1
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
2
|
Budding Yeast SLX4 Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis. G3-GENES GENOMES GENETICS 2016; 6:2033-42. [PMID: 27172214 PMCID: PMC4938656 DOI: 10.1534/g3.116.029488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107 Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres. We observed an increase in uncontrolled CO formation only in a region near the centromere in the slx4∆ mutant. Interestingly, this phenomenon was not observed in the slx1∆, rad1∆, or rtt107∆ mutants. In addition, we observed a reduced number of DNA double-strand breaks (DSBs) and altered meiotic DSB distribution on chromosomes in the slx4∆ mutant. This suggests that the multi-functional Slx4 is required for proper CO formation and meiotic DSB formation.
Collapse
|
3
|
Abstract
Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, Ohio 43210 Human Genetics Institute, The Ohio State University Medical Center, Columbus, Ohio 43210 Physics Department, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
4
|
Klein Douwel D, Boonen RACM, Long DT, Szypowska AA, Räschle M, Walter JC, Knipscheer P. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 2014; 54:460-71. [PMID: 24726325 DOI: 10.1016/j.molcel.2014.03.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022]
Abstract
DNA interstrand crosslinks (ICLs), highly toxic lesions that covalently link the Watson and Crick strands of the double helix, are repaired by a complex, replication-coupled pathway in higher eukaryotes. The earliest DNA processing event in ICL repair is the incision of parental DNA on either side of the ICL ("unhooking"), which allows lesion bypass. Incisions depend critically on the Fanconi anemia pathway, whose activation involves ubiquitylation of the FANCD2 protein. Using Xenopus egg extracts, which support replication-coupled ICL repair, we show that the 3' flap endonuclease XPF-ERCC1 cooperates with SLX4/FANCP to carry out the unhooking incisions. Efficient recruitment of XPF-ERCC1 and SLX4 to the ICL depends on FANCD2 and its ubiquitylation. These data help define the molecular mechanism by which the Fanconi anemia pathway promotes a key event in replication-coupled ICL repair.
Collapse
Affiliation(s)
- Daisy Klein Douwel
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Rick A C M Boonen
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Anna A Szypowska
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Puck Knipscheer
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
5
|
Guo X, Jinks-Robertson S. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates. DNA Repair (Amst) 2013; 12:1053-61. [PMID: 24120148 DOI: 10.1016/j.dnarep.2013.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations.
Collapse
Affiliation(s)
- Xiaoge Guo
- Graduate Program in Pharmacology and Molecular Cancer Biology, Duke University, Durham, NC 27710, United States
| | | |
Collapse
|
6
|
Li F, Dong J, Eichmiller R, Holland C, Minca E, Prakash R, Sung P, Yong Shim E, Surtees JA, Eun Lee S. Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 2013; 32:461-72. [PMID: 23299942 DOI: 10.1038/emboj.2012.345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022] Open
Abstract
The Saccharomyces cerevisiae Rad1/Rad10 complex is a multifunctional, structure-specific endonuclease that processes UV-induced DNA lesions, recombination intermediates, and inter-strand DNA crosslinks. However, we do not know how Rad1/Rad10 recognizes these structurally distinct target molecules or how it is incorporated into the protein complexes capable of incising divergent substrates. Here, we have determined the order and hierarchy of assembly of the Rad1/Rad10 complex, Saw1, Slx4, and Msh2/Msh3 complex at a 3' tailed recombination intermediate. We found that Saw1 is a structure-specific DNA binding protein with high affinity for splayed arm and 3'-flap DNAs. By physical interaction, Saw1 facilitates targeting of Rad1 at 3' tailed substrates in vivo and in vitro, and enhances 3' tail cleavage by Rad1/Rad10 in a purified system in vitro. Our results allow us to formulate a model of Rad1/Rad10/Saw1 nuclease complex assembly and 3' tail removal in recombination.
Collapse
Affiliation(s)
- Fuyang Li
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
McNeil EM, Melton DW. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res 2012; 40:9990-10004. [PMID: 22941649 PMCID: PMC3488251 DOI: 10.1093/nar/gks818] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ERCC1–XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In this review, we focus on the protein–protein and protein–DNA interactions made by the ERCC1 and XPF proteins and discuss how these coordinate ERCC1–XPF in its various roles. In a number of different cancers, high expression of ERCC1 has been linked to a poor response to platinum-based chemotherapy. We discuss prospects for the development of DNA repair inhibitors that target the activity, stability or protein interactions of the ERCC1–XPF complex as a novel therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Ewan M McNeil
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
8
|
Rad10-YFP focus induction in response to UV depends on RAD14 in yeast. Acta Histochem 2011; 113:409-15. [PMID: 20546858 DOI: 10.1016/j.acthis.2010.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/20/2022]
Abstract
Rad14 is a DNA damage recognition protein in yeast Nucleotide Excision Repair (NER) and believed to function early in the cascade of events. The function of Rad14 presumably precedes that of the Rad1-Rad10 endonuclease complex, which functions in a downstream step incising DNA 5' to the site of DNA damage. We investigated whether recruitment of Rad10 to UV-induced DNA damage sites in live cells is dependent on Rad14 using fluorescence microscopy. Experiments were carried out using Saccharomyces cerevisiae strains in which the gene for Rad14 was fused to Cyan Fluorescent Protein (Rad14-CFP) and that of Rad10 was fused to Yellow Fluorescent Protein (Rad10-YFP). Rad14-CFP forms nuclear localized CFP fluorescent foci in response to UV irradiation with the peak induction occurring 15min post-irradiation. In contrast, Rad10-YFP foci form in response to UV with the peak induction occurring 2h post-irradiation. Recruitment of Rad14-CFP is not dependent on the RAD10 gene but Rad10-YFP is recruited to UV-induced YFP foci in a RAD14-dependent fashion. Time-lapse experiments indicate that Rad14-CFP foci are transient, typically persisting less than 6min. Together these data support the model that yeast NER protein assembly is step-wise whereas Rad14 required to recruit Rad10 and Rad14 involvement is transient.
