1
|
Coey CT, Clark DJ. A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 2021; 32:367-377. [PMID: 34916251 PMCID: PMC8805717 DOI: 10.1101/gr.276080.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022]
Abstract
Sequence-specific DNA-binding transcription factors are central to gene regulation. They are often associated with consensus binding sites that predict far more genomic sites than are bound in vivo. One explanation is that most sites are blocked by nucleosomes, such that only sites in nucleosome-depleted regulatory regions are bound. We compared the binding of the yeast transcription factor Gcn4 in vivo using published ChIP-seq data (546 sites) and in vitro, using a modified SELEX method (“G-SELEX”), which utilizes short genomic DNA fragments to quantify binding at all sites. We confirm that Gcn4 binds strongly to an AP-1-like sequence (TGACTCA) and weakly to half-sites. However, Gcn4 binds only some of the 1078 exact matches to this sequence, even in vitro. We show that there are only 166 copies of the high-affinity RTGACTCAY site (exact match) in the yeast genome, all occupied in vivo, largely independently of whether they are located in nucleosome-depleted or nucleosomal regions. Generally, RTGACTCAR/YTGACTCAY sites are bound much more weakly and YTGACTCAR sites are unbound, with biological implications for determining induction levels. We conclude that, to a first approximation, Gcn4 binding can be predicted using the high-affinity site, without reference to chromatin structure. We propose that transcription factor binding sites should be defined more precisely using quantitative data, allowing more accurate genome-wide prediction of binding sites and greater insight into gene regulation.
Collapse
Affiliation(s)
- Christopher T Coey
- National Institute of Child Health and Human Development, National Institutes of Health
| | - David J Clark
- National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
2
|
Dai H, Umarov R, Kuwahara H, Li Y, Song L, Gao X. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape. Bioinformatics 2017; 33:3575-3583. [PMID: 28961686 PMCID: PMC5870668 DOI: 10.1093/bioinformatics/btx480] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. RESULTS Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. AVAILABILITY AND IMPLEMENTATION Our program is freely available at https://github.com/ramzan1990/sequence2vec. CONTACT xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hanjun Dai
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramzan Umarov
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Le Song
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Wang X, Kuwahara H, Gao X. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 5:S5. [PMID: 25605483 PMCID: PMC4305984 DOI: 10.1186/1752-0509-8-s5-s5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology. RESULTS Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in S. cerevisiae demonstrated the generality of our method. CONCLUSION We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify genetic parts to fine-tune gene expression rates is crucial to the design of biological systems, such a tool may play an important role in the success of synthetic biology going forward.
Collapse
|
4
|
Gordân R, Murphy KF, McCord RP, Zhu C, Vedenko A, Bulyk ML. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 2011; 12:R125. [PMID: 22189060 PMCID: PMC3334620 DOI: 10.1186/gb-2011-12-12-r125] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/09/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles.
Collapse
Affiliation(s)
- Raluca Gordân
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
5
|
Nutiu R, Friedman RC, Luo S, Khrebtukova I, Silva D, Li R, Zhang L, Schroth GP, Burge CB. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat Biotechnol 2011; 29:659-64. [PMID: 21706015 DOI: 10.1038/nbt.1882] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/27/2011] [Indexed: 01/11/2023]
Abstract
Several methods for characterizing DNA-protein interactions are available, but none have demonstrated both high throughput and quantitative measurement of affinity. Here we describe 'high-throughput sequencing'-'fluorescent ligand interaction profiling' (HiTS-FLIP), a technique for measuring quantitative protein-DNA binding affinity at unprecedented depth. In this approach, the optics built into a high-throughput sequencer are used to visualize in vitro binding of a protein to sequenced DNA in a flow cell. Application of HiTS-FLIP to the protein Gcn4 (Gcn4p), the master regulator of the yeast amino acid starvation response, yielded ~440 million binding measurements, enabling determination of dissociation constants for all 12-mer sequences having submicromolar affinity. These data revealed a complex interdependency between motif positions, allowed improved discrimination of in vivo Gcn4p binding sites and regulatory targets relative to previous methods and showed that sets of genes with different promoter affinities to Gcn4p have distinct functions and expression kinetics. Broad application of this approach should increase understanding of the interactions that drive transcription.
Collapse
Affiliation(s)
- Razvan Nutiu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2004; 16:1026-42. [PMID: 15616197 PMCID: PMC551471 DOI: 10.1091/mbc.e04-04-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.
Collapse
Affiliation(s)
- Xu Peng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gcn4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gcn4 at its binding site; and it requires both Gcn5 and Swi/Snf which, at an endogenous Gcn4-dependent promoter, act subsequent to Gcn4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.
Collapse
Affiliation(s)
- Joanna A Miller
- Department of Biochemistry, Molecular Biology and Cellular Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
8
|
Hollenbeck JJ, McClain DL, Oakley MG. The role of helix stabilizing residues in GCN4 basic region folding and DNA binding. Protein Sci 2002; 11:2740-7. [PMID: 12381856 PMCID: PMC2373721 DOI: 10.1110/ps.0211102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.
Collapse
Affiliation(s)
- Jessica J Hollenbeck
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | |
Collapse
|
9
|
Papp PP, Nagy T, Ferenczi S, Elõ P, Csiszovszki Z, Buzás Z, Patthy A, Orosz L. Binding sites of different geometries for the 16-3 phage repressor. Proc Natl Acad Sci U S A 2002; 99:8790-5. [PMID: 12084925 PMCID: PMC124377 DOI: 10.1073/pnas.132275399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokaryotic repressor-operator systems provide exemplars for the sequence-specific interactions between DNA and protein. The crucial atomic contacts of the two macromolecules are attained in a compact, geometrically defined structure of the DNA-protein complex. The pitch of the DNA interface seems an especially sensitive part of this architecture because changes in its length introduce new spacing and rotational relations in one step. We discovered a natural system that may serve as a model for investigating this problem: the repressor of the 16-3 phage of Rhizobium meliloti (helix-turn-helix class protein) possesses inherent ability to accommodate to various DNA twistings. It binds the cognate operators, which are 5'-ACAA-4 bp-TTGT-3' (O(L)) and 5'-ACAA-6 bp-TTGT-3' (O(R)) and thus differ 2 bp in length, and consequently the two half-sites will be rotated with respect to each other by 72 degrees in the idealized B-DNA (64 degrees by dinucleotide steps calculations). Furthermore, a synthetic intermediate (DNA sequence) 5'-ACAA-5 bp-TTGT-3' (O5) also binds specifically the repressor. The natural operators and bound repressors can form higher order DNA-protein complexes and perform efficient repression, whereas the synthetic operator-repressor complex cannot do either. The natural operators are bent when complexed with the repressor, whereas the O5 operator does not show bending in electrophoretic mobility assay. Possible structures of the complexes are discussed.
