1
|
Vázquez-Cabrera G, Škandík M, Roncier N, Real Oualit F, Cruz De Los Santos M, Baleviciute A, Cheray M, Joseph B. ID2-ETS2 axis regulates the transcriptional acquisition of pro-tumoral microglia phenotype in glioma. Cell Death Dis 2024; 15:512. [PMID: 39019900 PMCID: PMC11255298 DOI: 10.1038/s41419-024-06903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Glioblastoma is a highly aggressive brain tumour that creates an immunosuppressive microenvironment. Microglia, the brain's resident immune cells, play a crucial role in this environment. Glioblastoma cells can reprogramme microglia to create a supportive niche that promotes tumour growth. However, the mechanisms controlling the acquisition of a transcriptome associated with a tumour-supportive microglial reactive state are not fully understood. In this study, we investigated changes in the transcriptional profile of BV2 microglia exposed to C6 glioma cells. RNA-sequencing analysis revealed a significant upregulation of microglial inhibitor of DNA binding 1 (Id1) and Id2, helix-loop-helix negative transcription regulatory factors. The concomitant regulation of microglial ETS proto-oncogene 2, transcription factor (ETS2)-target genes, i.e., Dusp6, Fli1, Jun, Hmox1, and Stab1, led us to hypothesize that ETS2 could be regulated by ID proteins. In fact, ID2-ETS2 protein interactions increased in microglia exposed to glioma cells. In addition, perturbation of the ID2-ETS2 transcriptional axis influenced the acquisition of a microglial tumour-supportive phenotype. ID2 and ETS2 genes were found to be expressed by the tumour-associated microglia isolated from human glioblastoma tumour biopsies. Furthermore, ID2 and ETS2 gene expressions exhibited inverse prognostic values in patients with glioma in cohorts from The Cancer Genome Atlas. Collectively, our findings indicate that the regulation of ETS2 by ID2 plays a role in the transcriptional regulation of microglia in response to stimuli originating from glioblastoma cells, information that could lead to developing therapeutic strategies to manipulate microglial tumour-trophic functions.
Collapse
Affiliation(s)
| | - Martin Škandík
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noémie Roncier
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Farah Real Oualit
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Austeja Baleviciute
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong.
| |
Collapse
|
2
|
Sohi GK, Farooqui N, Mohan A, Rajagopalan KS, Xing L, Zhu XY, Jordan K, Krier JD, Saadiq IM, Tang H, Hickson LJ, Eirin A, Lerman LO, Herrmann SM. The impact of hypoxia preconditioning on mesenchymal stem cells performance in hypertensive kidney disease. Stem Cell Res Ther 2024; 15:162. [PMID: 38853239 PMCID: PMC11163800 DOI: 10.1186/s13287-024-03778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Autologous mesenchymal stem cells (MSCs) have emerged as a therapeutic option for many diseases. Hypertensive kidney disease (HKD) might impair MSCs' reparative ability by altering the biomolecular properties, but the characteristics of this impairment are unclear. In our previous pre-clinical studies, we found hypoxic preconditioning (HPC) enhanced angiogenesis and suppressed senescence gene expression. Thus, we hypothesize that HPC would improve human MSCs by enhancing their functionality and angiogenesis, creating an anti-inflammatory and anti-senescence environment. METHODS MSC samples (n = 12 each) were collected from the abdominal fat of healthy kidney donors (HC), hypertensive patients (HTN), and patients with hypertensive kidney disease (HKD). MSCs were harvested and cultured in Normoxic (20% O2) or Hypoxic (1% O2) conditions. MSC functionality was measured by proliferation assays and cytokine released in conditioned media. Senescence was evaluated by senescence-associated beta-galactosidase (SA-beta-gal) activity. Additionally, transcriptome analysis using RNA-sequencing and quantitative PCR (qPCR) were performed. RESULTS At baseline, normoxic HTN-MSCs had higher proliferation capacity compared to HC. However, HPC augmented proliferation in HC. HPC did not affect the release of pro-angiogenic protein VEGF, but increased EGF in HC-MSC, and decreased HGF in HC and HKD MSCs. Under HPC, SA-β-gal activity tended to decrease, particularly in HC group. HPC upregulated mostly the pro-angiogenic and inflammatory genes in HC and HKD and a few senescence genes in HKD. CONCLUSIONS HPC has a more favorable functional effect on HC- than on HKD-MSC, reflected in increased proliferation and EGF release, and modest decrease in senescence, whereas it has little effect on HTN or HKD MSCs.
Collapse
Affiliation(s)
- Gurparneet Kaur Sohi
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Arjunmohan Mohan
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | | | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu province, China
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA.
| |
Collapse
|
3
|
Lee HW, Adachi T, Pak B, Park S, Hu X, Choi W, Kowalski PS, Chang CH, Clapham KR, Lee A, Papangeli I, Kim J, Han O, Park J, Anderson DG, Simons M, Jin SW, Chun HJ. BMPR1A promotes ID2-ZEB1 interaction to suppress excessive endothelial to mesenchymal transition. Cardiovasc Res 2023; 119:813-825. [PMID: 36166408 PMCID: PMC10409893 DOI: 10.1093/cvr/cvac159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFβ) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - C Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Katharine R Clapham
- Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA 02127, USA
| | - Aram Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Ave, 111B, West Haven, CT 06516, USA
| |
Collapse
|
4
|
DelRosso N, Tycko J, Suzuki P, Andrews C, Aradhana, Mukund A, Liongson I, Ludwig C, Spees K, Fordyce P, Bassik MC, Bintu L. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 2023; 616:365-372. [PMID: 37020022 PMCID: PMC10484233 DOI: 10.1038/s41586-023-05906-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators1,2. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated3-5. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.
Collapse
Affiliation(s)
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Peter Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Adi Mukund
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ivan Liongson
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Geng H, Ko HK, Pittsenbarger J, Harvey CT, Xue C, Liu Q, Wiens S, Kachhap SK, Beer TM, Qian DZ. HIF1 and ID1 Interplay Confers Adaptive Survival to HIF1α-Inhibition. Front Cell Dev Biol 2021; 9:724059. [PMID: 34820369 PMCID: PMC8606652 DOI: 10.3389/fcell.2021.724059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Hypoxia is a universal pathological feature of solid tumors. Hypoxic tumor cells acquire metastatic and lethal phenotypes primarily through the activities of hypoxia-inducible factor 1 alpha (HIF1α). Therefore, HIF1α is considered as a promising therapeutic target. However, HIF inhibitors have not proven to be effective in clinical testing. The underlying mechanism is unclear. We report that oncogenic protein ID1 is upregulated in hypoxia by HIF1α shRNA or pharmacological inhibitors. In turn, ID1 supports tumor growth in hypoxia in vitro and in xenografts in vivo, conferring adaptive survival response and resistance. Mechanistically, ID1 proteins interfere HIF1-mediated gene transcription activation, thus ID1 protein degradation is accelerated by HIF1α-dependent mechanisms in hypoxia. Inhibitions of HIF1α rescues ID1, which compensates the loss of HIF1α by the upregulation of GLS2 and glutamine metabolism, thereby switching the metabolic dependency of HIF1α -inhibited cells from glucose to glutamine.
