1
|
Chiba Y, Doi T, Obayashi K, Sumida K, Nagasaka S, Wang KY, Yamasaki K, Masago K, Matsushita H, Kuroda H, Yatera K, Endo M. Caspase-4 promotes metastasis and interferon-γ-induced pyroptosis in lung adenocarcinoma. Commun Biol 2024; 7:699. [PMID: 38849594 PMCID: PMC11161495 DOI: 10.1038/s42003-024-06402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Caspase-4 (CASP4) is a member of the inflammatory caspase subfamily and promotes inflammation. Here, we report that CASP4 in lung adenocarcinoma cells contributes to both tumor progression via angiogenesis and tumor hyperkinesis and tumor cell killing in response to high interferon (IFN)-γ levels. We observe that elevated CASP4 expression in the primary tumor is associated with cancer progression in patients with lung adenocarcinoma. Further, CASP4 knockout attenuates tumor angiogenesis and metastasis in subcutaneous tumor mouse models. CASP4 enhances the expression of genes associated with angiogenesis and cell migration in lung adenocarcinoma cell lines through nuclear factor kappa-light chain-enhancer of activated B cell signaling without stimulation by lipopolysaccharide or tumor necrosis factor. CASP4 is induced by endoplasmic reticulum stress or IFN-γ via signal transducer and activator of transcription 1. Most notably, lung adenocarcinoma cells with high CASP4 expression are more prone to IFN-γ-induced pyroptosis than those with low CASP4 expression. Our findings indicate that the CASP4 level in primary lung adenocarcinoma can predict metastasis and responsiveness to high-dose IFN-γ therapy due to cancer cell pyroptosis.
Collapse
Affiliation(s)
- Yosuke Chiba
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kazuhiro Sumida
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Surgery, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| |
Collapse
|
2
|
Sumida K, Doi T, Obayashi K, Chiba Y, Nagasaka S, Ogino N, Miyagawa K, Baba R, Morimoto H, Hara H, Terabayashi T, Ishizaki T, Harada M, Endo M. Caspase-4 has a role in cell division in epithelial cells through actin depolymerization. Biochem Biophys Res Commun 2024; 695:149394. [PMID: 38157629 DOI: 10.1016/j.bbrc.2023.149394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.
Collapse
Affiliation(s)
- Kazuhiro Sumida
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yosuke Chiba
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Hara
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
3
|
Li T, Liu N, Zhang G, Chen M. CASP4 and CASP8 as newly defined autophagy-pyroptosis-related genes associated with clinical and prognostic features of renal cell carcinoma. J Cancer Res Ther 2022; 18:1952-1960. [PMID: 36647955 DOI: 10.4103/jcrt.jcrt_126_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective The rapid discoveries of autophagy and pyroptosis have opened new avenues for treating renal cell carcinoma (RCC). The objective was to identify potential autophagy-pyroptosis-related drug targets and plausible prognostic biomarkers crucial for disease detection. Materials and Methods Gene expression data were downloaded from Gene Expression Omnibus (GSE168845), and autophagy-pyroptosis-related differentially expressed genes (DEGs) were identified. The prognostic values of DEGs were assessed using differential expression analysis and Kaplan-Meier curves, a prognostic nomogram was constructed using the DEG data, and the correlation between DEGs and infiltrating immune cells was evaluated. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were carried out to verify the expression levels of DEGs. Results CASP4 and CASP8 were identified as RCC-associated autophagy-pyroptosis-related genes, and CASP4 and CASP8 were found to be highly expressed in RCC tumor tissues. High expression of CASP4 and CASP8 was associated with higher pathological staging and poorer prognosis, whereas a prognostic nomogram constructed based on CASP4 and CASP8 could better predict RCC patient survival rates. Additionally, increased expression of CASP4 and CASP8 was highly correlated with the expression levels of multiple infiltrating immune cell types. Moreover, qRT-PCR and IHC validated the increased expression of CASP4 and CASP8 in RCC. Conclusion CASP4 and CASP8 were autophagy-pyroptosis-related genes associated with immunotherapy in RCC. CASP4 and CASP8 were identified as potential targets and effective prognostic biomarkers for RCC.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ning Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
4
|
Ambrosi G, Voloshanenko O, Eckert AF, Kranz D, Nienhaus GU, Boutros M. Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells. eLife 2022; 11:64498. [PMID: 35014953 PMCID: PMC8752093 DOI: 10.7554/elife.64498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants.