Collapse
Affiliation(s)
- Peter P Papp
- Institute for Molecular Genetics and Analysis-Synthesis Center, Szent-Györgyi A. u. 4., 2100 Gödöllõ, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. EUKARYOTIC CELL 2002; 1:22-32. [PMID: 12455968 PMCID: PMC118051 DOI: 10.1128/ec.01.1.22-32.2002] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
11
|
Montclare JK, Sloan LS, Schepartz A. Electrostatic control of half-site spacing preferences by the cyclic AMP response element-binding protein CREB. Nucleic Acids Res 2001; 29:3311-9. [PMID: 11504868 PMCID: PMC55852 DOI: 10.1093/nar/29.16.3311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Basic region leucine zipper (bZIP) proteins represent a class of transcription factors that bind DNA using a simple, dimeric, alpha-helical recognition motif. The cAMP response element-binding protein (CREB) is a member of the CREB/ATF subfamily of bZIP proteins. CREB discriminates effectively in vivo and in vitro between the 10 bp cAMP response element (ATGACGTCAT, CRE) and the 9 bp activating protein 1 site (ATGACTCAT, AP-1). Here we describe an alanine scanning mutagenesis study designed to identify those residues within the CREB bZIP element that control CRE/AP-1 specificity. We find that the preference of CREB for the CRE site is controlled in a positive and negative way by acidic and basic residues in the basic, spacer and zipper segments. The CRE/AP-1 specificity of CREB is increased significantly by four glutamic acid residues located at positions 24, 28, 35 and 41; glutamic acid residues at positions 10 and 48 contribute in a more modest way. Specificity is decreased significantly by two basic residues located at positions 21 and 23; basic residues at positions 14, 18, 33 and 34 and V17 contribute in a more modest way. All of the residues that influence specificity significantly are located on the solvent-exposed face of the protein-DNA complex and likely participate in interactions between and among proteins, not between protein and DNA. The finding that the CRE/AP-1 specificity of CREB is dictated by the presence or absence of charged residues has interesting implications for how transcription factors seek and selectively bind sequences within genomic DNA.
Collapse
Affiliation(s)
- J K Montclare
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
12
|
Pascual-Ahuir A, Serrano R, Proft M. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:16-25. [PMID: 11113177 PMCID: PMC86564 DOI: 10.1128/mcb.21.1.16-25.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the transcriptional response of Saccharomyces cerevisiae to stress, both activators and repressors are implicated. Here we demonstrate that the ion homeostasis determinant, HAL1, is regulated by two antagonistically operating bZIP transcription factors, the Sko1p repressor and the Gcn4p activator. A single CRE-like sequence (CRE(HAL1)) at position -222 to -215 with the palindromic core sequence TTACGTAA is essential for stress-induced expression of HAL1. Down-regulation of HAL1 under normal growth conditions requires specific binding of Sko1p to CRE(HAL1) and the corepressor gene SSN6. Release from this repression depends on the function of the high-osmolarity glycerol pathway. The Gcn4p transcriptional activator binds in vitro to the same CRE(HAL1) and is necessary for up-regulated HAL1 expression in vivo, indicating a dual control mechanism by a repressor-activator pair occupying the same promoter target sequence. gcn4 mutants display a strong sensitivity to elevated K(+) or Na(+) concentrations in the growth medium. In addition to reduced HAL1 expression, this sensitivity is explained by the fact that amino acid uptake is drastically impaired by high Na(+) and K(+) concentrations in wild-type yeast cells. The reduced amino acid biosynthesis of gcn4 mutants would result in amino acid deprivation. Together with the induction of HAL1 by amino acid starvation, these results suggest that salt stress and amino acid availability are physiologically interconnected.
Collapse
Affiliation(s)
- A Pascual-Ahuir
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022 Valencia, Spain
| | | | | |
Collapse
|
13
|
Garcia-Gimeno MA, Struhl K. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 2000; 20:4340-9. [PMID: 10825197 PMCID: PMC85801 DOI: 10.1128/mcb.20.12.4340-4349.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.
Collapse
Affiliation(s)
- M A Garcia-Gimeno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
14
|
Sissi C, Aiyar J, Boyer S, Depew K, Danishefsky S, Crothers DM. Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. Proc Natl Acad Sci U S A 1999; 96:10643-8. [PMID: 10485879 PMCID: PMC17936 DOI: 10.1073/pnas.96.19.10643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin gamma(1)(I) and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known protein-binding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in their free and protein-bound forms. The proteins were selected to provide examples in which the minor-groove binding site for the carbohydrate is (CAP) or is not (GCN4) covered by the protein. Additionally, peptides related to the GCN4 and CREB families, which have different bending effects on their DNA-binding sites, were used. We observe that proteins of the CREB class, which induce a tendency to bend toward the minor groove at the center of the site, inhibit drug-cleavage sites located at the center of the free AP-1 or CRE DNA sites. In the case of GCN4, which does not induce DNA bending, there is no effect on calicheamicin cleavage of the CRE site, but we observe a GCN4-induced rearrangement of the cutting pattern in the AP-1 site. This effect may arise from either a subtle local conformational rearrangement not accompanied by bending or a localized reduction in DNA flexibility. Whereas GCN4 binding is not inhibited by the calicheamicin aryltetrasaccharide, binding of CAP to its DNA target is significantly inhibited, and calicheamicin cutting of DNA at the center of the CAP-DNA complex site is strongly reduced by protein binding. This result probably reflects steric inhibition of drug binding by the protein.
Collapse
Affiliation(s)
- C Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Hockings SC, Kahn JD, Crothers DM. Characterization of the ATF/CREB site and its complex with GCN4. Proc Natl Acad Sci U S A 1998; 95:1410-5. [PMID: 9465028 PMCID: PMC19024 DOI: 10.1073/pnas.95.4.1410] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-tract multimer bend by a variable length phasing adaptor. The cyclization results show that GCN4 binding does not significantly change the conformation of the ATF/CREB site, which is intrinsically slightly bent toward the major groove. Monte Carlo simulations quantitate the ATF/CREB site structure as an 8 degrees bend toward the major groove in a coordinate frame near the center of the site. The ATF/CREB site is underwound by 53 degrees relative to the related AP-1 site DNA. The effect of GCN4 binding can be modeled either as a decrease in the local flexibility, corresponding to an estimated 60% increase in the persistence length for the 10-bp binding site, or possibly as a small decrease (1 degrees) in intrinsic bend angle. Our results agree with recent electrophoretic and crystallographic studies and demonstrate that cyclization and simulation can characterize subtle changes in DNA structure and flexibility.