Collapse
|
9
|
Gregg SQ, Robinson AR, Niedernhofer LJ. Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair (Amst) 2011; 10:781-91. [PMID: 21612988 DOI: 10.1016/j.dnarep.2011.04.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ERCC1-XPF is a structure-specific endonuclease required for nucleotide excision repair, interstrand crosslink repair, and the repair of some double-strand breaks. Mutations in ERCC1 or XPF cause xeroderma pigmentosum, XFE progeroid syndrome or cerebro-oculo-facio-skeletal syndrome, characterized by increased risk of cancer, accelerated aging and severe developmental abnormalities, respectively. This review provides a comprehensive overview of the health impact of ERCC1-XPF deficiency, based on these rare diseases and mouse models of them. This offers an understanding of the tremendous health impact of DNA damage derived from environmental and endogenous sources.
Collapse
Affiliation(s)
- Siobhán Q Gregg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
10
|
Arora S, Kothandapani A, Tillison K, Kalman-Maltese V, Patrick SM. Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair (Amst) 2010; 9:745-53. [PMID: 20418188 PMCID: PMC4331052 DOI: 10.1016/j.dnarep.2010.03.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 11/18/2022]
Abstract
Bulky cisplatin lesions are repaired primarily by nucleotide excision repair (NER), in which the structure specific endonuclease XPF-ERCC1 is a critical component. It is now known that the XPF-ERCC1 complex has repair functions beyond NER and plays a role in homologous recombination (HR). It has been suggested that expression of ERCC1 correlates with cisplatin drug resistance in non-small cell lung cancer (NSCLC). In our study, using NSCLC, ovarian, and breast cancer cells, we show that the XPF-ERCC1 complex is a valid target to increase cisplatin cytotoxicity and efficacy. We targeted XPF-ERCC1 complex by RNA interference and assessed the repair capacity of cisplatin intrastrand and interstrand crosslinks by ELISA and alkaline comet assay, respectively. We also assessed the repair of cisplatin-ICL-induced double-strand breaks (DSBs) by monitoring gamma-H2AX focus formation. Interestingly, XPF protein levels were significantly reduced following ERCC1 downregulation, but the converse was not observed. The transcript levels were unaffected suggesting that XPF protein stability is likely affected. The repair of both types of cisplatin-DNA lesions was decreased with downregulation of XPF, ERCC1 or both XPF-ERCC1. The ICL-induced DSBs persist in the absence of XPF-ERCC1. The suppression of the XPF-ERCC1 complex significantly decreases the cellular viability which correlates well with the decrease in DNA repair capacity. A double knockdown of XPF-ERCC1 displays the greatest level of cellular cytotoxicity when compared with XPF or ERCC1 alone. The difference in cytotoxicity observed is likely due to the level of total protein complex remaining. These data demonstrate that XPF-ERCC1 is a valid target to enhance cisplatin efficacy in cancer cells by affecting cisplatin-DNA repair pathways.
Collapse
Affiliation(s)
- Sanjeevani Arora
- Department of Biochemistry & Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Anbarasi Kothandapani
- Department of Biochemistry & Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Kristin Tillison
- Department of Biochemistry & Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Vivian Kalman-Maltese
- Department of Biochemistry & Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Steve M. Patrick
- Department of Biochemistry & Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
11
|
Manthey GM, Naik N, Bailis AM. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 2009; 4:e7488. [PMID: 19834615 PMCID: PMC2759526 DOI: 10.1371/journal.pone.0007488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nilan Naik
- Scripps College Post-Baccalaureate Premedical Program, Claremont, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong MQ, Ruse C, Yates JR, Russell P, Fuchs RP, McGowan CH, Gaillard PHL. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009; 138:78-89. [PMID: 19596236 DOI: 10.1016/j.cell.2009.06.029] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
Structure-specific endonucleases resolve DNA secondary structures generated during DNA repair and recombination. The yeast 5' flap endonuclease Slx1-Slx4 has received particular attention with the finding that Slx4 has Slx1-independent key functions in genome maintenance. Although Slx1 is a highly conserved protein in eukaryotes, no orthologs of Slx4 were reported other than in fungi. Here we report the identification of Slx4 orthologs in metazoa, including fly MUS312, essential for meiotic recombination, and human BTBD12, an ATM/ATR checkpoint kinase substrate. Human SLX1-SLX4 displays robust Holliday junction resolvase activity in addition to 5' flap endonuclease activity. Depletion of SLX1 and SLX4 results in 53BP1 foci accumulation and H2AX phosphorylation as well as cellular hypersensitivity to MMS. Furthermore, we show that SLX4 binds the XPF(ERCC4) and MUS81 subunits of the XPF-ERCC1 and MUS81-EME1 endonucleases and is required for DNA interstrand crosslink repair. We propose that SLX4 acts as a docking platform for multiple structure-specific endonucleases.
