sophisticated basal EC architecture essential for transcription elongation and other transcription-related events.
Collapse
Affiliation(s)
- Haruhiko Ehara
- a RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama 230-0045 , Japan
| | - Shun-Ichi Sekine
- a RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama 230-0045 , Japan
| |
Collapse
|
24
|
Fitz J, Neumann T, Pavri R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J 2018. [PMID: 29514850 PMCID: PMC5897773 DOI: 10.15252/embj.201797965] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spt5 is a highly conserved RNA polymerase II (Pol II)‐associated pausing and elongation factor. However, its impact on global elongation and Pol II processivity in mammalian cells has not been clarified. Here, we show that depleting Spt5 in mouse embryonic fibroblasts (MEFs) does not cause global elongation defects or decreased elongation rates. Instead, in Spt5‐depleted cells, a fraction of Pol II molecules are dislodged during elongation, thus decreasing the number of Pol II complexes that complete the transcription cycle. Most strikingly, this decrease is restricted to a narrow window between 15 and 20 kb from the promoter, a distance which coincides with the stage where accelerating Pol II attains maximum elongation speed. Consequently, long genes show a greater dependency on Spt5 for optimal elongation efficiency and overall gene expression than short genes. We propose that an important role of Spt5 in mammalian elongation is to promote the processivity of those Pol II complexes that are transitioning toward maximum elongation speed 15–20 kb from the promoter.
Collapse
Affiliation(s)
- Johanna Fitz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
25
|
Opitz N, Schmitt K, Hofer-Pretz V, Neumann B, Krebber H, Braus GH, Valerius O. Capturing the Asc1p/ Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Mol Cell Proteomics 2017; 16:2199-2218. [PMID: 28982715 DOI: 10.1074/mcp.m116.066654] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
The Asc1 protein of Saccharomyces cerevisiae is a scaffold protein at the head region of ribosomal 40S that links mRNA translation to cellular signaling. In this study, proteins that colocalize with Asc1p were identified with proximity-dependent Biotin IDentification (BioID), an in vivo labeling technique described here for the first time for yeast. Biotinylated Asc1p-birA*-proximal proteins were identified and quantitatively verified against controls applying SILAC and mass spectrometry. The mRNA-binding proteins Sro9p and Gis2p appeared together with Scp160p, each providing ribosomes with nuclear transcripts. The cap-binding protein eIF4E (Cdc33p) and the eIF3/a-subunit (Rpg1p) were identified reflecting the encounter of proteins involved in the initiation of mRNA translation at the head region of ribosomal 40S. Unexpectedly, a protein involved in ribosome preservation (the clamping factor Stm1p), the deubiquitylation complex Ubp3p-Bre5p, the RNA polymerase II degradation factor 1 (Def1p), and transcription factors (Spt5p, Mbf1p) colocalize with Asc1p in exponentially growing cells. For Asc1R38D, K40Ep, a variant considered to be deficient in binding to ribosomes, BioID revealed its predominant ribosome localization. Glucose depletion replaced most of the Asc1p colocalizing proteins for additional ribosomal proteins, suggesting a ribosome aggregation process during early nutrient limitation, possibly concomitant with ribosomal subunit clamping. Overall, the characterization of the Asc1p microenvironment with BioID confirmed and substantiated our recent findings that the β-propeller broadly contributes to signal transduction influencing phosphorylation of colocalizing proteins (e.g. of Bre5p), and by that might affect nuclear gene transcription and the fate of ribosomes.
Collapse
Affiliation(s)
- Nadine Opitz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Verena Hofer-Pretz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Bettina Neumann
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Heike Krebber
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gerhard H Braus
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
26
|
Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat Struct Mol Biol 2017; 24:809-815. [PMID: 28892040 DOI: 10.1038/nsmb.3465] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
During transcription, RNA polymerase II (Pol II) associates with the conserved elongation factor DSIF. DSIF renders the elongation complex stable and functions during Pol II pausing and RNA processing. We combined cryo-EM and X-ray crystallography to determine the structure of the mammalian Pol II-DSIF elongation complex at a nominal resolution of 3.4 Å. Human DSIF has a modular structure with two domains forming a DNA clamp, two domains forming an RNA clamp, and one domain buttressing the RNA clamp. The clamps maintain the transcription bubble, position upstream DNA, and retain the RNA transcript in the exit tunnel. The mobile C-terminal region of DSIF is located near exiting RNA, where it can recruit factors for RNA processing. The structure provides insight into the roles of DSIF during mRNA synthesis.