Collapse
Affiliation(s)
- Giulia Ambrosi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Oksana Voloshanenko
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Antonia F Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Kranz
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| |
Collapse
|
5
|
Linnemannstöns K, Witte L, Karuna M P, Kittel JC, Danieli A, Müller D, Nitsch L, Honemann-Capito M, Grawe F, Wodarz A, Gross JC. Ykt6-dependent endosomal recycling is required for Wnt secretion in the Drosophila wing epithelium. Development 2020; 147:dev.185421. [PMID: 32611603 PMCID: PMC7438013 DOI: 10.1242/dev.185421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
Morphogens are important signalling molecules for tissue development and their secretion requires tight regulation. In the wing imaginal disc of flies, the morphogen Wnt/Wingless is apically presented by the secreting cell and re-internalized before final long-range secretion. Why Wnt molecules undergo these trafficking steps and the nature of the regulatory control within the endosomal compartment remain unclear. Here, we have investigated how Wnts are sorted at the level of endosomes by the versatile v-SNARE Ykt6. Using in vivo genetics, proximity-dependent proteomics and in vitro biochemical analyses, we show that most Ykt6 is present in the cytosol, but can be recruited to de-acidified compartments and recycle Wnts to the plasma membrane via Rab4-positive recycling endosomes. Thus, we propose a molecular mechanism by which producing cells integrate and leverage endocytosis and recycling via Ykt6 to coordinate extracellular Wnt levels.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Leonie Witte
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Jeanette Clarissa Kittel
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Adi Danieli
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Denise Müller
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Lena Nitsch
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Mona Honemann-Capito
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Ferdinand Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Julia Christina Gross
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany .,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| |
Collapse
|
6
|
O'Shea P, Wildenhain J, Leveridge M, Revankar C, Yang JP, Bradley J, Firth M, Pilling J, Piper D, Chesnut J, Isherwood B. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:618-633. [PMID: 32476557 DOI: 10.1177/2472555220926160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CRISPR/Cas9 is increasingly being used as a tool to prosecute functional genomic screens. However, it is not yet possible to apply the approach at scale across a full breadth of cell types and endpoints. In order to address this, we developed a novel and robust workflow for array-based lentiviral CRISPR/Cas9 screening. We utilized a β-lactamase reporter gene assay to investigate mediators of TNF-α-mediated NF-κB signaling. The system was adapted for CRISPR/Cas9 through the development of a cell line stably expressing Cas9 and application of a lentiviral gRNA library comprising mixtures of four gRNAs per gene. We screened a 743-gene kinome library whereupon hits were independently ranked by percent inhibition, Z' score, strictly standardized mean difference, and T statistic. A consolidated and optimized ranking was generated using Borda-based methods. Screening data quality was above acceptable limits (Z' ≥ 0.5). In order to determine the contribution of individual gRNAs and to better understand false positives and negatives, a subset of gRNAs, against 152 genes, were profiled in singlicate format. We highlight the use of known reference genes and high-throughput, next-generation amplicon and RNA sequencing to assess screen data quality. Screening with singlicate gRNAs was more successful than screening with mixtures at identifying genes with known regulatory roles in TNF-α-mediated NF-κB signaling and was found to be superior to previous RNAi-based methods. These results add to the available data on TNF-α-mediated NF-κB signaling and establish a high-throughput functional genomic screening approach, utilizing a vector-based arrayed gRNA library, applicable across a wide variety of endpoints and cell types at a genome-wide scale.