Collapse
Affiliation(s)
- Samira Fekairi
- Genome Instability and Carcinogenesis UPR3081 CNRS, Conventionné par l'Université d'Aix-Marseille 2, IGC, IMM 31 chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Erlich RL, Fry RC, Begley TJ, Daee DL, Lahue RS, Samson LD. Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 2008; 3:e3717. [PMID: 19005567 PMCID: PMC2579579 DOI: 10.1371/journal.pone.0003717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast strains lacking Anc1, a member of the YEATS protein family, are sensitive to several DNA damaging agents. The YEATS family includes two human genes that are common fusion partners with MLL in human acute leukemias. Anc1 is a member of seven multi-protein complexes involved in transcription, and the damage sensitivity observed in anc1Δ cells is mirrored in strains deleted for some other non-essential members of several of these complexes. Here we show that ANC1 is in the same epistasis group as SRS2 and RAD5, members of the postreplication repair (PRR) pathway, but has additive or synergistic interactions with several other members of this pathway. Although PRR is traditionally divided into an “error-prone” and an “error-free” branch, ANC1 is not epistatic with all members of either established branch, and instead defines a new error-free branch of the PRR pathway. Like several genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous mutation rates, including the expansion of (CAG)25 repeats. Anc1's role in the PRR pathway, as well as its role in suppressing triplet repeats, point to a possible mechanism for a protein of potential medical interest.
Collapse
Affiliation(s)
- Rachel L. Erlich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rebecca C. Fry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Thomas J. Begley
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Danielle L. Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert S. Lahue
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leona D. Samson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Li F, Dong J, Pan X, Oum JH, Boeke JD, Lee SE. Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 2008; 30:325-35. [PMID: 18471978 DOI: 10.1016/j.molcel.2008.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/29/2008] [Accepted: 02/27/2008] [Indexed: 11/18/2022]
Abstract
Elimination of a double-strand break (DSB) flanked by direct repeat sequences is mediated by single-strand annealing (SSA), which relies on a distinct set of gene products involving recombination, mismatch repair, and nucleotide excision repair. Here, we screened for yeast mutants defective in SSA with a plasmid-based SSA assay coupled to a barcode microarray readout. The screen identified Yal027Wp/Saw1 (single-strand annealing weakened 1) and Slx4 besides other known SSA proteins. Saw1 interacts physically with Rad1/Rad10, Msh2/Msh3, and Rad52 proteins, and cells lacking SLX4 or SAW1 accumulate recombination intermediates blocked at the Rad1/Rad10-dependent 3' flap cleavage step. Slx4 and Saw1 also contribute to the integrity of ribosomal DNA arrays. Saw1 mutants that fail to interact with Rad1, but retain interaction with Rad52 and Msh2, are defective in 3' flap removal and SSA repair. Deletion of SAW1 abolished association of Rad1 at SSA intermediates in vivo. We propose that Saw1 targets Rad1/Rad10 to Rad52-coated recombination intermediates.
Collapse
Affiliation(s)
- Fuyang Li
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
15
|
Paul C, Povey JE, Lawrence NJ, Selfridge J, Melton DW, Saunders PTK. Deletion of genes implicated in protecting the integrity of male germ cells has differential effects on the incidence of DNA breaks and germ cell loss. PLoS One 2007; 2:e989. [PMID: 17912366 PMCID: PMC1991594 DOI: 10.1371/journal.pone.0000989] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/12/2007] [Indexed: 01/01/2023] Open
Abstract
Background Infertility affects ∼20% of couples in Europe and in 50% of cases the problem lies with the male partner. The impact of damaged DNA originating in the male germ line on infertility is poorly understood but may increase miscarriage. Mouse models allow us to investigate how deficiencies in DNA repair/damage response pathways impact on formation and function of male germ cells. We have investigated mice with deletions of ERCC1 (excision repair cross-complementing gene 1), MSH2 (MutS homolog 2, involved in mismatch repair pathway), and p53 (tumour suppressor gene implicated in elimination of germ cells with DNA damage). Principal Findings We demonstrate for the first time that depletion of ERCC1 or p53 from germ cells results in an increased incidence of unrepaired DNA breaks in pachytene spermatocytes and increased numbers of caspase-3 positive (apoptotic) germ cells. Sertoli cell-only tubules were detected in testes from mice lacking expression of ERCC1 or MSH2 but not p53. The number of sperm recovered from epididymes was significantly reduced in mice lacking testicular ERCC1 and 40% of sperm contained DNA breaks whereas the numbers of sperm were not different to controls in adult Msh2 −/− or p53 −/− mice nor did they have significantly compromised DNA. Conclusions These data have demonstrated that deletion of Ercc1, Msh2 and p53 can have differential but overlapping affects on germ cell function and sperm production. These findings increase our understanding of the ways in which gene mutations can have an impact on male fertility.