Collapse
Affiliation(s)
- S C Hockings
- Department of Chemistry, 225 Prospect Street, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
16
|
Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 1997; 17:6982-93. [PMID: 9372930 PMCID: PMC232555 DOI: 10.1128/mcb.17.12.6982] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae contains eight members of a novel and fungus-specific family of bZIP proteins that is defined by four atypical residues on the DNA-binding surface. Two of these proteins, Yap1 and Yap2, are transcriptional activators involved in pleiotropic drug resistance. Although initially described as AP-1 factors, at least four Yap proteins bind most efficiently to TTACTAA, a sequence that differs at position +/-2 from the optimal AP-1 site (TGACTCA); further, a Yap-like derivative of the AP-1 factor Gcn4 (A239Q S242F) binds efficiently to the Yap recognition sequence. Molecular modeling suggests that the Yap-specific residues make novel contacts and cause physical constraints at the +/-2 position that may account for the distinct DNA-binding specificities of Yap and AP-1 proteins. To various extents, Yap1, Yap2, Yap3, and Yap5 activate transcription from a promoter containing a Yap recognition site. Yap-dependent transcription is abolished in strains containing high levels of protein kinase A; in contrast, Gcn4 transcriptional activity is stimulated by protein kinase A. Interestingly, Yap1 transcriptional activity is stimulated by hydrogen peroxide, whereas Yap2 activity is stimulated by aminotriazole and cadmium. In addition, unlike other yap mutations tested, yap4 (cin5) mutations affect chromosome stability, and they suppress the cold-sensitive phenotype of yap1 mutant strains. Thus, members of the Yap family carry out overlapping but distinct biological functions.
Collapse
Affiliation(s)
- L Fernandes
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Metallo SJ, Paolella DN, Schepartz A. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA. Nucleic Acids Res 1997; 25:2967-72. [PMID: 9224594 PMCID: PMC146868 DOI: 10.1093/nar/25.15.2967] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization.
Collapse
Affiliation(s)
- S J Metallo
- Department of Chemistry, PO Box 208107, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
18
|
Watanabe Y, Yamamoto M. Schizosaccharomyces pombe pcr1+ encodes a CREB/ATF protein involved in regulation of gene expression for sexual development. Mol Cell Biol 1996; 16:704-11. [PMID: 8552099 PMCID: PMC231050 DOI: 10.1128/mcb.16.2.704] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Schizosaccharomyces pombe pcr1 gene encodes a bZIP protein that apparently belongs to the cyclic AMP response element (CRE)-binding protein/activating transcription factor family. The deduced pcr1 gene product consists of 171 amino acid residues and is most similar to the mammalian CRE-BP1. A glutathione S-transferase-Pcr1 fusion protein produced in Escherichia coli was able to bind specifically to the CRE motif in vitro. Analysis with anti-Pcr1 serum suggested that Pcr1 is included in the major CRE-binding factors present in the S. pombe cell extract. Disruption of the pcr1 gene was not lethal, but the disruptant showed cold-sensitive growth on rich medium. The disruptant was also inefficient in mating and sporulation, though it was not completely sterile. Expression of the ste11 gene, which encodes a key transcription factor for sexual development, was greatly reduced in the disruptant, and overexpression of ste11+ suppressed the deficiency of the pcr1 disruptant in sexual development. It has been shown that expression of ste11 is negatively regulated by cyclic AMP-dependent protein kinase (PKA) and that the loss of PKA activity results in ectopic sexual development. Disruption of pcr1 blocked ectopic sexual development. Furthermore, disruption of pcr1 reduced expression of fbp1, a glucose-repressible gene negatively regulated by PKA. These results suggest that Pcr1 is a putative transcriptional regulator whose activity may be controlled by PKA. Alternatively, its activity may be independent of PKA, and full induction of ste11 and fbp1 expression requires the function of Pcr1 in addition to elimination of the repression by PKA.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
19
|
Koldin B, Suckow M, Seydel A, von Wilcken-Bergmann B, Müller-Hill B. A comparison of the different DNA binding specificities of the bZip proteins C/EBP and GCN4. Nucleic Acids Res 1995; 23:4162-9. [PMID: 7479080 PMCID: PMC307358 DOI: 10.1093/nar/23.20.4162] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The bZip proteins GCN4 and C/EBP differ in their DNA binding specificities: GCN4 binds well to the pseudopalindromic AP1 site 5'-A4T3G2A1C0T1C2'A3'T4'-3' and to the palindromic ATF/CREB sequence 5'-A4T3G2A1-C0*G0'T1'C2'A3'T4'-3'; C/EBP preferentially recognizes the palindromic sequence 5'-A4T3T2G1C0*G0'C1'A2'-A3'T4'-3'. According to the X-ray structures of GCN4-DNA complexes, five residues of the basic region of GCN4 are involved in specific base contacts: asparagine -18, alanine -15, alanine -14, serine -11 and arginine -10 (numbered relative to the start point of the leucine zipper, which we define as +1). In the basic region of C/EBP position -14 is occupied by valine instead of alanine, the other four residues being identical. Here we analyse the role of valine -14 in C/EBP-DNA complex formation. Starting from a C/EBP-GCN4 chimeric bZip peptide which displays C/EBP specificity, we systematically mutated position -14 of its basic region and characterized the DNA binding specificities of the 20 possible different peptides by gel mobility shift assays with various target sites. We present evidence that valine -14 of C/EBP interacts more strongly with thymine 2 than with cytosine 1' of the C/EBP binding site, unlike the corresponding alanine -14 of GCN4, which exclusively contacts thymine 1' of the GCN4 binding sites.
Collapse
Affiliation(s)
- B Koldin
- Institut für Genetik, Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
20
|
Kim J, Struhl K. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains. Nucleic Acids Res 1995; 23:2531-7. [PMID: 7630732 PMCID: PMC307062 DOI: 10.1093/nar/23.13.2531] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, whereas ATF/CREB proteins bind exclusively to sequences with adjacent half-sites. Here we investigate the distinctions between AP-1 and ATF/CREB proteins by determining the DNA-binding properties of mutant and hybrid proteins. First, analysis of GCN4-ATF1 hybrid proteins indicates that a short surface spanning the basic and fork regions of the bZIP domain is the major determinant of half-site spacing. Replacement of two GCN4 residues on this surface (Ala244 and Leu247) by their ATF1 counterparts largely converts GCN4 into a protein with ATF/CREB specificity. Secondly, analysis of a Fos derivative containing the GCN4 leucine zipper indicates that Fos represents a novel intermediate between AP-1 and ATF/CREB proteins. Thirdly, we examine the effects of mutations in the invariant arginine residue of GCN4 (Arg243) that contacts the central base pair(s) of the target sites. While most mutations abolish DNA binding, substitution of a histidine residue results in a GCN4 derivative with ATF/CREB binding specificity. These results suggest that the AP-1 and ATF/CREB proteins differ in positioning a short surface that includes the invariant arginine and that AP-1 proteins may represent a subclass (and perhaps evolutionary offshoot) of ATF/CREB proteins that can tolerate overlapping half-sites.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Haas NB, Cantwell CA, Johnson PF, Burch JB. DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region. Mol Cell Biol 1995; 15:1923-32. [PMID: 7891686 PMCID: PMC230418 DOI: 10.1128/mcb.15.4.1923] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The PAR subfamily of basic leucine zipper (bZIP) factors comprises three proteins (VBP/TEF, DBP, and HLF) that have conserved basic regions flanked by proline- and acidic-amino-acid-rich (PAR) domains and functionally compatible leucine zipper dimerization domains. We show that VBP preferentially binds to sequences that consist of abutted GTAAY half-sites (which we refer to as PAR sites) as well as to sequences that contain either a C/EBP half-site (GCAAT) or a CREB/ATF half-site (GTCAT) in place of one of the PAR half-sites. Since the sequences that we describe as PAR sites and PAR-CREB/ATF chimeric sites, respectively, were both previously described as high-affinity binding sites for the E4BP4 transcriptional repressor, we infer that these sequences may be targets for positive and negative regulation. Similarly, since the sequences that we describe as PAR-C/EBP and PAR-CREB/ATF chimeric sites are known to be high-affinity binding sites for C/EBP and CREB/ATF factors, respectively, we infer that these sites may each be targets for multiple subfamilies of bZIP factors. To gain insights regarding the molecular basis for the binding-site specificity of PAR factors, we also carried out an extensive mutational analysis of VBP. By substituting five amino acid residues that differ between the Drosophila giant bZIP factor and the vertebrate PAR bZIP factors, we show that the fork region, which bridges the basic and leucine zipper domains, contributes to half-site sequence specificity. In addition, we report that at least two domains amino terminal to the core basic region are required for VBP to bind to the full spectrum of PAR target sites. Thus, whereas direct base contacts may be restricted to basic-region residues (as indicated by GCN4-DNA crystal structures), several other domains also influence the DNA-binding specificity of PAR bZIP proteins.