Collapse
Affiliation(s)
- Patrick O'Shea
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Mathew Leveridge
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Jenna Bradley
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mike Firth
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James Pilling
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Beverley Isherwood
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
7
|
Ziogas A, Maekawa T, Wiessner JR, Le TT, Sprott D, Troullinaki M, Neuwirth A, Anastasopoulou V, Grossklaus S, Chung KJ, Sperandio M, Chavakis T, Hajishengallis G, Alexaki VI. DHEA Inhibits Leukocyte Recruitment through Regulation of the Integrin Antagonist DEL-1. THE JOURNAL OF IMMUNOLOGY 2020; 204:1214-1224. [PMID: 31980574 DOI: 10.4049/jimmunol.1900746] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression. DEL-1 is a secreted homeostatic factor that inhibits β2-integrin-dependent leukocyte adhesion, and the subsequent leukocyte recruitment and its expression is downregulated upon inflammation. Similarly, DHEA inhibited leukocyte adhesion to the endothelium in venules of the inflamed mouse cremaster muscle. Importantly, in a model of lung inflammation, DHEA limited neutrophil recruitment in a DEL-1-dependent manner. Mechanistically, DHEA counteracted the inhibitory effect of inflammation on DEL-1 expression. Indeed, whereas TNF reduced DEL-1 expression and secretion in endothelial cells by diminishing C/EBPβ binding to the DEL-1 gene promoter, DHEA counteracted the inhibitory effect of TNF via activation of tropomyosin receptor kinase A (TRKA) and downstream PI3K/AKT signaling that restored C/EBPβ binding to the DEL-1 promoter. In conclusion, DHEA restrains neutrophil recruitment by reversing inflammation-induced downregulation of DEL-1 expression. Therefore, the anti-inflammatory DHEA/DEL-1 axis could be harnessed therapeutically in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 951-8514 Niigata, Japan
| | - Johannes R Wiessner
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Thi Trang Le
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Sprott
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Troullinaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vasiliki Anastasopoulou
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sylvia Grossklaus
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine and Institute of Cardiovascular Physiology and Pathophysiology, BioMedical Centre, Ludwig Maximilians University of Munich, 81377 Planegg-Martinsried, Germany; and
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
8
|
Papoff G, Presutti D, Lalli C, Bolasco G, Santini S, Manelfi C, Fustaino V, Alemà S, Ruberti G. CASP4 gene silencing in epithelial cancer cells leads to impairment of cell migration, cell-matrix adhesion and tissue invasion. Sci Rep 2018; 8:17705. [PMID: 30531914 PMCID: PMC6286322 DOI: 10.1038/s41598-018-35792-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory caspases, including human caspase-4 (CASP4), play key roles in innate immune responses to promote fusion of phagosomes harboring pathogenic bacteria with lysosomes, halt intracellular replication of pathogens, maturation and secretion of pro-inflammatory cytokines. The role of inflammatory caspases in cancer cells remains poorly investigated. Here, we explored the consequences of modulating CASP4 expression levels on the migratory behavior of epithelial cancer cell lines. By a gene silencing approach and in vitro and in vivo studies we show that down-regulation of CASP4 leads to impaired cell migration and cell-matrix adhesion. This phenotype is accompanied by an increased actin cytoskeleton polymerization, changes in the overall organization of adherens junctions (AJs) and number and size of focal adhesions. Interestingly, the cell migration deficit could be reversed by epithelial growth factor treatment, and depletion of calcium ions unveiled a role of CASP4 in the novo assembly of AJs, suggesting that the role of CASP4 is not cell-autonomous. Finally, CASP4-silenced A431 cells exhibited a severe reduction in their ability to invade lung tissue, when injected into nude mice. Overall, our data support the emerging evidence that inflammatory caspases can regulate cell migration through actin remodeling and uncover a novel role of CASP4 in cancer cell behavior.
Collapse
Affiliation(s)
- Giuliana Papoff
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| | - Dario Presutti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Via E. Ramarini 32 Monterotondo (Rome), Italy
| | - Simonetta Santini
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Candida Manelfi
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Valentina Fustaino
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Stefano Alemà
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| |
Collapse
|
9
|
Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Front Immunol 2018; 9:775. [PMID: 29755455 PMCID: PMC5934416 DOI: 10.3389/fimmu.2018.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Doris Newel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Li J, Zhang Y, Chen L, Lu X, Li Z, Xue Y, Guan YQ. Cervical Cancer HeLa Cell Autocrine Apoptosis Induced by Coimmobilized IFN-γ plus TNF-α Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8451-8464. [PMID: 29436216 DOI: 10.1021/acsami.7b18277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using external methods to induce the death of cancer cells is recognized as one of the main strategies for cancer treatment. Research indicated that TNF-α is frequently used in tumor biotherapy while IFN-γ can directly inhibit tumor cell proliferation. In our study, TNF-α and IFN-γ were coimmobilized on polystyrene material (PSt) or Fe3O4-oleic acid nanoparticles (NPs). Then the structural change of these two proteins can be observed. Meanwhile, the expressions of both TNF-α and IFN-α increased significantly, as determined by gene microarray analysis; however, in the presence of TNF-α plus IFN-α inhibitors, TNF-α and IFN-α did not increase in HeLa cells induced by coimmobilized IFN-γ plus TNF-α. Our results indicate that such change can stimilate HeLa cells to secrete more TNF-α and IFN-α, by which the apoptosis of HeLa cells could be further induced. This study is the first report of autocrine-induced apoptosis of HeLa cells. In addition, we performed ELISA, RT-PCR, flow cytometry, and Western blot analyses, as well as a series of analytical tests at the animal level. our data also indicate that the PSt-coimmobilized IFN-γ plus TNF-α has apparent effects for cancer treatment in vivo, which is of great significance for translation into clinical medicine.