Collapse
Affiliation(s)
- Hao Geng
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hyun-Kyung Ko
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Janet Pittsenbarger
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Christopher T Harvey
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Changhui Xue
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Qiong Liu
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sadie Wiens
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sushant K Kachhap
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Tomasz M Beer
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - David Z Qian
- Prostate Cancer Research Program, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
7
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms22137152. [PMID: 34281206 PMCID: PMC8267941 DOI: 10.3390/ijms22137152] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.
Collapse
|
8
|
Xia LZ, Tao J, Chen YJ, Liang LL, Luo GF, Cai ZM, Wang Z. Factors Affecting the Re-Endothelialization of Endothelial Progenitor Cell. DNA Cell Biol 2021; 40:1009-1025. [PMID: 34061680 DOI: 10.1089/dna.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vascular endothelium, which plays an essential role in maintaining the normal shape and function of blood vessels, is a natural barrier between the circulating blood and the vascular wall tissue. The endothelial damage can cause vascular lesions, such as atherosclerosis and restenosis. After the vascular intima injury, the body starts the endothelial repair (re-endothelialization) to inhibit the neointimal hyperplasia. Endothelial progenitor cell is the precursor of endothelial cells and plays an important role in the vascular re-endothelialization. However, re-endothelialization is inevitably affected in vivo and in vitro by factors, which can be divided into two types, namely, promotion and inhibition, and act on different links of the vascular re-endothelialization. This article reviews these factors and related mechanisms.
Collapse
Affiliation(s)
- Lin-Zhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Tao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yan-Jun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Ling-Li Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Gui-Fang Luo
- Department of Gynaecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Ze-Min Cai
- Pediatrics Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
9
|
Leong SP, Witz IP, Sagi-Assif O, Izraely S, Sleeman J, Piening B, Fox BA, Bifulco CB, Martini R, Newman L, Davis M, Sanders LM, Haussler D, Vaske OM, Witte M. Cancer microenvironment and genomics: evolution in process. Clin Exp Metastasis 2021; 39:85-99. [PMID: 33970362 DOI: 10.1007/s10585-021-10097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, San Francisco, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Sleeman
- European Center for Angioscience, Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany
| | | | | | | | - Rachel Martini
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.
| | - Lauren M Sanders
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute and Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, USA.
| | - Olena M Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - Marlys Witte
- Department of Surgery, Neurosurgery and Pediatrics, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| |
Collapse
|
10
|
Sedlmeier G, Al‐Rawi V, Buchert J, Yserentant K, Rothley M, Steshina A, Gräßle S, Wu R, Hurrle T, Richer W, Decraene C, Thiele W, Utikal J, Abuillan W, Tanaka M, Herten D, Hill CS, Garvalov BK, Jung N, Bräse S, Sleeman JP. Id1 and Id3 Are Regulated Through Matrix‐Assisted Autocrine BMP Signaling and Represent Therapeutic Targets in Melanoma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Georg Sedlmeier
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Vanessa Al‐Rawi
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Justyna Buchert
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Klaus Yserentant
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | - Melanie Rothley
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Anastasia Steshina
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Simone Gräßle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Ruo‐Lin Wu
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Thomas Hurrle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Wilfrid Richer
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Charles Decraene
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Wilko Thiele
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Jochen Utikal
- Skin Cancer Unit German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Dermatology, Venereology and Allergology University Medical Center Mannheim Ruprecht‐Karl University of Heidelberg Theodor‐Kutzer‐Ufer 1–3 68167 Mannheim Germany
| | - Wasim Abuillan
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- Center for Integrative Medicine and Physics Institute for Advanced Study Kyoto University Yoshida Ushinomiya‐cho Sakyo‐Ku Kyoto 606‐8501 Japan
- Center for Integrative Medicine and Physics Institute for Advanced Study, Kyoto University Kyoto 606‐8501 Japan
| | - Dirk‐Peter Herten
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | | | - Boyan K. Garvalov
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
11
|
Leggieri A, Palladino A, Attanasio C, Avallone L, de Girolamo P, D'Angelo L, Lucini C. Id(entifying) the inhibitor of DNA binding 3 in the brain of Nothobranchius furzeri upon aging. J Anat 2020; 238:1106-1115. [PMID: 33314133 PMCID: PMC8053586 DOI: 10.1111/joa.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023] Open
Abstract
Inhibitors of DNA (Id) are key transcription factors (TFs) regulating neurogenic processes. They belong to the helix-loop-helix (HLH) TF family and are dominant negative regulators of basic HLH proteins (bHLHs). Specifically, they inhibit cell differentiation and enhance cell proliferation and motility. The Id family includes four members, Id1, Id2, Id3, and Id4, which have been identified in nearly all vertebrates. The transcript catalog of the African turquoise killifish, Nothobranchius furzeri, contains all four TFs and has evolved showing positive selection for Id3. N. furzeri, a teleost, is the short-lived vertebrate and is gaining increasing scientific interest as a new model organism in aging research. It is characterized by embryonic diapause, explosive sexual maturation, and rapid aging. In this study, we investigated both the expression and the role of Id3 in the brain of this model organism. Interestingly, Id3 was upregulated age-dependently along with a distribution pattern resembling that of other vertebrates. Additionally, the gene has undergone positive selection during evolution and shows a high degree of conservation relative to that of other vertebrates. These features make N. furzeri a valid tool for aging studies and a potential model in translational research.
Collapse
Affiliation(s)
- Adele Leggieri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Antonio Palladino
- CESMA-Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Chen B, Chen W, Mu X, Yang L, Gu X, Zhao A, Liang X, Liu J. PTBP3 Induced Inhibition of Differentiation of Gastric Cancer Cells Through Alternative Splicing of Id1. Front Oncol 2020; 10:1477. [PMID: 32974175 PMCID: PMC7461954 DOI: 10.3389/fonc.2020.01477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Overexpression of PTBP3, a factor involved in alternative splicing, may inhibit the differentiation of leukemia cells. However, its role in gastric cancer differentiation and the specific pathways involved are unclear. In this study, we found that PTBP3 was upregulated in the poorly differentiated gastric cancer tissues. Patients with high levels of PTBP3 expression had significantly shorter survival than those with low PTBP3 expression. In gastric cancer cells, the regulatory effect of PTBP3 on alternative splicing of the Id1 gene was investigated. Following sodium butyrate-induced differentiation of MKN45 cells, the expression of Id1a decreased, but the expression of Id1b increased. RNA interference and overexpression experiments showed that PTBP3 upregulated Id1a expression and downregulated Id1b expression. RNA immunoprecipitation (RIP) assays indicated PTBP3 could interact with Id1. UV cross-linking assays indicated that PTBP3 interacted with the CU rich region of the Id1 gene. Two-hybrid experiments and a gel mobility shift assays found that Id1b had a more potent affinity for Hes1 than Id1a. Chromatin immunoprecipitation (ChIP) assays verified the association of Hes1 and the promoter of PTBP3 gene. Luciferase assays revealed that Hes1 bound the N-box sequence in the PTBP3 promoter. After silencing or overexpression of Hes1, PTBP3 protein expression remained unchanged. Thus, the loss of feedback regulation among PTBP3, Id1, and Hes1 in gastric cancer cells may be one of the causes of inhibited differentiation and malignant proliferation of these cells.