Collapse
Affiliation(s)
- N B Haas
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | | | |
Collapse
|
22
|
Abstract
EmBP-1 is a wheat DNA binding protein of the basic leucine zipper (bZIP) class of transcription factors implicated in the mechanisms of abscisic acid mediated gene activation. Understanding the role of EmBP-1 in regulating gene transcription requires elucidation of its DNA binding specificity. The binding of EmBP-1 was studied using gel shift selection of DNA from random sequence pools. DNA binding sites were identified by sequencing of a selected pool and by cloning and sequencing individual sites. The binding sites were compared by mobility shift assay and DNase I footprinting, which show that EmBP-1 binds to a family of sequences with varying degrees of affinity. The highest affinity site bound by EmBP-1 is the palindrome GCCACGTGGC. EmBP-1 also binds several other sequences with high affinity, however most of these are asymmetric. While nearly all sequences bound by EmBP-1 contain an ACGT core sequence, EmBP-1 can also bind at least two sites with altered cores. These results provide a basis for comparing the DNA binding specificity of EmBP-1 with those of other plant bZIP proteins and provide insight into the possible target sites which EmBP-1 might bind in vivo.
Collapse
Affiliation(s)
- X Niu
- Department of Horticulture, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
23
|
Suckow M, Schwamborn K, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B. Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucleic Acids Res 1994; 22:4395-404. [PMID: 7971270 PMCID: PMC308472 DOI: 10.1093/nar/22.21.4395] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two residues are invariant in all bZip basic regions: asparagine -18 and arginine -10 (we define the first leucine of the leucine zipper of GCN4 as +1). X-ray structures of two specific GCN4-DNA complexes (Ellenberger et al., Cell, 71, 1223-1237, 1992; König & Richmond, J. Mol. Biol., 233, 139-154, 1993) demonstrate the involvement of both residues in specific base pair recognition. We replaced either asparagine -18 or arginine -10 with all other amino acids and tested the DNA binding properties of the resulting mutant peptides by gel mobility shift assays. Peptides with histidine -18 or tyrosine -10 bind with changed specificities to variants of the ATF/CREB site 5'A4T3G2A1C0*G0'T1'C2'A3'T4'3' with symmetric exchanges in positions 2/2' or 0/0', respectively. The double mutant with histidine -18 and tyrosine -10 combines the features of the parental single mutants and binds specifically to the respective double exchange target. Furthermore, the tyrosine -10 mutant clearly prefers the palindrome 5'ATGATATCAT3' over the corresponding pseudo-palindrome 5'ATGATTCA-T3', whereas the lysine -10 mutant binds better to the pseudo-palindromic AP1 site 5'ATGACTCAT3' than to the palindromic ATF/CREB site. Thus, although invariant within natural bZip proteins, asparagine -18 or arginine -10 can be functionally replaced by other amino acids, and their replacement can lead to new DNA binding specificities.
Collapse
Affiliation(s)
- M Suckow
- Institut für Genetik der Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
24
|
Suckow M, Madan A, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B. Creating new DNA binding specificities in the yeast transcriptional activator GCN4 by combining selected amino acid substitutions. Nucleic Acids Res 1994; 22:2198-208. [PMID: 8036145 PMCID: PMC523674 DOI: 10.1093/nar/22.12.2198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The specificity of the GCN4/DNA complex is mediated by a complicated network of interactions between the basic regions of both GCN4 monomers and their target halfsites. According to X-ray analyses (1, 2) one particular thymine of the target sequence is recognized by serine -11 and alanine -15 (we define the leucine in the first d-position of the heptad repeats as +1). We replaced serine -11 or alanine -15 with all other amino acids and analysed the DNA binding properties of the resulting stable GCN4 derivatives by electrophoretic mobility shift assays. Among these, mutants with tryptophan in position -11, or glutamic acid and glutamine in position -15, differ significantly from GCN4 in their DNA binding specificities. We then constructed selected double mutants, which differ from GCN4 in positions -11, -15 or -14 (3) of the basic region. The double mutants with tryptophan in position -11 and asparagine or serine in position -14 show drastically altered DNA binding specificities, presumably due to additive effects.
Collapse
Affiliation(s)
- M Suckow
- Institut für Genetik, Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
25
|
Yeast intragenic transcriptional control: activation and repression sites within the coding region of the Saccharomyces cerevisiae LPD1 gene. Mol Cell Biol 1994. [PMID: 8264590 DOI: 10.1128/mcb.14.1.214] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.
Collapse
|
26
|
Sinclair DA, Kornfeld GD, Dawes IW. Yeast intragenic transcriptional control: activation and repression sites within the coding region of the Saccharomyces cerevisiae LPD1 gene. Mol Cell Biol 1994; 14:214-25. [PMID: 8264590 PMCID: PMC358372 DOI: 10.1128/mcb.14.1.214-225.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.