Collapse
Affiliation(s)
- Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
| | - Yuxiao Zhang
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Liyi Chen
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Xinhua Lu
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Zhibin Li
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Yongyong Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
| | - Yan-Qing Guan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
11
|
Rauscher B, Heigwer F, Henkel L, Hielscher T, Voloshanenko O, Boutros M. Toward an integrated map of genetic interactions in cancer cells. Mol Syst Biol 2018; 14:e7656. [PMID: 29467179 PMCID: PMC5820685 DOI: 10.15252/msb.20177656] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants can be drivers or passengers of tumorigenesis and create vulnerabilities for potential therapeutic exploitation. To identify genotype-dependent vulnerabilities, forward genetic screens in different genetic backgrounds have been conducted. We devised MINGLE, a computational framework to integrate CRISPR/Cas9 screens originating from different libraries building on approaches pioneered for genetic network discovery in model organisms. We applied this method to integrate and analyze data from 85 CRISPR/Cas9 screens in human cancer cells combining functional data with information on genetic variants to explore more than 2.1 million gene-background relationships. In addition to known dependencies, we identified new genotype-specific vulnerabilities of cancer cells. Experimental validation of predicted vulnerabilities identified GANAB and PRKCSH as new positive regulators of Wnt/β-catenin signaling. By clustering genes with similar genetic interaction profiles, we drew the largest genetic network in cancer cells to date. Our scalable approach highlights how diverse genetic screens can be integrated to systematically build informative maps of genetic interactions in cancer, which can grow dynamically as more data are included.
Collapse
Affiliation(s)
- Benedikt Rauscher
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Luisa Henkel
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, Christianson JC, Boutros M. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J 2018; 37:embj.201797311. [PMID: 29378775 PMCID: PMC5813261 DOI: 10.15252/embj.201797311] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Manuela Urban
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Emma Fenech
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Federica Lari
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Trümbach D, Pfeiffer S, Poppe M, Scherb H, Doll S, Wurst W, Schick JA. ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. BMC Genomics 2017; 18:905. [PMID: 29178829 PMCID: PMC5702081 DOI: 10.1186/s12864-017-4285-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As CRISPR/Cas9 mediated screens with pooled guide libraries in somatic cells become increasingly established, an unmet need for rapid and accurate companion informatics tools has emerged. We have developed a lightweight and efficient software to easily manipulate large raw next generation sequencing datasets derived from such screens into informative relational context with graphical support. The advantages of the software entitled ENCoRE (Easy NGS-to-Gene CRISPR REsults) include a simple graphical workflow, platform independence, local and fast multithreaded processing, data pre-processing and gene mapping with custom library import. RESULTS We demonstrate the capabilities of ENCoRE to interrogate results from a pooled CRISPR cellular viability screen following Tumor Necrosis Factor-alpha challenge. The results not only identified stereotypical players in extrinsic apoptotic signaling but two as yet uncharacterized members of the extrinsic apoptotic cascade, Smg7 and Ces2a. We further validated and characterized cell lines containing mutations in these genes against a panel of cell death stimuli and involvement in p53 signaling. CONCLUSIONS In summary, this software enables bench scientists with sensitive data or without access to informatic cores to rapidly interpret results from large scale experiments resulting from pooled CRISPR/Cas9 library screens.
Collapse
Affiliation(s)
- Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Susanne Pfeiffer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Manuel Poppe
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hagen Scherb
- Institute of Computational Biology, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sebastian Doll
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Technische Universität München-Weihenstephan, Chair of Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg/Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Joel A Schick
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
14
|
Voloshanenko O, Gmach P, Winter J, Kranz D, Boutros M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J 2017; 31:4832-4844. [PMID: 28733458 PMCID: PMC5636703 DOI: 10.1096/fj.201700144r] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1, FZD2, and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand–receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.—Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.