Collapse
Affiliation(s)
- Bin Chen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weixia Chen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Mu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiangyu Gu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Wedel M, Fröb F, Elsesser O, Wittmann MT, Lie DC, Reis A, Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 2020; 48:4839-4857. [PMID: 32266943 PMCID: PMC7229849 DOI: 10.1093/nar/gkaa218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.
Collapse
Affiliation(s)
- Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer's Disease: Cell Cycle Reentry and Beyond. Cells 2020; 9:cells9071746. [PMID: 32708313 PMCID: PMC7409121 DOI: 10.3390/cells9071746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitor of DNA-binding/differentiation (Id) proteins, a family of helix-loop-helix (HLH) proteins that includes four members of Id1 to Id4 in mammalian cells, are critical for regulating cell growth, differentiation, senescence, cell cycle progression, and increasing angiogenesis and vasculogenesis, as well as accelerating the ability of cell migration. Alzheimer’s disease (AD), the most common neurodegenerative disease in the adult population, manifests the signs of cognitive decline, behavioral changes, and functional impairment. The underlying mechanisms for AD are not well-clarified yet, but the aggregation of amyloid-beta peptides (Aβs), the major components in the senile plaques observed in AD brains, contributes significantly to the disease progression. Emerging evidence reveals that aberrant cell cycle reentry may play a central role in Aβ-induced neuronal demise. Recently, we have shown that several signaling mediators, including Id1, hypoxia-inducible factor-1 (HIF-1), cyclin-dependent kinases-5 (CDK5), and sonic hedgehog (Shh), may contribute to Aβ-induced cell cycle reentry in postmitotic neurons; furthermore, Id1 and CDK5/p25 mutually antagonize the expression/activity of each other. Therefore, Id proteins may potentially have clinical applications in AD. In this review article, we introduce the underlying mechanisms for cell cycle dysregulation in AD and present some examples, including our own studies, to show different aspects of Id1 in terms of cell cycle reentry and other signaling that may be crucial to alter the neuronal fates in this devastating neurodegenerative disease. A thorough understanding of the underlying mechanisms may provide a rationale to make an earlier intervention before the occurrence of cell cycle reentry and subsequent apoptosis in the fully differentiated neurons during the progression of AD or other neurodegenerative diseases.
Collapse
|
16
|
Duren Z, Chen X, Xin J, Wang Y, Wong WH. Time course regulatory analysis based on paired expression and chromatin accessibility data. Genome Res 2020; 30:622-634. [PMID: 32188700 PMCID: PMC7197475 DOI: 10.1101/gr.257063.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
A time course experiment is a widely used design in the study of cellular processes such as differentiation or response to stimuli. In this paper, we propose time course regulatory analysis (TimeReg) as a method for the analysis of gene regulatory networks based on paired gene expression and chromatin accessibility data from a time course. TimeReg can be used to prioritize regulatory elements, to extract core regulatory modules at each time point, to identify key regulators driving changes of the cellular state, and to causally connect the modules across different time points. We applied the method to analyze paired chromatin accessibility and gene expression data from a retinoic acid (RA)-induced mouse embryonic stem cells (mESCs) differentiation experiment. The analysis identified 57,048 novel regulatory elements regulating cerebellar development, synapse assembly, and hindbrain morphogenesis, which substantially extended our knowledge of cis-regulatory elements during differentiation. Using single-cell RNA-seq data, we showed that the core regulatory modules can reflect the properties of different subpopulations of cells. Finally, the driver regulators are shown to be important in clarifying the relations between modules across adjacent time points. As a second example, our method on Ascl1-induced direct reprogramming from fibroblast to neuron time course data identified Id1/2 as driver regulators of early stage of reprogramming.
Collapse
Affiliation(s)
- Zhana Duren
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Xi Chen
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Jingxue Xin
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Bio-X Program, Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
17
|
Wang M, Yang D, Ma F, Zhu M, Shi Z, Miao X. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. RICE (NEW YORK, N.Y.) 2019; 12:9. [PMID: 30796564 PMCID: PMC6386760 DOI: 10.1186/s12284-019-0267-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND In plants, basic helix-loop-helix (bHLH) proteins form the largest transcription factor (TF) family. Among them, HLH proteins are a small group of atypical members that lack the basic domain, and form dimers with bHLH proteins. Although bHLH proteins have been proved to play important roles in plant development and physiology, the function of HLH proteins is rarely studied, not to mention in plant biotic resistance. Brown planthopper (BPH) is a kind of rice-specific insect that causes devastating yield losses each year. RESULTS In this study, we identified OsHLH61 gene that encodes HLH protein. OsHLH61 gene could be highly induced by BPH infestation. Furthermore, Methyl Jasmonic acid (Me-JA) and cis-12-oxo- phytodienoic acid (OPDA) induced expression of OsHLH61, while SA repressed it. We knocked down expression of OsHLH61 by RNA interference (RNAi), the transgenic plants were susceptible to BPH infestation. RNA-seq analysis revealed that some pathogen-related (PR) genes in the Salicylic acid (SA) signaling pathway that mediate plant immunity were obviously down-regulated in the OsHLH61 RNAi plants. Meanwhile, yeast two-hybrid assay and bimolecular luciferase complementation (BiLC) analysis identified bHLH096 to be an interacting factor of OsHLH61. Also, some PR genes were down-regulated in the OsbHLH96 over expressing lines. Expression of OsbHLH96 was inhibited. Besides, OsbHLH96 might interact with Jasmonate Zim-Domain3 (OsJAZ3). CONCLUSION Altogether, we identified an OsHLH61-OsbHLH96 complex that might mediate defense to BPH through regulating PR genes. And OsHLH61-OsbHLH96 might be important in mediating SA and JA signaling crosstalk.
Collapse
Affiliation(s)
- Meiling Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongyong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feilong Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mulan Zhu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences/Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Zhang M, Cao TT, Wei ZG, Zhang YQ. Silk Sericin Hydrolysate is a Potential Candidate as a Serum-Substitute in the Culture of Chinese Hamster Ovary and Henrietta Lacks Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5300249. [PMID: 30690536 PMCID: PMC6346402 DOI: 10.1093/jisesa/iey137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 05/05/2023]
Abstract
The silk sericin hydrolysate (SSH) from the waste of silk processing as a substitute of fetal bovine serum (FBS) was used for the culture of Chinese hamster ovary (CHO) cells and Henrietta Lacks (Hela) strain of human cervical cancer cells. The survival ratio of these cells cultured in SSH media were similar to or higher than those in FBS media. Especially after the serum was replaced by low concentration of SSH at 15.0 μg/ml for 5 d, the proliferation of both cells was also similar to or higher than that of FBS group; the percentages of CHO and Hela cells in S-phase were 28.9 and 28.0%, respectively. The former is nearly two times that of FBS group, the latter is also higher than the control group. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that among the differentially expressed genes, the relative expression of CXCL12 gene of CHO cells in SSH group increased, was three times that of serum group, and the relative expression of LCN2 gene of Hela cells increased 2.8 times, indicating that these related genes were activated to promote cell growth and proliferation. These results fully illustrated the hydrolysated sericin has a potential use as serum substitutes in cell culture.