Collapse
Affiliation(s)
- Catriona Paul
- Medical Research Council Human Reproductive Sciences Unit, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Joanne E. Povey
- Sir Alastair Currie Cancer Research United Kingdom Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Nicola J. Lawrence
- Sir Alastair Currie Cancer Research United Kingdom Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jim Selfridge
- Sir Alastair Currie Cancer Research United Kingdom Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David W. Melton
- Sir Alastair Currie Cancer Research United Kingdom Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, Queen's Medical Research Institute, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Jaspers NGJ, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR, Giglia-Mari G, Hoogstraten D, Kleijer WJ, Hoeijmakers JHJ, Vermeulen W. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet 2007; 80:457-66. [PMID: 17273966 PMCID: PMC1821117 DOI: 10.1086/512486] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/05/2007] [Indexed: 01/21/2023] Open
Abstract
Nucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two progeroid syndromes: Cockayne and trichothiodystrophy syndromes. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Mutations in XPF are associated with mild XP and rarely with progeria. Mutations in ERCC1 have not been reported. Here, we describe the first case of human inherited ERCC1 deficiency. Patient cells showed moderate hypersensitivity to ultraviolet rays and mitomycin C, yet the clinical features were very severe and, unexpectedly, were compatible with a diagnosis of cerebro-oculo-facio-skeletal syndrome. This discovery represents a novel complementation group of patients with defective NER. Further, the clinical severity, coupled with a relatively mild repair defect, suggests novel functions for ERCC1.
Collapse
|
17
|
Youds JL, O'Neil NJ, Rose AM. Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics 2006; 173:697-708. [PMID: 16547095 PMCID: PMC1526509 DOI: 10.1534/genetics.106.056879] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In C. elegans, DOG-1 prevents deletions that initiate in polyG/polyC tracts (G/C tracts), most likely by unwinding secondary structures that can form in G/C tracts during lagging-strand DNA synthesis. We have used the dog-1 mutant to assay the in vivo contribution of various repair genes to the maintenance of G/C tracts. Here we show that DOG-1 and the BLM ortholog, HIM-6, act synergistically during replication; simultaneous loss of function of both genes results in replicative stress and an increase in the formation of small deletions that initiate in G/C tracts. Similarly, we demonstrate that the C. elegans orthologs of the homologous recombination repair genes BARD1, RAD51, and XPF and the trans-lesion synthesis polymerases poleta and polkappa contribute to the prevention of deletions in dog-1 mutants. Finally, we provide evidence that the small deletions generated in the dog-1 background are not formed through homologous recombination, nucleotide excision repair, or nonhomologous end-joining mechanisms, but appear to result from a mutagenic repair mechanism acting at G/C tracts. Our data support the hypothesis that absence of DOG-1 leads to replication fork stalling that can be repaired by deletion-free or deletion-prone mechanisms.
Collapse
Affiliation(s)
- Jillian L Youds
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
18
|
Guzder SN, Sommers CH, Prakash L, Prakash S. Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 2006; 26:1135-41. [PMID: 16428464 PMCID: PMC1347044 DOI: 10.1128/mcb.26.3.1135-1141.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair (NER) in eukaryotes requires the assembly of a large number of protein factors at the lesion site which then coordinate the dual incision of the damaged DNA strand. However, the manner by which the different protein factors are assembled at the lesion site has remained unclear. Previously, we have shown that in the yeast Saccharomyces cerevisiae, NER proteins exist as components of different protein subassemblies: the Rad1-Rad10 nuclease, for example, forms a tight complex with the damage recognition protein Rad14, and the complex of Rad1-Rad10-Rad14 can be purified intact from yeast cells. As the Rad1-Rad10 nuclease shows no specificity for binding UV lesions in DNA, association with Rad14 could provide an effective means for the targeting of Rad1-Rad10 nuclease to damage sites in vivo. To test the validity of this idea, here we identify two rad1 mutations that render yeast cells as UV sensitive as the rad1Delta mutation but which have no effect on the recombination function of Rad1. From our genetic and biochemical studies with these rad1 mutations, we conclude that the ability of Rad1-Rad10 nuclease to associate in a complex with Rad14 is paramount for the targeting of this nuclease to lesion sites in vivo. We discuss the implications of these observations for the means by which the different NER proteins are assembled at the lesion site.
Collapse
Affiliation(s)
- Sami N Guzder
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
19
|
Radford SJ, Goley E, Baxter K, McMahan S, Sekelsky J. Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 2005; 170:1737-45. [PMID: 15944364 PMCID: PMC1255914 DOI: 10.1534/genetics.104.036178] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 04/29/2005] [Indexed: 01/28/2023] Open
Abstract
Drosophila MEI-9 is the catalytic subunit of a DNA structure-specific endonuclease required for nucleotide excision repair (NER). The enzymatic activity of this endonuclease during NER requires the presence of a second, noncatalytic subunit called ERCC1. In addition to its role in NER, MEI-9 is required for the generation of most meiotic crossovers. To better understand the role of MEI-9 in crossover formation, we report here the characterization of the Drosophila Ercc1 gene. We created an Ercc1 mutant through homologous gene targeting. We find that Ercc1 mutants are identical to mei-9 mutants in sensitivity to DNA-damaging agents, but have a less severe reduction in the number of meiotic crossovers. MEI-9 protein levels are reduced in Ercc1 mutants; however, overexpression of MEI-9 is not sufficient to restore meiotic crossing over in Ercc1 mutants. We conclude that MEI-9 can generate some meiotic crossovers in an ERCC1-independent manner.