Collapse
Affiliation(s)
- Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Gmach
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jan Winter
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Azorsa DO, Turnidge MA, Arora S. Data Analysis for High-Throughput RNAi Screening. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2016; 1470:247-60. [PMID: 27581298 DOI: 10.1007/978-1-4939-6337-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening.
Collapse
Affiliation(s)
- David O Azorsa
- Institute of Molecular Medicine, Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Megan A Turnidge
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shilpi Arora
- Constellation Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
16
|
Kang Y, Li H, Wu J, Xu X, Sun X, Zhao X, Xu N. Transcriptome Profiling Reveals the Antitumor Mechanism of Polysaccharide from Marine Algae Gracilariopsis lemaneiformis. PLoS One 2016; 11:e0158279. [PMID: 27355352 PMCID: PMC4927116 DOI: 10.1371/journal.pone.0158279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
Seaweed is one of the important biomass producers and possesses active metabolites with potential therapeutic effects against tumors. The red alga Gracilariopsis lemaneiformis (Gp. lemaneiformis) possesses antitumor activity, and the polysaccharide of Gp. lemaneiformis (PGL) has been demonstrated to be an ingredient with marked anticancer activity. However, the anticancer mechanism of PGL remains to be elucidated. In this study, we analyzed the inhibitory effect of PGL on the cell growth of 3 human cancer cell lines and found that PGL inhibited cell proliferation, reduced cell viability, and altered cell morphology in a time- and concentration-dependent manner. Our transcriptome analysis indicates that PGL can regulate the expression of 758 genes, which are involved in apoptosis, the cell cycle, nuclear division, and cell death. Furthermore, we demonstrated that PGL induced apoptosis and cell cycle arrest and modulated the expression of related genes in the A549 cell line. Our work provides a framework to understand the effects of PGL on cancer cells, and can serve as a resource for delineating the antitumor mechanisms of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Yani Kang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hua Li
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Wu
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoting Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xiaodong Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
17
|
List M, Schmidt S, Christiansen H, Rehmsmeier M, Tan Q, Mollenhauer J, Baumbach J. Comprehensive analysis of high-throughput screens with HiTSeekR. Nucleic Acids Res 2016; 44:6639-48. [PMID: 27330136 PMCID: PMC5001608 DOI: 10.1093/nar/gkw554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
High-throughput screening (HTS) is an indispensable tool for drug (target) discovery that currently lacks user-friendly software tools for the robust identification of putative hits from HTS experiments and for the interpretation of these findings in the context of systems biology. We developed HiTSeekR as a one-stop solution for chemical compound screens, siRNA knock-down and CRISPR/Cas9 knock-out screens, as well as microRNA inhibitor and -mimics screens. We chose three use cases that demonstrate the potential of HiTSeekR to fully exploit HTS screening data in quite heterogeneous contexts to generate novel hypotheses for follow-up experiments: (i) a genome-wide RNAi screen to uncover modulators of TNFα, (ii) a combined siRNA and miRNA mimics screen on vorinostat resistance and (iii) a small compound screen on KRAS synthetic lethality. HiTSeekR is publicly available at http://hitseekr.compbio.sdu.dk It is the first approach to close the gap between raw data processing, network enrichment and wet lab target generation for various HTS screen types.