Collapse
Affiliation(s)
- Meng Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Ting-Ting Cao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
- Corresponding author, e-mail: (Y.-Q. Zhang)
| |
Collapse
|
19
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
20
|
AlSudais H, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/Enhancer Binding Protein β inhibits myogenic differentiation via ID3. Sci Rep 2018; 8:16613. [PMID: 30413755 PMCID: PMC6226455 DOI: 10.1038/s41598-018-34871-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 12/04/2022] Open
Abstract
Myogenesis is regulated by the coordinated expression of muscle regulatory factors, a family of transcription factors that includes MYOD, MYF5, myogenin and MRF4. Muscle regulatory factors are basic helix-loop-helix transcription factors that heterodimerize with E proteins to bind the regulatory regions of target genes. Their activity can be inhibited by members of the Inhibitor of DNA binding and differentiation (ID) family, which bind E-proteins with high affinity, thereby preventing muscle regulatory factor-dependent transcriptional responses. CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcription factor expressed in myogenic precursor cells that acts to inhibit myogenic differentiation, though the mechanism remains poorly understood. We identify Id3 as a novel C/EBPβ target gene that inhibits myogenic differentiation. Overexpression of C/EBPβ stimulates Id3 mRNA and protein expression, and is required for C/EBPβ-mediated inhibition of myogenic differentiation. Misexpression of C/EBPβ in myogenic precursors, such as in models of cancer cachexia, prevents the differentiation of myogenic precursors and we show that loss of Id3 rescues differentiation under these conditions, suggesting that the stimulation of Id3 expression by C/EBPβ is an important mechanism by which C/EBPβ inhibits myogenic differentiation.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
21
|
Wen XF, Chen M, Wu Y, Chen MN, Glogowska A, Klonisch T, Zhang GJ. Inhibitor of DNA Binding 2 Inhibits Epithelial-Mesenchymal Transition via Up-Regulation of Notch3 in Breast Cancer. Transl Oncol 2018; 11:1259-1270. [PMID: 30119050 PMCID: PMC6097462 DOI: 10.1016/j.tranon.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death in women worldwide. Incurable metastatic breast disease presents a major clinical challenge and is the main cause of breast cancer-related death. The epithelial-mesenchymal transition (EMT) is a critical early promoter of metastasis. In the present study, we identified a novel role for the inhibitor of DNA binding 2 (Id2), a member of the basic helix-loop-helix protein family, during the EMT of breast cancer. Expression of Id2 was positively correlated with Notch3 in breast cancer cells. Low expression of Id2 and Notch3 was associated with worse distant metastasis-free survival in breast cancer patients. The present study revealed that Id2 activated Notch3 expression by blocking E2A binding to an E-box motif in the Notch3 promoter. The Id2-mediated up-regulation of Notch3 expression at both the mRNA and protein levels resulted in an attenuated EMT, which was associated with reduced motility and matrix invasion of ER-positive and -negative human breast cancer cells and the emergence of E-cadherin expression and reduction in the mesenchymal marker vimentin in triple-negative breast cancer cells. In summary, our findings identified Id2 as a suppressor of the EMT and positive transcriptional regulator of Notch3 in breast cancer. Id2 and Notch3 may serve as novel prognostic markers in a subpopulation of ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Xiao-Fen Wen
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Min Chen
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China; Xiang'an Hospital, Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China
| | - Yang Wu
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Min-Na Chen
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Guo-Jun Zhang
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China; Xiang'an Hospital, Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Lister JA, Baron MH. Induction of basic helix-loop-helix protein-containing complexes during erythroid differentiation. Gene Expr 2018; 7:25-38. [PMID: 9572395 PMCID: PMC6151944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The involvement of basic helix-loop-helix (bHLH) transcription factors in erythroid differentiation and development has been established by forced expression of the proteins TAL1 and Id1 in cultured cell lines and by targeted disruption of the mouse TAL1 gene. To better understand the mechanism by which bHLH proteins regulate erythropoiesis, we have investigated HLH protein-DNA interactions in mouse erythroleukemia (MEL) cells before and during chemically induced differentiation. Three bHLH (E-box) binding activities were found to be induced in nuclei from differentiating MEL cells. Using specific antisera, we have demonstrated that these complexes are dimers of TAL1 and ubiquitous E proteins. Similar complexes were detected in nuclear extracts from a human erythroid cell line, K562, and from mouse fetal liver. All three bHLH complexes were disrupted in vitro by Id1, a dominant-negative HLH protein that we and others have previously shown to antagonize MEL cell differentiation. During differentiation of an Id1-overexpressing MEL cell line, induction of a complex containing TAL1 and E2A was not only blocked but reduced below the levels seen in undifferentiating cells. These observations are consistent with the idea that TAL1 and Id1 have opposing effects on erythroid differentiation and that the level of TAL1/E2A heterodimer and/or another E protein-containing complex may influence the decision of a cell to terminally differentiate.
Collapse
Affiliation(s)
- James A. Lister
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
| | - Margaret H. Baron
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
- Address correspondence to Margaret H. Baron at her present address: The Mount Sinai School of Medicine, Box 1079, Research Building East, Rm 11-70B, 1425 Madison Avenue, New York, NY 10029. Tel: (212) 824-7420; Fax: (212) 996-1029; E-mail:
| |
Collapse
|
23
|
Wu H, Shao Q. The role of inhibitor of binding or differentiation 2 in the development and differentiation of immune cells. Immunobiology 2018; 224:142-146. [PMID: 30340915 DOI: 10.1016/j.imbio.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
Inhibitor of binding or differentiation 2 (Id2), a member of helix-loop-helix (HLH) transcriptional factors, is recently reported as an important regulator of the development or differentiation of immune cells. It has been demonstrated that Id2 plays a critical role in the early lymphopoiesis. However, it has been discovered recently that Id2 displays new functions in different immune cells. In the adaptive immune cells, Id2 is required for determining T-cell subsets and B cells. In addition, Id2 is also involved in the development of innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and other innate lymphoid cells (ILCs). Here, we review the current reports about the role of Id2 in the development or differentiation of main immune cells.