Collapse
Affiliation(s)
- D A Sinclair
- School of Biochemistry and Molecular Genetics, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
27
|
Identification of C/EBP basic region residues involved in DNA sequence recognition and half-site spacing preference. Mol Cell Biol 1993. [PMID: 8413284 DOI: 10.1128/mcb.13.11.6919] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C/EBP and GCN4 are basic region-leucine zipper (bZIP) DNA-binding proteins that recognize the dyad-symmetric sequences ATTGCGCAAT and ATGAGTCAT, respectively. The sequence specificities of these and other bZIP proteins are determined by their alpha-helical basic regions, which are related at the primary sequence level. To identify amino acids that are responsible for the different DNA sequence specificities of C/EBP and GCN4, two kinds of hybrid proteins were constructed: GCN4-C/EBP chimeras fused at various positions in the basic region and substitution mutants in which GCN4 basic region amino acids were replaced by the corresponding residues from C/EBP. On the basis of the DNA-binding characteristics of these hybrid proteins, three residues that contribute significantly to the differences in C/EBP and GCN4 binding specificity were defined. These residues are clustered along one face of the basic region alpha helix. Two of these specificity residues were not identified as DNA-contacting amino acids in a recently reported crystal structure of a GCN4-DNA complex, suggesting that the residues used by C/EBP and GCN4 to make base contacts are not identical. A random binding site selection procedure also was used to define the optimal recognition sequences for three of the GCN4-C/EBP fusion proteins. These experiments identify an element spanning the hinge region between the basic region and leucine zipper domains that dictates optimal half-site spacing (either directly abutted for C/EBP or overlapping by one base pair for GCN4) in high-affinity binding sites for these two proteins.
Collapse
|
28
|
Johnson PF. Identification of C/EBP basic region residues involved in DNA sequence recognition and half-site spacing preference. Mol Cell Biol 1993; 13:6919-30. [PMID: 8413284 PMCID: PMC364754 DOI: 10.1128/mcb.13.11.6919-6930.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
C/EBP and GCN4 are basic region-leucine zipper (bZIP) DNA-binding proteins that recognize the dyad-symmetric sequences ATTGCGCAAT and ATGAGTCAT, respectively. The sequence specificities of these and other bZIP proteins are determined by their alpha-helical basic regions, which are related at the primary sequence level. To identify amino acids that are responsible for the different DNA sequence specificities of C/EBP and GCN4, two kinds of hybrid proteins were constructed: GCN4-C/EBP chimeras fused at various positions in the basic region and substitution mutants in which GCN4 basic region amino acids were replaced by the corresponding residues from C/EBP. On the basis of the DNA-binding characteristics of these hybrid proteins, three residues that contribute significantly to the differences in C/EBP and GCN4 binding specificity were defined. These residues are clustered along one face of the basic region alpha helix. Two of these specificity residues were not identified as DNA-contacting amino acids in a recently reported crystal structure of a GCN4-DNA complex, suggesting that the residues used by C/EBP and GCN4 to make base contacts are not identical. A random binding site selection procedure also was used to define the optimal recognition sequences for three of the GCN4-C/EBP fusion proteins. These experiments identify an element spanning the hinge region between the basic region and leucine zipper domains that dictates optimal half-site spacing (either directly abutted for C/EBP or overlapping by one base pair for GCN4) in high-affinity binding sites for these two proteins.
Collapse
Affiliation(s)
- P F Johnson
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| |
Collapse
|
29
|
Kim J, Tzamarias D, Ellenberger T, Harrison SC, Struhl K. Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc Natl Acad Sci U S A 1993; 90:4513-7. [PMID: 8506292 PMCID: PMC46542 DOI: 10.1073/pnas.90.10.4513] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The related AP-1 and ATF/CREB families of transcriptional regulatory proteins bind as dimers to overlapping or adjacent DNA half-sites by using a bZIP structural motif. Using genetic selections, we isolated derivatives of yeast GCN4 that affect DNA-binding specificity at particular positions of the AP-1 target sequence. In general, altered DNA-binding specificity results from the substitution of larger hydrophobic amino acids for GCN4 residues that contact base pairs. However, in several cases, DNA binding by the mutant proteins cannot be simply explained in terms of the GCN4-AP-1 structure; movement of the protein and/or DNA structural changes are required to accommodate the amino acid substitutions. The quintet of GCN4 residues that make base-pair contacts do not entirely determine DNA-binding specificity because these residues are highly conserved in the bZIP family, yet many of the bZIP proteins bind to distinct DNA sites. The alpha-helical fork between the GCN4 DNA-binding and dimerization surfaces is important for half-site spacing preferences, because mutations in the fork alter the relative affinity for AP-1 and ATF/CREB sites. The basic region in the protein-DNA complex is a long isolated alpha-helix, with no constraints from other parts of a folded domain. From all of these considerations, we suggest that small shifts in position and orientation or local deformations in the alpha-helical backbone distinguish one bZIP complex from another.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
30
|
Suckow M, von Wilcken-Bergmann B, Müller-Hill B. The DNA binding specificity of the basic region of the yeast transcriptional activator GCN4 can be changed by substitution of a single amino acid. Nucleic Acids Res 1993; 21:2081-6. [PMID: 8502548 PMCID: PMC309468 DOI: 10.1093/nar/21.9.2081] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The X-ray structure of a GCN4 DNA complex (1) shows, that specific DNA binding of the GCN4 basic region is mediated by a complicated network of base pair and DNA backbone contacts. According to the X-ray structure, alanine -14 of the basic region of GCN4 (we define the first leucine of the leucine zipper as +1) makes a hydrophobic contact to the methyl group of the thymine next to the center of the GCN4 binding site 5' ATGACTCAT 3'. We tested the DNA binding properties of the nineteen derivatives of GCN4, which carry all possible amino acids in position -14 of the basic region. Substitution of alanine -14 of GCN4 by either asparagine or cysteine changes the DNA binding specificity. Serine in this position broadens the specificity for position 1 of the target, whereas other amino acids either retain or decrease GCN4 specificity.
Collapse
Affiliation(s)
- M Suckow
- Institut für Genetik, Universität zu Köln, Germany
| | | | | |
Collapse
|
31
|
Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8384304 DOI: 10.1128/mcb.13.4.2091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.
Collapse
|
32
|
Türkel S, Farabaugh PJ. Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:2091-103. [PMID: 8384304 PMCID: PMC359530 DOI: 10.1128/mcb.13.4.2091-2103.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.
Collapse
Affiliation(s)
- S Türkel
- Department of Biological Sciences, University of Maryland, Catonsville 21228
| | | |
Collapse
|
33
|
Cuenoud B, Schepartz A. Design of a metallo-bZIP protein that discriminates between CRE and AP1 target sites: selection against AP1. Proc Natl Acad Sci U S A 1993; 90:1154-9. [PMID: 8433977 PMCID: PMC45832 DOI: 10.1073/pnas.90.4.1154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The bZIP class of dimeric DNA binding proteins is characterized by a motif containing two discrete domains: a DNA contact domain defined by conserved basic and hydrophobic residues (basic domain), and a dimerization domain identified by a heptad repeat of leucine residues (zipper domain). Molecules are constructed in which the GCN4 dimerization domain is replaced by a series of stereochemically defined metal ion complexes that alter systematically the relative orientation of the basic domain peptides. Both the affinity and the specificity of DNA binding are modulated by seemingly small changes in metal complex stereochemistry. Although GCN4 binds CRE (ATGACGTCAT) and AP1 (ATGACTCAT) target sites with comparable affinity, one metallo-bZIP peptide ([G29Ts]2Fe) prefers the CRE by 4 kcal.mol-1 (1 cal = 4.184 J). Competition experiments performed with several DNAs demonstrate that discrimination between CRE and AP1 is dominated by selection against the AP1 site.