Collapse
Affiliation(s)
- Markus List
- Lundbeckfonden Center of Excellence in Nanomedicine (NanoCAN), University of Southern Denmark, 5000 Odense, Denmark Molecular Oncology, Institute of Molecular Medicin (IMM), University of Southern Denmark, 5000 Odense, Denmark Clinical Institute (CI), University of Southern Denmark, 5000 Odense, Denmark
| | - Steffen Schmidt
- Lundbeckfonden Center of Excellence in Nanomedicine (NanoCAN), University of Southern Denmark, 5000 Odense, Denmark Molecular Oncology, Institute of Molecular Medicin (IMM), University of Southern Denmark, 5000 Odense, Denmark
| | - Helle Christiansen
- Lundbeckfonden Center of Excellence in Nanomedicine (NanoCAN), University of Southern Denmark, 5000 Odense, Denmark Molecular Oncology, Institute of Molecular Medicin (IMM), University of Southern Denmark, 5000 Odense, Denmark
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Qihua Tan
- Clinical Institute (CI), University of Southern Denmark, 5000 Odense, Denmark Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence in Nanomedicine (NanoCAN), University of Southern Denmark, 5000 Odense, Denmark Molecular Oncology, Institute of Molecular Medicin (IMM), University of Southern Denmark, 5000 Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, 5230 Odense, Denmark Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Functional fingerprinting of human mesenchymal stem cells using high-throughput RNAi screening. Genome Med 2015; 7:46. [PMID: 26120366 PMCID: PMC4481116 DOI: 10.1186/s13073-015-0170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for cellular therapies ranging from tissue repair in regenerative medicine to immunomodulation in graft versus host disease after allogeneic transplantation or in autoimmune diseases. Nonetheless, progress has been hampered by their enormous phenotypic as well as functional heterogeneity and the lack of uniform standards and guidelines for quality control. In this study, we describe a method to perform cellular phenotyping by high-throughput RNA interference in primary human bone marrow MSCs. We have shown that despite heterogeneity of MSC populations, robust functional assays can be established that are suitable for high-throughput and high-content screening. We profiled primary human MSCs against human fibroblasts. Network analysis showed a kinome fingerprint that differs from human primary fibroblasts as well as fibroblast cell lines. In conclusion, this study shows that high-throughput screening in primary human MSCs can be reliably used for kinome fingerprinting.
Collapse
|
19
|
Wazir U, Orakzai MMAW, Khanzada ZS, Jiang WG, Sharma AK, Kasem A, Mokbel K. The role of death-associated protein 3 in apoptosis, anoikis and human cancer. Cancer Cell Int 2015; 15:39. [PMID: 25883535 PMCID: PMC4399419 DOI: 10.1186/s12935-015-0187-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/18/2015] [Indexed: 01/12/2023] Open
Abstract
Death-associated protein 3 (DAP3) is a molecule with a significant role in the control of both apoptosis and anoikis. Apoptosis is the predominant type of programmed cell death (PCD) which may occur in response to irreparable damage to DNA, or in response to induction by inflammatory cells. Anoikis is subset of apoptosis which occurs in epithelial cells in response to detachment from the surrounding matrix. Both apoptosis and anoikis are of interest in the context of carcinogenesis. In this review, we shall discuss apoptosis and anoikis, and the recent literature regarding the role of DAP3 in both these pathways.
Collapse
Affiliation(s)
- Umar Wazir
- />The London Breast Institute, Princess Grace Hospital, London, UK
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| | | | - Zubair S Khanzada
- />Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales UK
| | - Wen G Jiang
- />Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales UK
| | - Anup K Sharma
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| | - Abdul Kasem
- />The London Breast Institute, Princess Grace Hospital, London, UK
| | - Kefah Mokbel
- />The London Breast Institute, Princess Grace Hospital, London, UK
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| |
Collapse
|
20
|
Stombaugh J, Licon A, Strezoska Ž, Stahl J, Anderson SB, Banos M, van Brabant Smith A, Birmingham A, Vermeulen A. The Power Decoder Simulator for the Evaluation of Pooled shRNA Screen Performance. ACTA ACUST UNITED AC 2015; 20:965-75. [PMID: 25777298 PMCID: PMC4543901 DOI: 10.1177/1087057115576715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/17/2015] [Indexed: 12/30/2022]
Abstract
RNA interference screening using pooled, short hairpin RNA (shRNA) is a powerful, high-throughput tool for determining the biological relevance of genes for a phenotype. Assessing an shRNA pooled screen’s performance is difficult in practice; one can estimate the performance only by using reproducibility as a proxy for power or by employing a large number of validated positive and negative controls. Here, we develop an open-source software tool, the Power Decoder simulator, for generating shRNA pooled screening experiments in silico that can be used to estimate a screen’s statistical power. Using the negative binomial distribution, it models both the relative abundance of multiple shRNAs within a single screening replicate and the biological noise between replicates for each individual shRNA. We demonstrate that this simulator can successfully model the data from an actual laboratory experiment. We then use it to evaluate the effects of biological replicates and sequencing counts on the performance of a pooled screen, without the necessity of gathering additional data. The Power Decoder simulator is written in R and Python and is available for download under the GNU General Public License v3.0.