Collapse
Affiliation(s)
- Haojie Wu
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China
| | - Qixiang Shao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| |
Collapse
|
24
|
Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. RICE (NEW YORK, N.Y.) 2018; 11:50. [PMID: 30203325 PMCID: PMC6134479 DOI: 10.1186/s12284-018-0244-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/05/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Many transcription factors (TFs), such as those in the basic helix-loop-helix (bHLH) family, are important for regulating plant growth and plant responses to abiotic stress. The expression of OsbHLH035 is induced by drought and salinity. However, its functional role in rice growth, development, and the salt response is still unknown. RESULTS The bHLH TF OsbHLH035 is a salt-induced gene that is primarily expressed in germinating seeds and seedlings. Stable expression of GFP-fused OsbHLH035 in rice transgenic plants revealed that this protein is predominantly localized to the nucleus. Osbhlh035 mutants show delayed seed germination, particularly under salt-stress conditions. In parallel, abscisic acid (ABA) contents are over-accumulated, and the expression of the ABA biosynthetic genes OsABA2 and OsAAO3 is upregulated; furthermore, compared with that in wild-type (WT) seedlings, the salt-induced expression of OsABA8ox1, an ABA catabolic gene, in germinating Osbhlh035 mutant seeds is downregulated. Moreover, Osbhlh035 mutant seedlings are unable to recover from salt-stress treatment. Consistently, sodium is over-accumulated in aerial tissues but slightly reduced in terrestrial tissues from Osbhlh035 seedlings after salt treatment. Additionally, the expression of the sodium transporters OsHKT1;3 and 1;5 is reduced in Osbhlh035 aerial and terrestrial tissues, respectively. Furthermore, genetic complementation can restore both the delayed seed germination and the impaired recovery of salt-treated Osbhlh035 seedlings to normal growth. CONCLUSION OsbHLH035 mediates seed germination and seedling recovery after salt stress relief through the ABA-dependent and ABA-independent activation of OsHKT pathways, respectively.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Sen Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
25
|
Wang R, Zhao P, Kong N, Lu R, Pei Y, Huang C, Ma H, Chen Q. Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family. Genes (Basel) 2018; 9:genes9010054. [PMID: 29361801 PMCID: PMC5793205 DOI: 10.3390/genes9010054] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
Plant basic/helix–loop–helix (bHLH) transcription factors participate in a number of biological processes, such as growth, development and abiotic stress responses. The bHLH family has been identified in many plants, and several bHLH transcription factors have been functionally characterized in Arabidopsis. However, no systematic identification of bHLH family members has been reported in potato (Solanum tuberosum). Here, 124 StbHLH genes were identified and named according to their chromosomal locations. The intron numbers varied from zero to seven. Most StbHLH proteins had the highly conserved intron phase 0, which accounted for 86.2% of the introns. According to the Neighbor-joining phylogenetic tree, 259 bHLH proteins acquired from Arabidopsis and potato were divided into 15 groups. All of the StbHLH genes were randomly distributed on 12 chromosomes, and 20 tandem duplicated genes and four pairs of duplicated gene segments were detected in the StbHLH family. The gene ontology (GO) analysis revealed that StbHLH mainly function in protein and DNA binding. Through the RNA-seq and quantitative real time PCR (qRT-PCR) analyses, StbHLH were found to be expressed in various tissues and to respond to abiotic stresses, including salt, drought and heat. StbHLH1, 41 and 60 were highly expressed in flower tissues, and were predicted to be involved in flower development by GO annotation. StbHLH45 was highly expressed in salt, drought and heat stress, which suggested its important role in abiotic stress response. The results provide comprehensive information for further analyses of the molecular functions of the StbHLH gene family.
Collapse
Affiliation(s)
- Ruoqiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ruize Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Guo XJ, Wang JR. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat. BMC PLANT BIOLOGY 2017; 17:90. [PMID: 28558686 PMCID: PMC5450219 DOI: 10.1186/s12870-017-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/15/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) transcription factors (TFs), which are widely distributed in eukaryotic organisms, play crucial roles in plant development. However, no comprehensive analysis of the bHLH family in wheat (Triticum aestivum L.) has been undertaken previously. RESULTS In this study, 225 bHLH TFs predicted from wheat using genomic and RNA sequencing data were subjected to identification, classification, phylogenetic reconstruction, conserved motif characterization, chromosomal distribution determination and expression pattern analysis. One basic region, two helix regions and one loop region were found to be conserved in wheat bHLH TFs. The bHLH proteins could be separated into four categories based on sequences in their basic regions. Neighbor-joining-based phylogenetic analysis of conserved bHLH domains from wheat, Arabidopsis and rice identified 26 subfamilies of bHLH TFs, of which 23 were found in wheat. A total of 82 wheat bHLH genes had orthologs in Arabidopsis (27 TFs), rice (28 TFs) and both of them (27 TFs). Seven tissue-specific bHLH TF clusters were identified according to their expression patterns in endosperm, aleurone, seedlings, heading-stage spikes, flag leaves, shoots and roots. Expression levels of six endosperm-specifically expressed TFs measured by qPCR and RNA-seq showed a good correlation. CONCLUSION The 225 bHLH transcription factors identified from wheat could be classed into 23 subfamilies, and those members from the same subfamily with similar sequence motifs generally have similar expression patterns.
Collapse
Affiliation(s)
- Xiao-Jiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
27
|
Neukirchen S, Krieger V, Roschger C, Schubert M, Elsässer B, Cabrele C. Impact of the amino acid sequence on the conformation of side chain lactam-bridged octapeptides. J Pept Sci 2017; 23:587-596. [PMID: 28370688 DOI: 10.1002/psc.2997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/22/2023]
Abstract
Synthetic helical peptides are valuable scaffolds for the development of modulators of protein-protein interactions involving helical motifs. Backbone-to-side chain or side chain-to-side chain constraints have been and still are intensively exploited to stabilize short α-helices. Very often, these constraints have been combined with backbone modifications induced by Cα-tetrasubstituted, β-, or γ-amino acids, which facilitate the α-peptide or α/β/γ-peptide adopting an α-helical conformation. In this work, we investigated the helical character of octapeptides that were cyclized by a Lys-Asp-(i,i + 4)-lactam bridge. We started with two sequences extracted from the helix-loop-helix region of the Id proteins, which are inhibitors of cell differentiation during development and in cancer. Nineteen analogs containing the lactam bridge at different positions and displaying different amino acid core triads (i + 1,2,3) as well as outer residues were prepared by solid-phase methodology. Their conformation in water and water/2,2,2-trifluoroethanol mixtures was investigated by circular dichroism (CD) spectroscopy. The cyclopeptides could be grouped in helix-prone and non-helix-prone structures. Both the amino acid core triad (i + 1,2,3) and the pendant residues positively or negatively affected the formation of a helical structure. Computational studies based on the NMR-derived helical structure of a cyclopeptide containing Aib at position (i + 2) of the triad were generally in agreement with the secondary structure propensity of the cyclopeptides observed by CD spectroscopy. In conclusion, the Lys-Asp-(i,i + 4)-lactam bridge may succeed or fail in the stabilization of short helices, depending on the primary structure. Moreover, computational methods may be valuable tools to discriminate helix-prone from non-helix-prone peptide-based macrolactams. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Saskia Neukirchen
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.,Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Viktoria Krieger
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.,Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Brigitta Elsässer
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
28
|
Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family. Sci Rep 2017; 7:28. [PMID: 28174429 PMCID: PMC5428380 DOI: 10.1038/s41598-017-00040-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins, which are characterized by a conserved bHLH domain, comprise one of the largest families of transcription factors in both plants and animals, and have been shown to have a wide range of biological functions. However, there have been very few studies of bHLH proteins from perennial tree species. We describe here the identification and characterization of 175 bHLH transcription factors from apple (Malus × domestica). Phylogenetic analysis of apple bHLH (MdbHLH) genes and their Arabidopsis thaliana (Arabidopsis) orthologs indicated that they can be classified into 23 subgroups. Moreover, integrated synteny analysis suggested that the large-scale expansion of the bHLH transcription factor family occurred before the divergence of apple and Arabidopsis. An analysis of the exon/intron structure and protein domains was conducted to suggest their functional roles. Finally, we observed that MdbHLH subgroup III and IV genes displayed diverse expression profiles in various organs, as well as in response to abiotic stresses and various hormone treatments. Taken together, these data provide new information regarding the composition and diversity of the apple bHLH transcription factor family that will provide a platform for future targeted functional characterization.