Collapse
Affiliation(s)
- B Cuenoud
- Department of Chemistry, Yale University, New Haven, CT 06511-8118
| | | |
Collapse
|
34
|
Fission yeast pap1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol Cell Biol 1992. [PMID: 1448080 DOI: 10.1128/mcb.12.12.5474] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast pap1+ gene encodes an AP-1-like transcription factor that contains a leucine zipper motif. We identified a target gene of pap1, the p25 gene. The 5' upstream region of the p25 gene contains an AP-1 site, and by DNase I footprint analysis, we showed that the pap1 protein binds to the AP-1 site as well as to a 14-bp palindrome sequence. p25 is overproduced when the pap1+ gene is overexpressed, whereas p25 is not produced at all in the pap1 deletion mutant. p25 was previously found to be overproduced in strains carrying cold-sensitive crm1 mutations whose gene product is essential for viability and is thought to play an important role in maintenance of a proper chromosomal architecture. Deletion and site-directed mutagenesis of sequences upstream of the p25 gene demonstrated that the AP-1 site as well as the palindrome sequence are crucial for transcriptional activation either by pap1 overproduction or by the cold-sensitive crm1 mutation; pap1+ is apparently negatively regulated by crm1+. Moreover, we found that cold-sensitive crm1 mutations are suppressed by the deletion of pap1+, further indicating a close relationship between crm1+ and pap1+. The crm1 protein is highly conserved; the budding yeast homolog, CRM1, which complements the fission yeast cold-sensitive crm1 mutation, was isolated and found to also be essential for viability. These results suggest the functional importance of chromosome structure on the regulation of gene expression through the pap1 transcription factor.
Collapse
|
35
|
Abstract
Members of the mammalian ATF/CREB family of transcription factors, which are associated with regulation by cyclic AMP and viral oncogenes, bind common DNA sequences (consensus TGACGTCA) via a bZIP domain. In the yeast Saccharomyces cerevisiae, ATF/CREB-like sequences confer either repression or activation of transcription, depending on the promoter context. By isolating mutations that alleviate the repression mediated by ATF/CREB sites, we define a new yeast gene, ACR1, which encodes an ATF/CREB transcriptional repressor. ACR1 contains a bZIP domain that is necessary for homodimer formation and specific DNA binding to an ATF/CREB site. Within the bZIP domain, ACR1 most strongly resembles the mammalian cyclic AMP-responsive transcriptional regulators CREB and CREM; it is less similar to GCN4 and YAP1, two previously described yeast bZIP transcriptional activators that recognize the related AP-1 sequence (consensus TGACTCA). Interestingly, deletion of the ACR1 gene causes increased transcription through ATF/CREB sites that does not depend on GCN4 or YAP1. Moreover, extracts from acr1 deletion strains contain one or more ATF/CREB-like DNA-binding activities. These genetic and biochemical observations suggest that S. cerevisiae contains a family of ATF/CREB proteins that function as transcriptional repressors or activators.
Collapse
|
36
|
Abstract
Members of the mammalian ATF/CREB family of transcription factors, which are associated with regulation by cyclic AMP and viral oncogenes, bind common DNA sequences (consensus TGACGTCA) via a bZIP domain. In the yeast Saccharomyces cerevisiae, ATF/CREB-like sequences confer either repression or activation of transcription, depending on the promoter context. By isolating mutations that alleviate the repression mediated by ATF/CREB sites, we define a new yeast gene, ACR1, which encodes an ATF/CREB transcriptional repressor. ACR1 contains a bZIP domain that is necessary for homodimer formation and specific DNA binding to an ATF/CREB site. Within the bZIP domain, ACR1 most strongly resembles the mammalian cyclic AMP-responsive transcriptional regulators CREB and CREM; it is less similar to GCN4 and YAP1, two previously described yeast bZIP transcriptional activators that recognize the related AP-1 sequence (consensus TGACTCA). Interestingly, deletion of the ACR1 gene causes increased transcription through ATF/CREB sites that does not depend on GCN4 or YAP1. Moreover, extracts from acr1 deletion strains contain one or more ATF/CREB-like DNA-binding activities. These genetic and biochemical observations suggest that S. cerevisiae contains a family of ATF/CREB proteins that function as transcriptional repressors or activators.
Collapse
Affiliation(s)
- A C Vincent
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
37
|
Toda T, Shimanuki M, Saka Y, Yamano H, Adachi Y, Shirakawa M, Kyogoku Y, Yanagida M. Fission yeast pap1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol Cell Biol 1992; 12:5474-84. [PMID: 1448080 PMCID: PMC360485 DOI: 10.1128/mcb.12.12.5474-5484.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The fission yeast pap1+ gene encodes an AP-1-like transcription factor that contains a leucine zipper motif. We identified a target gene of pap1, the p25 gene. The 5' upstream region of the p25 gene contains an AP-1 site, and by DNase I footprint analysis, we showed that the pap1 protein binds to the AP-1 site as well as to a 14-bp palindrome sequence. p25 is overproduced when the pap1+ gene is overexpressed, whereas p25 is not produced at all in the pap1 deletion mutant. p25 was previously found to be overproduced in strains carrying cold-sensitive crm1 mutations whose gene product is essential for viability and is thought to play an important role in maintenance of a proper chromosomal architecture. Deletion and site-directed mutagenesis of sequences upstream of the p25 gene demonstrated that the AP-1 site as well as the palindrome sequence are crucial for transcriptional activation either by pap1 overproduction or by the cold-sensitive crm1 mutation; pap1+ is apparently negatively regulated by crm1+. Moreover, we found that cold-sensitive crm1 mutations are suppressed by the deletion of pap1+, further indicating a close relationship between crm1+ and pap1+. The crm1 protein is highly conserved; the budding yeast homolog, CRM1, which complements the fission yeast cold-sensitive crm1 mutation, was isolated and found to also be essential for viability. These results suggest the functional importance of chromosome structure on the regulation of gene expression through the pap1 transcription factor.
Collapse
Affiliation(s)
- T Toda
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nehlin JO, Carlberg M, Ronne H. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res 1992; 20:5271-8. [PMID: 1437546 PMCID: PMC334331 DOI: 10.1093/nar/20.20.5271] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.