Collapse
Affiliation(s)
- Sarah J Radford
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
20
|
Langston LD, Symington LS. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. EMBO J 2005; 24:2214-23. [PMID: 15920474 PMCID: PMC1150892 DOI: 10.1038/sj.emboj.7600698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/06/2005] [Indexed: 12/12/2022] Open
Abstract
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 4793; Fax: +1 212 305 1741; E-mail:
| |
Collapse
|
21
|
Hwang JY, Smith S, Myung K. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 2005; 169:1927-37. [PMID: 15687264 PMCID: PMC1449617 DOI: 10.1534/genetics.104.039768] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs) have been observed in many cancers. Previously, we have demonstrated many mechanisms for suppression of GCR formation in yeast. However, pathways that promote the formation of GCRs are not as well understood. Here, we present evidence that the Rad1-Rad10 endonuclease, which plays an important role in nucleotide excision and recombination repairs, has a novel role to produce GCRs. A mutation of either the RAD1 or the RAD10 gene reduced GCR rates in many GCR mutator strains. The inactivation of Rad1 or Rad10 in GCR mutator strains also slightly enhanced methyl methanesulfonate sensitivity. Although the GCRs induced by treatment with DNA-damaging agents were not reduced by rad1 or rad10 mutations, the translocation- and deletion-type GCRs created by a single double-strand break are mostly replaced by de novo telomere-addition-type GCR. Results presented here suggest that Rad1-Rad10 functions at different stages of GCR formation and that there is an alternative pathway for the GCR formation that is independent of Rad1-Rad10.
Collapse
Affiliation(s)
- Ji-Young Hwang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Langston LD, Symington LS. Gene targeting in yeast is initiated by two independent strand invasions. Proc Natl Acad Sci U S A 2004; 101:15392-7. [PMID: 15489271 PMCID: PMC524428 DOI: 10.1073/pnas.0403748101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the mechanism of gene targeting, we examined heteroduplex DNA (hDNA) formation during targeting of two separate chromosomal locations in Saccharomyces cerevisiae. We examined both replacement of the entire gene with a heterologous selectable marker and correction of a single base pair insertion mutation by gene targeting, and in all cases our results were consistent with separate strand invasion/resolution at the two ends of the targeting fragment as the dominant mechanism in wild-type cells. A small subset of transformants was consistent with assimilation of a single strand of targeting DNA encompassing both flanking homology regions and the marker into hDNA. hDNA formation during correction of a point mutation by targeted integration was conspicuously altered in a mismatch repair-deficient background and was consistent with single-strand invasion/assimilation without mismatch correction, confirming that gene targeting by this pathway is actively impeded in wild-type yeast. Finally, inversion of one targeted locus and mutation of an active origin of DNA replication at the other locus affected hDNA formation significantly, suggesting that formation of productive interactions between the targeting DNA and the targeted site in the chromosome is sensitive to local DNA dynamics.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies and Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
23
|
Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ, Hoeijmakers JHJ, Stavnezer J. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. ACTA ACUST UNITED AC 2004; 200:321-30. [PMID: 15280420 PMCID: PMC2211985 DOI: 10.1084/jem.20040052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3′ single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1−/− splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Sμ segments and recombined Sμ-Sγ3 segments cloned from Ercc1−/− splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1−/− cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S–S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NGJ, Beverloo HB, Hoeijmakers JHJ, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24:5776-87. [PMID: 15199134 PMCID: PMC480908 DOI: 10.1128/mcb.24.13.5776-5787.2004] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 01/07/2004] [Accepted: 04/06/2004] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 2004; 24:3198-212. [PMID: 15060144 PMCID: PMC381616 DOI: 10.1128/mcb.24.8.3198-3212.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/29/2003] [Accepted: 01/22/2004] [Indexed: 11/20/2022] Open
Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
26
|
Dong Z, Fasullo M. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 2003; 31:2576-85. [PMID: 12736307 PMCID: PMC156034 DOI: 10.1093/nar/gkg352] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his3-Delta3'::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.
Collapse
Affiliation(s)
- Zheng Dong
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | | |
Collapse
|
27
|
van Attikum H, Hooykaas PJJ. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:826-32. [PMID: 12560477 PMCID: PMC149203 DOI: 10.1093/nar/gkg183] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium tumefaciens delivers transferred DNA (T-DNA) into cells of plants and yeast. In plants, the T-DNA integrates at random positions into the genome by non-homologous recombination (NHR), whereas in yeast the T-DNA preferably integrates by homologous recombination (HR). Here we show that T-DNA integration by HR in yeast requires the recombination/repair proteins Rad51 and Rad52, but not Rad50, Mre11, Xrs2, Yku70 and Lig4. In the HR events a remarkable shift from insertion-type events to replacement events was observed in rad50, mre11 and xrs2 mutants. Residual integration in the rad51 mutant occurred predominantly by HR, whereas in the rad52 mutant integration occurred exclusively by NHR. Previously, we found that T-DNA integration by NHR is abolished in a yku70 mutant. Thus, Rad52 and Yku70 are the key regulators of T-DNA integration, channeling integration into either the HR or NHR pathway.
Collapse
Affiliation(s)
- Haico van Attikum
- Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | |
Collapse
|
28
|
Yıldız Ö, Majumder S, Kramer B, Sekelsky JJ. Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell 2002; 10:1503-9. [PMID: 12504024 PMCID: PMC3206640 DOI: 10.1016/s1097-2765(02)00782-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MEI-9 is the Drosophila homolog of the human structure-specific DNA endonuclease XPF. Like XPF, MEI-9 functions in nucleotide excision repair and interstrand crosslink repair. MEI-9 is also required to generate meiotic crossovers, in a function thought to be associated with resolution of Holliday junction intermediates. We report here the identification of MUS312, a protein that physically interacts with MEI-9. We show that mutations in mus312 elicit a meiotic phenotype identical to that of mei-9 mutants. A missense mutation in mei-9 that disrupts the MEI-9-MUS312 interaction abolishes the meiotic function of mei-9 but does not affect the DNA repair functions of mei-9. We propose that MUS312 facilitates resolution of meiotic Holliday junction intermediates by MEI-9.