Collapse
|
29
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
30
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
31
|
Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells. Oncogene 2016; 36:1276-1286. [PMID: 27546618 PMCID: PMC5340799 DOI: 10.1038/onc.2016.293] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs.
Collapse
|
32
|
Liu L, Wang J, Duan S, Chen L, Xiang H, Dong Y, Wang W. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture. Sci Rep 2016; 6:31516. [PMID: 27531556 PMCID: PMC4987615 DOI: 10.1038/srep31516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium.
Collapse
Affiliation(s)
- Liyuan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchang Duan
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- South China Normal University, Guangzhou, 510631, China
| | - Yang Dong
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
33
|
Fraszczak J, Helness A, Chen R, Vadnais C, Robert F, Khandanpour C, Möröy T. Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1. PLoS One 2016; 11:e0160344. [PMID: 27467586 PMCID: PMC4965025 DOI: 10.1371/journal.pone.0160344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its inhibitor Id1 is a critical element of this regulatory circuit. Our data suggest that a certain threshold of Gfi1 is required to gauge E2A activity by adjusting levels of Id1 in multipotent progenitors, which are the first bipotential myeloid/lymphoid-restricted progeny of hematopoietic stem cells. If Gfi1 levels are high, Id1 is repressed enabling E2A to activate a specific set of B lineage genes by binding to regulatory elements for example the IL7 receptor gene. If Gfi1 levels fall below a threshold, Id1 expression increases and renders E2A unable to function, which prevents hematopoietic progenitors from engaging along the B lymphoid lineage.
Collapse
Affiliation(s)
- Jennifer Fraszczak
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Riyan Chen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
34
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
35
|
Sumida T, Ishikawa A, Nakano H, Yamada T, Mori Y, Desprez PY. Targeting ID2 expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells. Genes Cells 2016; 21:915-20. [PMID: 27364596 DOI: 10.1111/gtc.12389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
Abstract
Inhibitors of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We previously determined that ID1 was highly expressed in aggressive salivary gland cancer (SGC) cells in culture. Here, we show that ID2 is also expressed in aggressive SGC cells. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. Moreover, ID2 knockdown almost completely suppresses invasion and the expression of matrix metalloproteinase 9. In conclusion, ID2 expression maintains an aggressive phenotype in SGC cells, and ID2 repression triggers a reduction in cell aggressiveness. ID2 therefore represents a potential therapeutic target during SGC progression. ID proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. ID2 therefore represents a potential therapeutic target during SGC progression.
Collapse
Affiliation(s)
- Tomoki Sumida
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Akiko Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, 454, Shitsukawa, Toon, 7910295, Japan
| | - Hiroyuki Nakano
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Tomohiro Yamada
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Yoshihide Mori
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, California, 94107, USA
| |
Collapse
|
36
|
Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 2016; 416:149-161. [PMID: 27265865 DOI: 10.1016/j.ydbio.2016.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Combined Id1 and Id3 Deletion Leads to Severe Erythropoietic Disturbances. PLoS One 2016; 11:e0154480. [PMID: 27128622 PMCID: PMC4851361 DOI: 10.1371/journal.pone.0154480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
The Inhibitor of DNA Binding (Id) proteins play a crucial role in regulating hematopoiesis and are known to interact with E proteins and the bHLH family of transcription factors. Current efforts seek to elucidate the individual roles of Id members in regulating hematopoietic development and specification. However, the nature of their functional redundancies remains elusive since ablation of multiple Id genes is embryonically lethal. We developed a model to test this compensation in the adult. We report that global Id3 ablation with Tie2Cre-mediated conditional ablation of Id1 in both hematopoietic and endothelial cells (Id cDKO) extends viability to 1 year but leads to multi-lineage hematopoietic defects including the emergence of anemia associated with defective erythroid development, a novel phenotype unreported in prior single Id knockout studies. We observe decreased cell counts in the bone marrow and splenomegaly to dimensions beyond what is seen in single Id knockout models. Transcriptional dysregulation of hematopoietic regulators observed in bone marrow cells is also magnified in the spleen. E47 protein levels were elevated in Id cDKO bone marrow cell isolates, but decreased in the erythroid lineage. Chromatin immunoprecipitation (ChIP) studies reveal increased occupancy of E47 and GATA1 at the promoter regions of β-globin and E2A. Bone marrow transplantation studies highlight the importance of intrinsic Id signals in maintaining hematopoietic homeostasis while revealing a strong extrinsic influence in the development of anemia. Together, these findings demonstrate that loss of Id compensation leads to dysregulation of the hematopoietic transcriptional network and multiple defects in erythropoietic development in adult mice.
Collapse
|
38
|
The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep 2016; 6:22966. [PMID: 26965643 PMCID: PMC4786801 DOI: 10.1038/srep22966] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Hypoxia, a feature common to most solid tumors, is known to regulate many aspects of tumorigenesis. Recently, it was suggested that hypoxia increased the size of the cancer stem-cell (CSC) subpopulations and promoted the acquisition of a CSC-like phenotype. However, candidate hypoxia-regulated mediators specifically relevant to the stemness-related functions of colorectal CSCs have not been examined in detail. In the present study, we showed that hypoxia specifically promoted the self-renewal potential of CSCs. Through various in vitro studies, we found that hypoxia-induced Wnt/β-catenin signaling increased the occurrence of CSC-like phenotypes and the level of Id2 expression in colorectal-cancer cells. Importantly, the levels of hypoxia-induced CSC-sphere formation and Id2 expression were successfully attenuated by treatment with a Wnt/β-catenin-signaling inhibitor. We further demonstrated, for the first time, that the degree of hypoxia-induced CSC-sphere formation (CD44(+) subpopulation) in vitro and of tumor metastasis/dissemination in vivo were markedly suppressed by knocking down Id2 expression. Taken together, these data suggested that Wnt/β-catenin signaling mediated the hypoxia-induced self-renewal potential of colorectal-cancer CSCs through reactivating Id2 expression.
Collapse
|
39
|
Leong JW, Wagner JA, Ireland AR, Fehniger TA. Transcriptional and post-transcriptional regulation of NK cell development and function. Clin Immunol 2016; 177:60-69. [PMID: 26948928 DOI: 10.1016/j.clim.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-binding microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in the field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease.