Collapse
Affiliation(s)
- J O Nehlin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
39
|
van Heeckeren WJ, Sellers JW, Struhl K. Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4. Nucleic Acids Res 1992; 20:3721-4. [PMID: 1641337 PMCID: PMC334023 DOI: 10.1093/nar/20.14.3721] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Yeast GCN4 belongs to the class of eukaryotic transcription factors whose bZIP DNA-binding domains dimerize via a leucine zipper motif that structurally resembles a coiled coil. The leucine zipper contains 4-5 highly conserved leucine residues spaced exactly 7 residues apart that are located within the alpha-helical hydrophobic interface between protein monomers. Here, we investigate the role of the four canonical leucines in the GCN4 leucine zipper by analyzing a series of mutated derivatives for their ability to activate transcription in vivo and to bind DNA in vitro. The GCN4 leucine zipper is surprisingly tolerant of mutations, with a wide variety of single substitutions at any of the four leucines including basic and acidic amino acids behaving indistinguishably from wild-type GCN4. Moreover, some derivatives containing two leucine substitutions display detectable though reduced function. These results indicate that other residues within the coiled coil are crucial for efficient dimerization, and they suggest that some eukaryotic transcriptional regulatory proteins lacking the conserved leucine repeat will dimerize through a structurally homologous motif. Interestingly, our results differ in several respects from those obtained by analyzing mutations in the GCN4 leucine zipper in the context of a lambda repressor-GCN4 zipper hybrid protein. These apparent differences may reflect a functional interrelationship between the leucine zipper and basic region subdomains for DNA-binding by bZIP proteins.
Collapse
Affiliation(s)
- W J van Heeckeren
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
40
|
Abstract
The mercury resistance operon, mer, of the transposon Tn21 is transcribed from two overlapping divergent promoters: PR for the regulatory gene, merR, and PTPCAD for the structural genes, merTPCAD. Transcription of merTPCAD is repressed in the absence of Hg(II) and activated in the presence of Hg(II) by the regulatory protein, MerR. In addition, MerR represses its own expression regardless of the presence of Hg(II). MerR binds as a dimer to a single region of dyad symmetry lying between the -35 and -10 hexamers of PTPCAD. Analysis of the expression of transcriptional fusions to hydroxylamine- and oligonucleotide-generated mutants of this divergent operator-promoter region identified key bases involved in MerR-dependent repression of PTPCAD and of PR and in activation of PTPCAD. Six of the seven mutants affecting the palindromic region were altered in their ability to bind the MerR protein in vitro as measured by fragment retardation assays. These differences in in vitro MerR binding correlated well with the in vivo measurements of repression or of activation. Bases identified as functionally relevant by this genetic analysis coincide extensively with those previously identified as relevant via in vivo footprinting. Four major points emerge from this analysis: (i) transition and transversion mutations within the spacer between the -10 and -35 hexamers of PTPCAD generally have little effect on the MerR-independent (i.e., unregulated) expression of either promoter; (ii) alteration of certain bases in the MerR-binding dyad affects repression of PTPCAD differently than repression of PR; (iii) certain dyad changes can impair activation of PTPCAD more severely than repression of this promoter; and (iv) mutations in the -10 hexamer of PTPCAD which also effect PR expression define one of two potential -10 hexamers in PR as actually functional in vivo.
Collapse
Affiliation(s)
- S J Park
- Department of Microbiology, University of Georgia, Athens 30602
| | | | | |
Collapse
|
41
|
Tzamarias D, Pu WT, Struhl K. Mutations in the bZIP domain of yeast GCN4 that alter DNA-binding specificity. Proc Natl Acad Sci U S A 1992; 89:2007-11. [PMID: 1549559 PMCID: PMC48585 DOI: 10.1073/pnas.89.6.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bZIP class of eukaryotic transcriptional regulators utilize a distinct structural motif that consists of a leucine zipper that mediates dimerization and an adjacent basic region that directly contacts DNA. Although models of the protein-DNA complex have been proposed, the basis of DNA-binding specificity is essentially unknown. By genetically selecting for derivatives of yeast GCN4 that activate transcription from promoters containing mutant binding sites, we isolate an altered-specificity mutant in which the invariant asparagine in the basic region of bZIP proteins (Asn-235) has been changed to tryptophan. Wild-type GCN4 binds the optimal site (ATGACTCAT) with much higher affinity than the mutant site (TTGACTCAA), whereas the Trp-235 protein binds these sites with similar affinity. Moreover, the Trp-235, Ala-235, and Gln-235 derivatives differ from GCN4 in their strong discrimination against GTGACTCAC. These results suggest a direct interaction between Asn-235 and the +/- 4 position of the DNA target site and are discussed in terms of the scissors-grip and induced-fork models of bZIP proteins.
Collapse
Affiliation(s)
- D Tzamarias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
42
|
Pu WT, Struhl K. Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines: the GCN4-DNA complex. Nucleic Acids Res 1992; 20:771-5. [PMID: 1542572 PMCID: PMC312016 DOI: 10.1093/nar/20.4.771] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a novel uracil interference method for examining protein contacts with the 5-methyl group of thymines. The protein of interest is incubated with target DNA containing randomly distributed deoxyuracil substitutions that is generated by carrying out the polymerase chain reaction in the presence of a mixture of TTP and dUTP. After separating DNA-protein complexes away from unbound DNA, the locations of deoxyuracil residues that either do or do not interfere with DNA-binding are determined by cleavage with uracil-N-glycosylase followed by piperidine. Using this uracil interference assay, we show that the methyl groups of the four core thymines, but not the two peripheral thymines, of the optimal binding site (ATG-ACTCAT) are important for high affinity binding of GCN4. Similar, but not identical, results are obtained using KMnO4 interference, another method used for studying protein-DNA interactions involving thymine residues. These observations strongly suggest that GCN4 directly contacts the 5-methyl groups of the four core thymines that lie in the major groove of the target DNA. Besides providing specific structural information about protein-DNA complexes, uracil interference should also be useful for identifying DNA-binding proteins and their target sites in eukaryotic promoter regions.
Collapse
Affiliation(s)
- W T Pu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
43
|
In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. Mol Cell Biol 1991. [PMID: 1922041 DOI: 10.1128/mcb.11.10.5212] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.
Collapse
|
44
|
Highly conserved residues in the bZIP domain of yeast GCN4 are not essential for DNA binding. Mol Cell Biol 1991. [PMID: 1922025 DOI: 10.1128/mcb.11.10.4918] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast GCN4 and the Jun oncoprotein are transcriptional activators that bind DNA via a bZIP domain consisting of a leucine zipper dimerization element and an adjacent basic region that directly contacts DNA. Two highly conserved alanines (Ala-238 and Ala-239 in GCN4) and an invariant asparagine (Asn-235) in the basic region have been proposed to play important roles in DNA sequence recognition by bZIP proteins. Surprisingly, these conserved residues can be functionally replaced in GCN4 and in a derivative containing the Jun basic region (Jun-GCN4). The ability of an amino acid to functionally substitute for Asn-235 does not correlate with its preference for assuming the N-cap position of an alpha helix. This finding argues against the proposal of the scissors grip model that the invariant asparagine forms an N cap that permits the basic region to bend sharply and wrap around the DNA. In contrast to a prediction of the induced fork model, the pattern of functional substitutions of the conserved alanines together with the results of uracil interference experiments suggests that Ala-238 and Ala-239 do not make base-specific DNA contacts. Finally, the Jun-GCN4 chimeric proteins appear much more active in vivo than expected from their DNA-binding properties in vitro. The mechanistic and evolutionary implications of these results are discussed.