Collapse
Affiliation(s)
- Özlem Yıldız
- Department of Biology University of North Carolina - Chapel Hill Chapel Hill, NC 27599
| | - Samarpan Majumder
- Department of Biology University of North Carolina - Chapel Hill Chapel Hill, NC 27599
| | - Benjamin Kramer
- Department of Biology University of North Carolina - Chapel Hill Chapel Hill, NC 27599
| | - Jeff J. Sekelsky
- Department of Biology University of North Carolina - Chapel Hill Chapel Hill, NC 27599
- Program in Molecular Biology and Biotechnology University of North Carolina - Chapel Hill Chapel Hill, NC 27599
- Corresponding author: phone: 919-843-9400; fax: 919-962-8472;
| |
Collapse
|
29
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
30
|
Dubest S, Gallego ME, White CI. Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 2002; 3:1049-54. [PMID: 12393748 PMCID: PMC1307604 DOI: 10.1093/embo-reports/kvf211] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a specific recombination assay, we show in the plant Arabidopsis thaliana that AtRad1 protein plays a role in the removal of non-homologous tails in homologous recombination. Recombination in the presence of non-homologous overhangs is reduced 11-fold in the atrad1 mutant compared with the wild-type plants. AtRad1p is the A. thaliana homologue of the human Xpf and Saccharomyces cerevisiae Rad1 proteins. Rad1p is a subunit of the Rad1p/Rad10p structure-specific endonuclease that acts in nucleotide excision repair and inter-strand crosslink repair. This endonuclease also plays a role in mitotic recombination to remove non-homologous, 3'-ended overhangs from recombination intermediates. The Arabidopsis atrad1 mutant (uvh1), unlike rad1 mutants known from other eukaryotes, is hypersensitive to ionizing radiation. This last observation may indicate a more important role for the Rad1/Rad10 endonuclease in recombination in plants. This is the first direct demonstration of the involvement of AtRad1p in homologous recombination in plants.
Collapse
Affiliation(s)
- Sandra Dubest
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
| | - Maria E. Gallego
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
| | - Charles I. White
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 ave. des Landais, 63177 Aubière, France
- Tel: +33 4 73 40 79 78; Fax: +33 4 73 40 77 77;
| |
Collapse
|
31
|
Manthey GM, Bailis AM. Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:5347-56. [PMID: 12101230 PMCID: PMC133931 DOI: 10.1128/mcb.22.15.5347-5356.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, null alleles of several DNA repair and recombination genes confer defects in recombination that grow more severe with decreasing sequence length, indicating that they are required for short-sequence recombination (SSR). RAD1 and RAD10, which encode the subunits of the structure-specific endonuclease Rad1/10, are critical for SSR. MRE11, RAD50, and XRS2, which encode the subunits of M/R/X, another complex with nuclease activity, are also crucially important. Genetic evidence suggests that Rad1/10 and M/R/X act on the same class of substrates during SSR. MSH2 and MSH3, which encode subunits of Msh2/3, a complex active during mismatch repair and recombination, are also important for SSR but play a more restricted role. Additional evidence suggests that SSR is distinct from nonhomologous end joining and is superimposed upon basal homologous recombination.
Collapse
Affiliation(s)
- Glenn M Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010-0269, USA
| | | |
Collapse
|
32
|
Garfinkel DJ, Bailis AM. Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems. J Biomed Biotechnol 2002; 2:55-60. [PMID: 12488584 PMCID: PMC153785 DOI: 10.1155/s1110724302201023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.
Collapse
Affiliation(s)
- David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
33
|
Selfridge J, Hsia KT, Redhead NJ, Melton DW. Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene. Nucleic Acids Res 2001; 29:4541-50. [PMID: 11713303 PMCID: PMC92547 DOI: 10.1093/nar/29.22.4541] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ERCC1 gene is essential for the repair of UV-induced DNA damage. Unlike most genes in the nucleotide excision repair (NER) pathway, ERCC1 is also involved in recombinational repair. Perhaps for this reason, ERCC1 knockout mice are not a model for the human NER deficiency disorder, xeroderma pigmentosum. Instead, ERCC1 null mice are severely runted and die before weaning from liver failure with accelerated hepatocyte polyploidy that is more reminiscent of a premature ageing disorder. To permit study of the role of ERCC1 in other tissues we have corrected the liver ERCC1 deficiency with a transgene under the control of a liver-specific promoter. The transgene alleviated runting and extended the lifespan. The elevated level of oxidative DNA damage and premature liver polyploidy were reversed and liver function was corrected. A widespread mitochondrial dysfunction was identified and an essential role for ERCC1 in the kidney was also revealed with transgene-containing ERCC1-deficient animals going on to die of renal failure. The nuclei of kidney proximal tubule cells became polyploid in a similar way to the premature liver polyploidy observed in younger ERCC1-deficient animals. We believe that this is a response to the accumulation of endogenous DNA damage in these particularly susceptible tissues which cannot be repaired in ERCC1-deficient animals.