Collapse
Affiliation(s)
- Jeffrey W Leong
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Aaron R Ireland
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Todd A Fehniger
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Ali AK, Oh JS, Vivier E, Busslinger M, Lee SH. NK Cell-Specific Gata3 Ablation Identifies the Maturation Program Required for Bone Marrow Exit and Control of Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1753-67. [PMID: 26773150 DOI: 10.4049/jimmunol.1501593] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
NK cells are innate lymphocytes capable of eliciting an innate immune response to pathogens. NK cells develop and become mature in the bone marrow (BM) before they migrate out to peripheral organs. Although the developmental program leading to mature NK cells has been studied in the context of several transcription factors, the stage-specific role of GATA3 in NK cell development has been incompletely understood. Using NKp46-Cre-Gata3(fl/fl) mice in which Gata3 deficiency was induced as early as the immature stage of NK cell differentiation, we demonstrated that GATA3 is required for the NK cell maturation beyond the CD27 single-positive stage and is indispensable for the maintenance of liver-resident NK cells. The frequencies of NK cells from NKp46-Cre-Gata3(fl/fl) mice were found higher in the BM but lower in peripheral organs compared with control littermates, indicating that GATA3 controls the maturation program required for BM egress. Despite the defect in maturation, upon murine CMV infection, NK cells from NKp46-Cre-Gata3(fl/fl) mice expanded vigorously, achieving NK cell frequencies surpassing those in controls and therefore provided comparable protection. The heightened proliferation of NK cells from NKp46-Cre-Gata3(fl/fl) mice was cell intrinsic and associated with enhanced upregulation of CD25 expression. Taken together, our results demonstrate that GATA3 is a critical regulator for NK cell terminal maturation and egress out of the BM and that immature NK cells present in the periphery of NKp46-Cre-Gata3(fl/fl) mice can rapidly expand and provide a reservoir of NK cells capable of mounting an efficient cytotoxic response upon virus infection.
Collapse
Affiliation(s)
- Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jun Seok Oh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France; Immunologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13385 Marseille, France; and
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna 1030, Austria
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
41
|
Yu Y, Liang Y, Liu X, Yang H, Su Y, Xia X, Wang H. Id1 modulates endothelial progenitor cells function through relieving the E2-2-mediated repression of FGFR1 and VEGFR2 in vitro. Mol Cell Biochem 2015; 411:289-98. [PMID: 26476925 DOI: 10.1007/s11010-015-2591-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023]
Abstract
The migration and proliferation of EPCs are crucial for re-endothelialization in vascular repair and development. Id1 has a regulatory role in the regulation of EPCs migration and proliferation. Based on these findings, we hypothesized that Id1 plays a regulatory role in modulating the migration and proliferation of EPCs by interaction with other factors. Herein, we report that the Id1 protein and E-box protein E2-2 regulate EPCs function with completely opposite effects. Id1 plays a positive role in the regulation of EPC proliferation and migration, while endogenous E2-2 appears to be a negative regulator. Immunoprecipitation and immunofluorescence assay revealed that the Id1 protein interacts and co-localizes with the E2-2 protein in EPCs. Further, endogenous E2-2 protein was found to block EPCs function via the inhibition of FGFR1 and VEGFR2 expression. The overexpression and silencing of Id1 have no direct regulatory role on VEGFR2 and FGFR1 expression. On the other hand, Id1 relieves the E2-2-mediated repression of FGFR1 and VEGFR2 expression to modulate EPCs proliferation, migration, and tube formation in vitro. In summary, we demonstrated that Id1 and E2-2 are critical regulators of EPCs function in vitro. Id1 interacts with E2-2 and relieves the E2-2-mediated repression of FGFR1 and VEGFR2 expression to modulate EPCs functions. Id1 and E2-2 may represent novel therapeutic targets for re-endothelialization in vascular damage and repair.
Collapse
Affiliation(s)
- Yang Yu
- Cardiologic Center of PLA, Xin Qiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuan Liang
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China
| | - Xiaoli Liu
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China
| | - Haijie Yang
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China
| | - Yong Su
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China
| | - Xi Xia
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China
| | - Hong Wang
- Geriatric Department, Kunming General Hospital of Chengdu Military Command, Daguan Road No. 212, Kunming, 650032, China.
| |
Collapse
|
42
|
Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, Wang H, Wang X, Yu S, Zhou X, Cam M, Xue HH, Bhandoola A. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 2015; 16:1044-50. [PMID: 26280998 PMCID: PMC4575643 DOI: 10.1038/ni.3248] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023]
Abstract
The cellular and molecular events that drive the early development of innate lymphoid cells (ILCs) remain poorly understood. We show that the transcription factor TCF-1 is required for the efficient generation of all known adult ILC subsets and their precursors. Using novel reporter mice, we identified a new subset of early ILC progenitors (EILPs) expressing high amounts of TCF-1. EILPs lacked efficient T and B lymphocyte potential but efficiently gave rise to NK cells and all known adult helper ILC lineages, indicating that they are the earliest ILC-committed progenitors identified so far. Our results suggest that upregulation of TCF-1 expression denotes the earliest stage of ILC fate specification. The discovery of EILPs provides a basis for deciphering additional signals that specify ILC fate.
Collapse
Affiliation(s)
- Qi Yang
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Longyun Ye
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xuefeng Xia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haikun Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinxin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xinyuan Zhou
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, Maryland, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Silencing of Id2 attenuates hypoxia/ischemia-induced neuronal injury via inhibition of neuronal apoptosis. Behav Brain Res 2015; 292:528-36. [PMID: 26187693 DOI: 10.1016/j.bbr.2015.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/21/2022]
Abstract
Cerebral ischemic stroke has long been recognized as a prevalent and serious neurological disease that was associated with high mortality and morbidity. However, the current therapeutic protocols remain suboptimal with major mechanisms underlying stroke urgently warranted. Inhibitor of DNA binding/differentiation 2 (Id2) is found to be up-regulated in neuronal cells following hypoxia/ischemia (H/I). This study was aimed to investigate whether knockdown of Id2 in neuronal cells could protect them from hypoxic and ischemic injury both in vitro and in vivo. Flow cytometric analysis was employed to assess neuronal apoptosis in CoCl2-treated neuroblastoma B35 cells engineered to overexpress or knockdown Id2 expression. In vivo knockdown of Id2 was performed in Sprague-Dawley rats by a single intracerebroventricular injection of Cy3-labeled and cholesterol-modified Id2-siRNA. We found that knockdown of Id2 attenuated H/I-induced neuronal apoptosis in vitro while overexpression of Id2 produced an opposite effect. In a rat model of middle cerebral artery occlusion (MCAO), in vivo knockdown of Id2 significantly improved neurological deficits, reduced the volume of ischemic infarction and diminished the neuronal apoptosis in the penumbra area. Double immunofluorescence staining showed less co-localization of retinoblastoma tumor suppressor protein (Rb)-Id2 but greater co-localization of Rb-E2F1 in the penumbra area. Cell cycle assay further demonstrated that Id2 knockdown induced G0/G1 cell cycle arrest in CoCl2-treated B35 cells. The present data support the implication of Id2 in the modulation of H/I-induced neuronal apoptosis and may provide a potential therapeutic option to protect brain tissues from ischemic injury by inhibition of its expression.