Collapse
|
27
|
Abstract
Sub1 was initially identified as a coactivator factor with a role during transcription initiation. However, over the last years, many evidences showed that it influences processes downstream during mRNA biogenesis, such as elongation, termination, and RNAPII phosphorylation. The recent discover that Sub1 directly interacts with the RNAPII stalk adds new insights into how it achieves all these tasks.
Collapse
Affiliation(s)
- Olga Calvo
- a Instituto de Biología Funcional y Genómica (CSIC) , Salamanca , Spain
| |
Collapse
|
28
|
Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, Sekine SI. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 2017; 357:921-924. [PMID: 28775211 DOI: 10.1126/science.aan8552] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
In the early stage of transcription, eukaryotic RNA polymerase II (Pol II) exchanges initiation factors with elongation factors to form an elongation complex for processive transcription. Here we report the structure of the Pol II elongation complex bound with the basal elongation factors Spt4/5, Elf1, and TFIIS. Spt4/5 (the Spt4/Spt5 complex) and Elf1 modify a wide area of the Pol II surface. Elf1 bridges the Pol II central cleft, completing a "DNA entry tunnel" for downstream DNA. Spt4 and the Spt5 NGN and KOW1 domains encircle the upstream DNA, constituting a "DNA exit tunnel." The Spt5 KOW4 and KOW5 domains augment the "RNA exit tunnel," directing the exiting nascent RNA. Thus, the elongation complex establishes a completely different transcription and regulation platform from that of the initiation complexes.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideki Shigematsu
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
29
|
Zhao Z, Tang KW, Muylaert I, Samuelsson T, Elias P. CDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes. J Biol Chem 2017; 292:15489-15500. [PMID: 28743741 PMCID: PMC5602406 DOI: 10.1074/jbc.m117.806000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/02/2022] Open
Abstract
DNA replication greatly enhances expression of the herpes simplex virus 1 (HSV-1) γ2 late genes by still unknown mechanisms. Here, we demonstrate that 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), an inhibitor of CDK9, suppresses expression of γ2 late genes with an IC50 of 5 μm, which is at least 10 times lower than the IC50 value required for inhibition of expression of early genes. The effect of DRB could not be explained by inhibition of DNA replication per se or loading of RNA polymerase II to late promoters and subsequent reduction of transcription. Instead, DRB reduces accumulation of γ2 late mRNA in the cytoplasm. In addition, we show that siRNA-mediated knockdown of the transcription factor SPT5, but not NELF-E, also gives rise to a specific inhibition of HSV-1 late gene expression. Finally, addition of DRB reduces co-immunoprecipitation of ICP27 using an anti-SPT5 antibody. Our results suggest that efficient expression of replication-dependent γ2 late genes is, at least in part, regulated by CDK9 dependent co- and/or post-transcriptional events involving SPT5 and ICP27.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Ka-Wei Tang
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Isabella Muylaert
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Tore Samuelsson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Per Elias
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
30
|
Sub1/PC4, a multifaceted factor: from transcription to genome stability. Curr Genet 2017; 63:1023-1035. [DOI: 10.1007/s00294-017-0715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
31
|
Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Mol Cell 2017; 66:77-88.e5. [PMID: 28366642 DOI: 10.1016/j.molcel.2017.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.
Collapse
Affiliation(s)
- Ameet Shetty
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott P Kallgren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Carina Demel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Baejen C, Andreani J, Torkler P, Battaglia S, Schwalb B, Lidschreiber M, Maier KC, Boltendahl A, Rus P, Esslinger S, Söding J, Cramer P. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes. Mol Cell 2017; 66:38-49.e6. [PMID: 28318822 DOI: 10.1016/j.molcel.2017.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.