Collapse
Affiliation(s)
- J Selfridge
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
34
|
Niedernhofer LJ, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers JH, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. EMBO J 2001; 20:6540-9. [PMID: 11707424 PMCID: PMC125716 DOI: 10.1093/emboj/20.22.6540] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1-Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1-Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1-Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1-Xpf in making the recipient genomic locus receptive for gene replacement.
Collapse
Affiliation(s)
- Laura J. Niedernhofer
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Geert Weeda
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Berna Beverloo
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan de Wit
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Manja Muijtjens
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Hanny Odijk
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan H.J. Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| |
Collapse
|
35
|
Gaillard PHL, Wood RD. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res 2001; 29:872-9. [PMID: 11160918 PMCID: PMC29621 DOI: 10.1093/nar/29.4.872] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ERCC1-XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5' to 3' away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1-XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1-XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.
Collapse
Affiliation(s)
- Pierre-Henri L Gaillard
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
36
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000; 28:3771-8. [PMID: 11000269 PMCID: PMC110761 DOI: 10.1093/nar/28.19.3771] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Revised: 08/11/2000] [Accepted: 08/11/2000] [Indexed: 11/12/2022] Open
Abstract
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1(-) cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3' tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3' tails after treatment with the rare-cutting endonuclease I-SCE:I. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3' tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3' tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SCE:I-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SCE:I-induced double-strand breaks.
Collapse
Affiliation(s)
- R G Sargent
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bessho T, Mu D, Sancar A. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol Cell Biol 1997; 17:6822-30. [PMID: 9372913 PMCID: PMC232538 DOI: 10.1128/mcb.17.12.6822] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.
Collapse
Affiliation(s)
- T Bessho
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
39
|
Sargent RG, Rolig RL, Kilburn AE, Adair GM, Wilson JH, Nairn RS. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci U S A 1997; 94:13122-7. [PMID: 9371810 PMCID: PMC24273 DOI: 10.1073/pnas.94.24.13122] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.
Collapse
Affiliation(s)
- R G Sargent
- The Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD, Symington LS. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol 1997; 17:2764-73. [PMID: 9111347 PMCID: PMC232127 DOI: 10.1128/mcb.17.5.2764] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair.
Collapse
Affiliation(s)
- P Fiorentini
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
41
|
Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Reardon JT, Sancar A, Zhou ZQ, Walter CA, Parris CN, Thompson LH. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 1996; 16:6553-62. [PMID: 8887684 PMCID: PMC231657 DOI: 10.1128/mcb.16.11.6553] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues.
Collapse
Affiliation(s)
- K W Brookman
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551-0808, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A, Jaspers NG, Bootsma D, Hoeijmakers JH. Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 1996; 24:3370-80. [PMID: 8811092 PMCID: PMC146110 DOI: 10.1093/nar/24.17.3370] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F.
Collapse
Affiliation(s)
- A M Sijbers
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
van der Spek PJ, Eker A, Rademakers S, Visser C, Sugasawa K, Masutani C, Hanaoka F, Bootsma D, Hoeijmakers JH. XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res 1996; 24:2551-9. [PMID: 8692695 PMCID: PMC145966 DOI: 10.1093/nar/24.13.2551] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The xeroderma pigmentosum syndrome complementation group C (XP-C) is due to a defect in the global genome repair subpathway of nucleotide excision repair (NER). The XPC protein is complexed with HHR23B, one of the two human homologs of the yeast NER protein, RAD23 (Masutani at al. (1994) EMBO J. 8, 1831-1843). Using heparin chromatography, gel filtration and native gel electrophoresis we demonstrate that the majority of HHR23B is in a free, non-complexed form, and that a minor fraction is tightly associated with XPC. In contrast, we cannot detect any bound HHR23A. Thus the HHR23 proteins may have an additional function independent of XPC. The fractionation behaviour suggests that the non-bound forms of the HHR23 proteins are not necessary for the core of the NER reaction. Although both HHR23 proteins share a high level of overall homology, they migrate very differently on native gels, pointing to a difference in conformation. Gel filtration suggests the XPC-HHR23B heterodimer resides in a high MW complex. However, immunodepletion studies starting from repair-competent Manley extracts fall to reveal a stable association of a significant fraction of the HHR23 proteins or the XPC-HHR23B complex with the basal transcription/repair factor TFIIH, or with the ERCC1 repair complex. Consistent with a function in repair or DNA/chromatin metabolism, immunofluorescence studies show all XPC, HHR23B and (the free) HHR23A to reside in the nucleus.
Collapse
Affiliation(s)
- P J van der Spek
- Department of Cell Biology and Genetics, Medical Genetic Centre, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alexander H, Lee SK, Yu SL, Alexander S. repE--the Dictyostelium homolog of the human xeroderma pigmentosum group E gene is developmentally regulated and contains a leucine zipper motif. Nucleic Acids Res 1996; 24:2295-301. [PMID: 8710499 PMCID: PMC145941 DOI: 10.1093/nar/24.12.2295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized the Dictyostelium discoideum repE gene, a homolog of the human xeroderma pigmentosum (XP) group E gene which encodes a UV-damaged DNA binding protein. The repE gene maps to chromosome 4 and it is the first gene identified in Dictyostelium that is homologous to those involved in nucleotide excision repair and their related XP diseases in humans. The predicted protein encodes a leucine zipper motif. The repE gene is not expressed by mitotically dividing cells, and repE mRNA is first detected during the aggregation phase of development when the cells have ceased dividing and replicating genomic DNA. The mRNA level plateaus by the time the developing cells have entered multicellular aggregates and remains at the same steady-state level for the remainder of development. In addition, we have demonstrated that the level of mRNA is very low in developing cells. These observations suggest that repE may play a regulatory role in development. The data indicate that potential developmental roles for XP-related genes can be profitably studied in this system.