Collapse
|
44
|
Diotel N, Beil T, Strähle U, Rastegar S. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. Gene Expr Patterns 2015; 19:1-13. [PMID: 26107416 DOI: 10.1016/j.gep.2015.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany; Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Sainte-Clotilde, F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde, F-97490, France.
| | - Tanja Beil
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Uwe Strähle
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Sepand Rastegar
- Karlsruhe Institute of Technology, Campus Nord, Institute of Toxicology and Genetics, Karlsruhe, Germany.
| |
Collapse
|
45
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015; 220:833-44. [DOI: 10.1016/j.imbio.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
46
|
Spratford CM, Kumar JP. Extramacrochaetae functions in dorsal-ventral patterning of Drosophila imaginal discs. Development 2015; 142:1006-15. [PMID: 25715400 DOI: 10.1242/dev.120618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the seminal events in the history of a tissue is the establishment of the anterior-posterior, dorsal-ventral (D/V) and proximal-distal axes. Axis formation is important for the regional specification of a tissue and allows cells along the different axes to obtain directional and positional information. Within the Drosophila retina, D/V axis formation is essential to ensure that each unit eye first adopts the proper chiral form and then rotates precisely 90° in the correct direction. These two steps are important because the photoreceptor array must be correctly aligned with the neurons of the optic lobe. Defects in chirality and/or ommatidial rotation will lead to disorganization of the photoreceptor array, misalignment of retinal and optic lobe neurons, and loss of visual acuity. Loss of the helix-loop-helix protein Extramacrochaetae (Emc) leads to defects in both ommatidial chirality and rotation. Here, we describe a new role for emc in eye development in patterning the D/V axis. We show that the juxtaposition of dorsal and ventral fated tissue in the eye leads to an enrichment of emc expression at the D/V midline. emc expression at the midline can be eliminated when D/V patterning is disrupted and can be induced in situations in which ectopic boundaries are artificially generated. We also show that emc functions downstream of Notch signaling to maintain the expression of four-jointed along the midline.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
47
|
Zhou JP, Gao ZL, Zhou ML, He MY, Xu XH, Tao DT, Yang CC, Liu LK. Snail interacts with Id2 in the regulation of TNF-α-induced cancer cell invasion and migration in OSCC. Am J Cancer Res 2015; 5:1680-1691. [PMID: 26175937 PMCID: PMC4497435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023] Open
Abstract
The inflammatory tumor microenvironment has been identified to play a pivotal role in tumor development and metastasis. Tumor necrosis factor-α (TNF-α) is one of the key cytokines that regulate the inflammatory processes in tumor promotion. In the current study, we treated three oral squamous cell carcinoma (OSCC) cell lines with TNF-α to study its role in inflammation-induced tumor progression. Here we show that TNF-α induces stabilization of the transcriptional repressor Snail and activates NF-κB pathway in the three OSCC cell lines. These activities resulted in the increased motility and invasiveness of three OSCC cell lines. In addition, upon dealing with TNF-α for the indicated time, three OSCC cell lines underwent epithelial-to-mesenchymal transition (EMT), in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial marker (E-cadherin) and an increased expression of mesenchymal marker (vimentin). We further demonstrated that TNF-α can up-regulate the expression of Id2 while inducing an EMT in oral cancer cells. Finally, we showed that Id2 interacted with Snail which may constrain Snail-dependent suppression of E-cadherin. In conclusion, our study indicates that TNF-α induces Snail stabilization is dependent on the activation of NF-κB pathway and results in increasing cell invasion and migration in OSCC cells. Id2 may contribute to regulate the function of Snail during TNF-α-mediated EMT in OSCC. These findings have significant implications for inflammation-induced tumor promotion in OSCC.
Collapse
Affiliation(s)
- Jing-Ping Zhou
- Department of Oral Medicine, School of Stomatology, Wannan Medical CollegeWuhu, People’s Republic of China
| | - Zhen-Lin Gao
- Department of Oncology IV, First Hospital of ShijiazhuangShijiazhuang, People’s Republic of China
| | - Mei-Ling Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Meng-Ying He
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Xiao-Hui Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of The First Outpatient, Affiliated Hospital of Stomatology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - De-Tao Tao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wannan Medical CollegeWuhu, People’s Republic of China
| | - Cong-Chong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Lai-Kui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical UniversityNanjing, People’s Republic of China
| |
Collapse
|
48
|
Sharma P, Chinaranagari S, Chaudhary J. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity. Biochimie 2015; 112:139-50. [PMID: 25778840 DOI: 10.1016/j.biochi.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Swathi Chinaranagari
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|
49
|
Transcriptional control of NK cell differentiation and function. Curr Top Microbiol Immunol 2015; 381:173-87. [PMID: 24850220 DOI: 10.1007/82_2014_376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Natural killer (NK) cells are crucial to mounting an effective immune response. They have a significant role in cancer immunosurveillance and function as a bridge between innate and adaptive immunity. However, until recently, surprisingly little was known about the molecular basis of NK cell development as compared to the impressive body of knowledge on B- and T-cell development. Here we outline the key transcription factors known to influence NK cell development and at what stages they function. The recent progress in understanding allows us to speculate on the nature of the network of interactions between transcription factors that ultimately facilitate the production of mature functional NK cells.
Collapse
|
50
|
Sun H, Fan HJ, Ling HQ. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 2015. [PMID: 25612924 DOI: 10.1186/s12864-014-1209-2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. Tomato is an important vegetable crop, and its genome sequence has been published recently. However, the bHLH gene family of tomato has not been systematically identified and characterized yet. RESULTS In this study, we identified 159 bHLH protein-encoding genes (SlbHLH) in tomato genome and analyzed their structures. Although bHLH domains were conserved among the bHLH proteins between tomato and Arabidopsis, the intron sequences and distribution of tomato bHLH genes were extremely different compared with Arabidopsis. The gene duplication analysis showed that 58.5% and 6.3% of SlbHLH genes belonged to low-stringency and high-stringency duplication, respectively, indicating that the SlbHLH genes are mainly generated via short low-stringency region duplication in tomato. Subsequently, we classified the SlbHLH genes into 21 subfamilies by phylogenetic tree analysis, and predicted their possible functions by comparison with their homologous genes of Arabidopsis. Moreover, the expression profile analysis of SlbHLH genes from 10 different tissues showed that 21 SlbHLH genes exhibited tissue-specific expression. Further, we identified that 11 SlbHLH genes were associated with fruit development and ripening (eight of them associated with young fruit development and three with fruit ripening). The evolutionary analysis revealed that 92% SlbHLH genes might be evolved from ancestor(s) originated from early land plant, and 8% from algae. CONCLUSIONS In this work, we systematically identified SlbHLHs by analyzing the tomato genome sequence using a set of bioinformatics approaches, and characterized their chromosomal distribution, gene structures, duplication, phylogenetic relationship and expression profiles, as well predicted their possible biological functions via comparative analysis with bHLHs of Arabidopsis. The results and information provide a good basis for further investigation of the biological functions and evolution of tomato bHLH genes.
Collapse
Affiliation(s)
- Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Hua-Jie Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|