Collapse
|
45
|
Pu WT, Struhl K. Highly conserved residues in the bZIP domain of yeast GCN4 are not essential for DNA binding. Mol Cell Biol 1991; 11:4918-26. [PMID: 1922025 PMCID: PMC361466 DOI: 10.1128/mcb.11.10.4918-4926.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast GCN4 and the Jun oncoprotein are transcriptional activators that bind DNA via a bZIP domain consisting of a leucine zipper dimerization element and an adjacent basic region that directly contacts DNA. Two highly conserved alanines (Ala-238 and Ala-239 in GCN4) and an invariant asparagine (Asn-235) in the basic region have been proposed to play important roles in DNA sequence recognition by bZIP proteins. Surprisingly, these conserved residues can be functionally replaced in GCN4 and in a derivative containing the Jun basic region (Jun-GCN4). The ability of an amino acid to functionally substitute for Asn-235 does not correlate with its preference for assuming the N-cap position of an alpha helix. This finding argues against the proposal of the scissors grip model that the invariant asparagine forms an N cap that permits the basic region to bend sharply and wrap around the DNA. In contrast to a prediction of the induced fork model, the pattern of functional substitutions of the conserved alanines together with the results of uracil interference experiments suggests that Ala-238 and Ala-239 do not make base-specific DNA contacts. Finally, the Jun-GCN4 chimeric proteins appear much more active in vivo than expected from their DNA-binding properties in vitro. The mechanistic and evolutionary implications of these results are discussed.
Collapse
Affiliation(s)
- W T Pu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
46
|
Jehn B, Niedenthal R, Hegemann JH. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. Mol Cell Biol 1991; 11:5212-21. [PMID: 1922041 PMCID: PMC361563 DOI: 10.1128/mcb.11.10.5212-5221.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.
Collapse
Affiliation(s)
- B Jehn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | |
Collapse
|
47
|
Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 1991. [PMID: 1903837 DOI: 10.1128/mcb.11.6.2952] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FUS1 gene of Saccharomyces cerevisiae is transcribed in a and alpha cells, not in a/alpha diploids, and its transcription increases dramatically when haploid cells are exposed to the appropriate mating pheromone. In addition, FUS1 transcription is absolutely dependent on STE4, STE5, STE7, STE11, and STE12, genes thought to encode components of the pheromone response pathway. We now have determined that the pheromone response element (PRE), which occurs in four copies within the FUS1 upstream region, functions as the FUS1 upstream activation sequence (UAS) and is responsible for all known aspects of FUS1 regulation. In particular, deletion of 55 bp that includes the PREs abolished all transcription, and a 139-bp fragment that includes the PREs conferred FUS1-like expression to a CYC1-lacZ reporter gene. Moreover, three or four copies of a synthetic PRE closely mimicked the activity conferred by the 139-bp fragment, and even a single copy of PRE conferred a trace of activity that was haploid specific and pheromone inducible. In the FUS1 promoter context, four copies of the synthetic PRE inserted at the site of the 55-bp deletion restored full FUS1 transcription. Sequences upstream and downstream from the PRE cluster were important for maximal PRE-directed expression but, by themselves, did not have UAS activity. Other yeast genes with PREs, e.g., STE2 and BAR1, are more modestly inducible and have additional UAS elements contributing to the overall activity. In the FUS1 promoter, the PREs apparently act alone to confer activity that is highly stimulated by pheromone.
Collapse
|
48
|
Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger. Mol Cell Biol 1991. [PMID: 2005880 DOI: 10.1128/mcb.11.4.1777] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LAC9 protein of Kluyveromyces lactis is a transcriptional regulator of genes in the lactose-galactose regulon. To regulate transcription, LAC9 must bind to 17-bp upstream activator sequences (UASs) located in front of each target gene. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae, and the two proteins must bind DNA in a very similar manner. In this paper we show that high-affinity, sequence-specific binding by LAC9 dimers is mediated primarily by 3 bp at each end of the UAS: [Formula: see text]. In addition, at least one half of the UAS must have a GC or CG base pair at position 1 for high-affinity binding; LAC9 binds preferentially to the half containing the GC base pair. Bases at positions 2, 3, and 4 in each half of the UAS make little if any contribution to binding. The center base pair is not essential for high-affinity LAC9 binding when DNA-binding activity measured in vitro. However, the center base pair must play an essential role in vivo, since all natural UASs have 17, not 16, bp. Hydroxyl radical footprinting shows that a LAC9 dimer binds an unusually broad region on one face of the DNA helix. Because of the data, we suggest that LAC9 contacts positions 6, 7, and 8, both plus and minus, of the UAS, which are separated by more than one turn of the DNA helix, and twists part way around the DNA, thus protecting the broad region of the minor groove between the major-groove contacts.
Collapse
|
49
|
Halvorsen YD, Nandabalan K, Dickson RC. Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger. Mol Cell Biol 1991; 11:1777-84. [PMID: 2005880 PMCID: PMC359842 DOI: 10.1128/mcb.11.4.1777-1784.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The LAC9 protein of Kluyveromyces lactis is a transcriptional regulator of genes in the lactose-galactose regulon. To regulate transcription, LAC9 must bind to 17-bp upstream activator sequences (UASs) located in front of each target gene. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae, and the two proteins must bind DNA in a very similar manner. In this paper we show that high-affinity, sequence-specific binding by LAC9 dimers is mediated primarily by 3 bp at each end of the UAS: [Formula: see text]. In addition, at least one half of the UAS must have a GC or CG base pair at position 1 for high-affinity binding; LAC9 binds preferentially to the half containing the GC base pair. Bases at positions 2, 3, and 4 in each half of the UAS make little if any contribution to binding. The center base pair is not essential for high-affinity LAC9 binding when DNA-binding activity measured in vitro. However, the center base pair must play an essential role in vivo, since all natural UASs have 17, not 16, bp. Hydroxyl radical footprinting shows that a LAC9 dimer binds an unusually broad region on one face of the DNA helix. Because of the data, we suggest that LAC9 contacts positions 6, 7, and 8, both plus and minus, of the UAS, which are separated by more than one turn of the DNA helix, and twists part way around the DNA, thus protecting the broad region of the minor groove between the major-groove contacts.
Collapse
Affiliation(s)
- Y D Halvorsen
- Department of Biochemistry, University of Kentucky, Lexington 40536-0084
| | | | | |
Collapse
|