Collapse
Affiliation(s)
| | - Abel Licon
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | - Joshua Stahl
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | - Michael Banos
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | | | | |
Collapse
|
21
|
NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 2015; 10:e0117953. [PMID: 25695505 PMCID: PMC4335045 DOI: 10.1371/journal.pone.0117953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/01/2022] Open
Abstract
Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1. Unexpectedly, NF-κB activation was shown to be pro-apoptotic, as suggested by the reduction of Fas-induced cell death with either a dominant negative form of IκBα (DN-IκBα) or an IκB kinase-specific inhibitor. To our interest, when analyzing downstream events of NF-κB signaling, we found that DN-IκBα only suppressed the expression of caspase-4, but not other caspases. Vice versa, enhancement of NF-κB activity by p65 (RelA) overexpression increased the expression of caspase-4 at both mRNA and protein levels. More directly, results from dual luciferase reporter assay demonstrated the regulation of caspase-4 promoter activity by NF-κB. When caspase-4 activity was blocked by its dominant negative (DN) form, Fas-induced cell death was substantially reduced. Consistently, the cleavage of PARP and caspase-3 induced by Fas was also reduced. In contrast, the cleavage of caspase-8 remained unaffected in caspase-4 DN cells, although caspase-8 inhibitor could rescue Fas-induced cell death. Collectively, these data suggest that caspase-4 activity is required for Fas-induced cell apoptosis and caspase-4 may act upstream of PARP and caspase-3 and downstream of caspase-8. Overall, we demonstrate that NF-κB can mediate Fas-induced apoptosis through caspase-4 protease, indicating that caspase-4 is a new mediator of NF-κB pro-apoptotic pathway in neuroblastoma cells.
Collapse
|
22
|
Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med 2014; 12:155. [PMID: 24885472 PMCID: PMC4084577 DOI: 10.1186/1479-5876-12-155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) induces a variety of biological processes through transcriptional gene control whose products are components in various signaling pathways. MicroRNAs are a small endogenous non-coding RNAs that regulate gene expression and are involved in tumorigenesis. Using human cervical cancer cell lines, this study aimed to investigate whether NF-κB could regulate miR-130a expression and the functions and targets of miR-130a. Methods We used the HeLa and C33A cervical cancer cell lines that were transfected with NF-κB or miR-130a overexpression plasmids to evaluate their effects on cell growth. We utilized bioinformatics, a fluorescent reporter assay, qRT-PCR and Western blotting to identify downstream target genes. Results In HeLa and C33A cells, NF-κB and miR-130a overexpression promoted cell growth, but genetic knockdowns suppressed growth. TNF-α was identified as a target of miR-130a by binding in a 3’-untranslated region (3’UTR) EGFP reporter assay and by Western blot analysis. Furthermore, low TNF-α concentrations stimulated NF-κB activity and then induced miR-130a expression, and TNF-α overexpression rescued the effects of miR-130a on cervical cancer cells. Conclusions Our findings indicate that TNF-α can activate NF-κB activity, which can reduce miR-130a expression, and that miR-130a targets and downregulates TNF-α expression. Hence, we shed light on the negative feedback regulation of NF-κB/miR-130a/TNF-α/NF-κB in cervical cancer and may provide insight into the carcinogenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, No, 22 Qi-Xiang-Tai Road, Tianjin 300070, China.