Collapse
Affiliation(s)
- H Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Mutations in several nucleotide excision repair genes were found to affect the efficiency of recombination between short DNA sequences in Saccharomyces cerevisiae. These effects could be due to observed changes in the processing of recombination intermediates.
Collapse
Affiliation(s)
- A M Bailis
- Department of Molecular Biology of the Beckman Research Institute, Duarte, California 91010, USA
| | | |
Collapse
|
46
|
Galli A, Schiestl RH. On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:301-10. [PMID: 7565592 DOI: 10.1007/bf02191597] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A genetic system selecting for deletion events (DEL recombination) due to intrachromosomal recombination has previously been constructed in the yeast Saccharomyces cerevisiae. Intrachromosomal recombination is inducible by chemical and physical carcinogens. We wanted to understand better the mechanism of induced DEL recombination and to attempt to determine in which phase of the cell cycle DEL recombination is inducible. Yeast cells were arrested at specific phases of the cell cycle, irradiated with UV or gamma-rays, and assayed for DEL recombination and interchromosomal recombination. In addition, the contribution of intrachromatid crossing-over to the number of radiation induced DEL recombination events was directly investigated at different phases of the cell cycle. UV irradiation induced DEL recombination preferentially in S phase, while gamma-rays induced DEL recombination in every phase of the cell cycle including G1. UV and gamma-radiation induced intrachromatid crossing over preferentially in G1, but it accounted at the most for only 14% of the induced DEL recombination events. The possibility is discussed that single-strand annealing or one-sided invasion events, which can occur in G1 and may be induced by a double-strand break intermediate, may be responsible for a large proportion of the induced DEL recombination events.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Ivanov EL, Haber JE. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2245-51. [PMID: 7891718 PMCID: PMC230452 DOI: 10.1128/mcb.15.4.2245] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.
Collapse
Affiliation(s)
- E L Ivanov
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|
48
|
Saffran WA, Greenberg RB, Thaler-Scheer MS, Jones MM. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res 1994; 22:2823-9. [PMID: 8052537 PMCID: PMC308253 DOI: 10.1093/nar/22.14.2823] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Single strand and double strand DNA damage-induced recombination were compared in the yeast Saccharomyces cerevisiae. The non-replicating plasmid pUC18-HIS3 was damaged in vitro and introduced into yeast cells; plasmid-chromosome recombinants were selected as stable His+ transformants. Single strand damage was produced by UV irradiation at 254 nm or by psoralen photoreaction at 390 nm. Double strand damage was produced by psoralen photoreaction at 350 nm or by restriction endonuclease digestion. Recombinants were classified as resulting from gene conversion without crossing over, single plasmid integration, or multiple plasmid integration. Single and double strand DNA damage produced different patterns of recombination. In repair proficient cells double strand damage induced primarily multiple plasmid integrations, while single strand damage induced higher proportions of gene conversions and single integrations. Reciprocal recombination depended on the RAD1 gene, which is involved in both excision repair and recombination; plasmid integration induced by all forms of damage was decreased in a rad1 disruption strain. Mutation of the RAD3 excision repair gene decreased plasmid integration induced by far UV irradiation and psoralen crosslinks, but not by double strand breaks, which are not substrates of nucleotide excision repair. Double strand break-induced plasmid integration was also decreased by disruption of RAD10, which forms a complex with RAD1; disruption of RAD4 had no effect. Thus, while nucleotide excision repair genes are involved in the processing of damaged DNA to generate recombination intermediates, RAD1 and RAD10 are additionally involved in reciprocal exchange.
Collapse
Affiliation(s)
- W A Saffran
- Queens College, City University of New York, Department of Chemistry and Biochemistry, Flushing 11367
| | | | | | | |
Collapse
|
49
|
Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8007955 DOI: 10.1128/mcb.14.7.4493] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.
Collapse
|
50
|
Schiestl RH, Zhu J, Petes TD. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:4493-500. [PMID: 8007955 PMCID: PMC358821 DOI: 10.1128/mcb.14.7.4493-4500.1994] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Restriction enzyme-mediated events (REM events; integration of transforming DNA catalyzed by in vivo action of a restriction enzyme) and illegitimate recombination events (IR events; integration of transforming DNA that shares no homology with the host genomic sequences) have been previously characterized in Saccharomyces cerevisiae. This study determines the effect of mutations in genes that are involved in homologous recombination and/or in the repair of double-stranded DNA breaks on these recombination events. Surprisingly, REM events are completely independent of the double-strand-break repair functions encoded by the RAD51, RAD52, and RAD57 genes but require the RAD50 gene product. IR events are under different genetic control than homologous integration events. In the rad50 mutant, homologous integration occurred at wild-type frequency, whereas the frequency of IR events was 20- to 100-fold reduced. Conversely, the rad52 mutant was grossly deficient in homologous integration (at least 1,000-fold reduced) but showed only a 2- to 8-fold reduction in IR frequency.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | |
Collapse
|