Collapse
Affiliation(s)
- Carlo Baejen
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jessica Andreani
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Phillipp Torkler
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sofia Battaglia
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bjoern Schwalb
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | - Kerstin C Maier
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrea Boltendahl
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stephanie Esslinger
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Johannes Söding
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
34
|
Qiu Y, Gilmour DS. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing. J Biol Chem 2017; 292:5555-5570. [PMID: 28213523 DOI: 10.1074/jbc.m116.760751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
DRB sensitivity-inducing factor (DSIF or Spt4/5) is a conserved transcription elongation factor that both inhibits and stimulates transcription elongation in metazoans. In Drosophila and vertebrates, DSIF together with negative elongation factor (NELF) associates with RNA polymerase II during early elongation and causes RNA polymerase II to pause in the promoter-proximal region of genes. The mechanism of how DSIF establishes pausing is not known. We constructed Spt5 mutant forms of DSIF and tested their capacity to restore promoter-proximal pausing to DSIF-depleted Drosophila nuclear extracts. The C-terminal repeat region of Spt5, which has been implicated in both inhibition and stimulation of elongation, is dispensable for promoter-proximal pausing. A region encompassing KOW4 and KOW5 of Spt5 is essential for pausing, and mutations in KOW5 specifically shift the location of the pause. RNA cross-linking analysis reveals that KOW5 directly contacts the nascent transcript, and deletion of KOW5 disrupts this interaction. Our results suggest that KOW5 is involved in promoter-proximal pausing through contact with the nascent RNA.
Collapse
Affiliation(s)
- Yijun Qiu
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David S Gilmour
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
35
|
Blair LP, Liu Z, Labitigan RLD, Wu L, Zheng D, Xia Z, Pearson EL, Nazeer FI, Cao J, Lang SM, Rines RJ, Mackintosh SG, Moore CL, Li W, Tian B, Tackett AJ, Yan Q. KDM5 lysine demethylases are involved in maintenance of 3'UTR length. SCIENCE ADVANCES 2016; 2:e1501662. [PMID: 28138513 PMCID: PMC5262454 DOI: 10.1126/sciadv.1501662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The complexity by which cells regulate gene and protein expression is multifaceted and intricate. Regulation of 3' untranslated region (UTR) processing of mRNA has been shown to play a critical role in development and disease. However, the process by which cells select alternative mRNA forms is not well understood. We discovered that the Saccharomyces cerevisiae lysine demethylase, Jhd2 (also known as KDM5), recruits 3'UTR processing machinery and promotes alteration of 3'UTR length for some genes in a demethylase-dependent manner. Interaction of Jhd2 with both chromatin and RNA suggests that Jhd2 affects selection of polyadenylation sites through a transcription-coupled mechanism. Furthermore, its mammalian homolog KDM5B (also known as JARID1B or PLU1), but not KDM5A (also known as JARID1A or RBP2), promotes shortening of CCND1 transcript in breast cancer cells. Consistent with these results, KDM5B expression correlates with shortened CCND1 in human breast tumor tissues. In contrast, both KDM5A and KDM5B are involved in the lengthening of DICER1. Our findings suggest both a novel role for this family of demethylases and a novel targetable mechanism for 3'UTR processing.
Collapse
Affiliation(s)
- Lauren P. Blair
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Zheng Xia
- Division of Biostatistics, Dan L Duncan Comprehensive Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica L. Pearson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Fathima I. Nazeer
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rachel J. Rines
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72032, USA
| | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Comprehensive Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72032, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
37
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
38
|
Mbogning J, Pagé V, Burston J, Schwenger E, Fisher RP, Schwer B, Shuman S, Tanny JC. Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification. Nucleic Acids Res 2015; 43:9766-75. [PMID: 26275777 PMCID: PMC4787787 DOI: 10.1093/nar/gkv837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/09/2015] [Indexed: 12/11/2022] Open
Abstract
Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD ‘code’ for co-transcriptional histone modifications.