| |
Collapse
|
23
|
Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G, Bozdagi O, Buxbaum JD. A critical role for human caspase-4 in endotoxin sensitivity. THE JOURNAL OF IMMUNOLOGY 2014; 193:335-43. [PMID: 24879791 DOI: 10.4049/jimmunol.1303424] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Response to endotoxins is an important part of the organismal reaction to Gram-negative bacteria and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared with experimental animals such as mice. Inflammatory caspases mediate endotoxin-induced IL-1β secretion and lethality in mice, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following LPS challenge. Using bone marrow-derived macrophages, we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1β and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent a unique mechanism in humans, as compared with laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represents targets for systemic inflammatory response syndrome, sepsis, septic shock, and related disorders.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
| | - Gregory Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ozlem Bozdagi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
24
|
Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2045-55. [PMID: 24815353 DOI: 10.1016/j.ajpath.2014.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 01/09/2023]
Abstract
We sought to develop and characterize a novel paucibacillary model in mice, which develops necrotic lung granulomas after infection with Mycobacterium tuberculosis. Six weeks after aerosol immunization with recombinant Mycobacterium bovis bacillus Calmette-Guerin overexpressing the 30-kDa antigen, C3HeB/FeJ mice were aerosol infected with M. tuberculosis H37Rv. Six weeks later, mice were treated with one of three standard regimens for latent tuberculosis infection or tumor necrosis factor (TNF)-neutralizing antibody. Mouse lungs were analyzed by histological features, positron emission tomography/computed tomography, whole-genome microarrays, and RT-PCR. Lungs and sera were studied by multiplex enzyme-linked immunosorbent assays. Paucibacillary infection was established, recapitulating the sterilizing activities of human latent tuberculosis infection regimens. TNF neutralization led to increased lung bacillary load, disrupted granuloma architecture with expanded necrotic foci and reduced tissue hypoxia, and accelerated animal mortality. TNF-neutralized mouse lungs and sera showed significant up-regulation of interferon γ, IL-1β, IL-6, IL-10, chemokine ligands 2 and 3, and matrix metalloproteinase genes. Clinical and microbiological reactivation of paucibacillary infection by TNF neutralization was associated with reduced hypoxia in lung granulomas and induction of matrix metalloproteinases and proinflammatory cytokines. This model may be useful for screening the sterilizing activity of novel anti-tuberculosis drugs, and identifying mycobacterial regulatory and metabolic pathways required for bacillary growth restriction and reactivation.
Collapse
Affiliation(s)
- Noton K Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter B Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
25
|
Demir K, Kirsch N, Beretta C, Erdmann G, Ingelfinger D, Moro E, Argenton F, Carl M, Niehrs C, Boutros M. RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6. Cell Rep 2013; 4:1224-34. [DOI: 10.1016/j.celrep.2013.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022] Open
|
26
|
Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:455-68. [PMID: 23403288 DOI: 10.1016/j.bbagrm.2013.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/01/2013] [Accepted: 01/19/2013] [Indexed: 12/15/2022]
Abstract
Sequence-non-specific effects of siRNAs that alter the expression of non-targeted genes have been reported, including competition of siRNAs with endogenous RISC components. However, the detailed mechanisms and subsequent effects of such competition are not well documented. Here we analyze the competition of miRNAs in mammalian cells with low concentrations of siRNAs, and found that: 1) transfection of different siRNAs in the low nanomolar range used to deplete target RNAs can reduce the levels of miRNAs in different cell types, 2) siRNA transfection results in rapid reduction of Ago2-associated miRNAs concurrent with accumulation of Ago2-bound siRNAs and a significant change in the expression levels of many miRNAs, 3) competition largely depends on Ago2 and not Dicer, 4) microarray analysis showed that the majority of highly expressed miRNAs are reduced, in a siRNA concentration dependent manner, and low abundant miRNAs may be unchanged or repressed and a few miRNAs appear to have increased levels, and 5) consistent with previous studies, the expression levels of mRNAs that are targeted by highly repressed miRNAs are preferentially increased. As a consequence of such competition, we observed that α-tubulin, a substrate of two up-regulated proteases, granzyme B and granzyme M, was rapidly degraded at the protein level upon siRNA transfection. Our results support a model in which transfection of siRNAs can change the levels of many miRNAs by competition for Ago2, leading to altered expression of many miRNA target genes, which can in turn affect downstream gene expression even at the protein level.
Collapse
|
27
|
Guo W, Chen W, Yu W, Huang W, Deng W. Small interfering RNA-based molecular therapy of cancers. CHINESE JOURNAL OF CANCER 2013; 32:488-93. [PMID: 23327796 PMCID: PMC3845562 DOI: 10.5732/cjc.012.10280] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) has become a gold standard for validating gene function in basic life science research and provides a promising therapeutic modality for cancer and other diseases. This mini-review focuses on the potential of small interfering RNAs (siRNAs) in anticancer treatment, including the establishment and screening of cancer-associated siRNA libraries and their applications in anticancer drug target discovery and cancer therapy. This article also describes the current delivery approaches of siRNAs using lipids, polymers, and, in particular, gold nanoparticles to induce significant gene silencing and tumor growth regression.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Oncology in South China; Research Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | |
Collapse
|