Collapse
Affiliation(s)
- Jean Mbogning
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Jillian Burston
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emily Schwenger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
39
|
Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Mol Cell Biol 2015. [PMID: 26217010 DOI: 10.1128/mcb.00520-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation.
Collapse
|
40
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
41
|
NandyMazumdar M, Artsimovitch I. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms. Bioessays 2015; 37:324-34. [PMID: 25640595 DOI: 10.1002/bies.201400177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular cues and establish communications with co-transcriptional RNA processing. Transcription regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also interacts with non-homologous initiation factors in all domains of life, and reach across the DNA channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene expression by competing with each other and other regulators for binding to the clamp helices and by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. This surprisingly diverse range of activities and the underlying unprecedented structural changes make studies of these "transformer" proteins both challenging and rewarding.
Collapse
Affiliation(s)
- Monali NandyMazumdar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
42
|
Abstract
Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function.
Collapse
Affiliation(s)
- Jason C Tanny
- a Department of Pharmacology and Therapeutics ; McGill University ; Montreal , Canada
| |
Collapse
|
43
|
Huang Y, Yao X, Wang G. 'Mediator-ing' messenger RNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:257-69. [PMID: 25515410 DOI: 10.1002/wrna.1273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Abstract
Pre-messenger RNA (mRNA) processing, generally including capping, mRNA splicing, and cleavage-polyadenylation, is physically and functionally associated with transcription. The reciprocal coupling between transcription and mRNA processing ensures the efficient and regulated gene expression and editing. Multiple transcription factors/cofactors and mRNA processing factors are involved in the coupling process. This review focuses on several classic examples and recent advances that enlarge our understanding of how the transcriptional factors or cofactors, especially the Mediator complex, contribute to the RNA Pol II elongation, mRNA splicing, and polyadenylation.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
44
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
45
|
Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P. Transcriptome Maps of mRNP Biogenesis Factors Define Pre-mRNA Recognition. Mol Cell 2014; 55:745-57. [DOI: 10.1016/j.molcel.2014.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022]
|
46
|
Laishram RS. Poly(A) polymerase (PAP) diversity in gene expression--star-PAP vs canonical PAP. FEBS Lett 2014; 588:2185-97. [PMID: 24873880 PMCID: PMC6309179 DOI: 10.1016/j.febslet.2014.05.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023]
Abstract
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3'-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
47
|
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 2014; 21:175-179. [PMID: 24413056 PMCID: PMC3917824 DOI: 10.1038/nsmb.2753] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation.
Collapse
Affiliation(s)
- Amelie Schreieck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashley D Easter
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stefanie Etzold
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Wiederhold
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michael Lidschreiber
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
48
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
49
|
Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 2013; 42:870-81. [PMID: 24163256 PMCID: PMC3902893 DOI: 10.1093/nar/gkt1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II is sequentially modified for recruitment of numerous accessory factors during transcription. One such factor is Spt6, which couples transcription elongation with histone chaperone activity and the regulation of H3 lysine 36 methylation. Here, we show that CTD association of Spt6 is required for Ser2 CTD phosphorylation and for the protein stability of Ctk1 (the major Ser2 CTD kinase). We also find that Spt6 associates with Ctk1, and, unexpectedly, Ctk1 and Ser2 CTD phosphorylation are required for the stability of Spt6-thus revealing a Spt6-Ctk1 feed-forward loop that robustly maintains Ser2 phosphorylation during transcription. In addition, we find that the BUR kinase and the polymerase associated factor transcription complex function upstream of the Spt6-Ctk1 loop, most likely by recruiting Spt6 to the CTD at the onset of transcription. Consistent with requirement of Spt6 in histone gene expression and nucleosome deposition, mutation or deletion of members of the Spt6-Ctk1 loop leads to global loss of histone H3 and sensitivity to hydroxyurea. In sum, these results elucidate a new control mechanism for the regulation of RNAPII CTD phosphorylation during transcription elongation that is likely to be highly conserved.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
50
|
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 2013; 110:17290-5. [PMID: 24101474 DOI: 10.1073/pnas.1314754110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.
Collapse
|