1
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
2
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
3
|
Ye J, Liu S, Shang Y, Chen H, Wang R. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells. Cell Cycle 2018; 17:1014-1025. [PMID: 29886802 DOI: 10.1080/15384101.2018.1469874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133+CD44+ CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133+CD44+ CRC population, but not in the CD133-CD44- CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133+CD44+ or CRC CD133-CD44- populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133+CD44+ CRC population, thus conferring their self-renewal.
Collapse
Affiliation(s)
- Jun Ye
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Shanxi Liu
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Yangyang Shang
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Haoyuan Chen
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Rongquan Wang
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| |
Collapse
|
4
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
5
|
An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet 2016; 48:265-72. [PMID: 26829750 PMCID: PMC4767593 DOI: 10.1038/ng.3502] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages.
Collapse
|
6
|
Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin Transl Immunology 2015; 4:e30. [PMID: 25671128 PMCID: PMC4318491 DOI: 10.1038/cti.2014.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cancers can be addicted to continued and relatively high expression of nuclear oncoproteins. This is evident in colorectal cancer (CRC) where the oncoprotein and transcription factor MYB is over expressed and essential to continued proliferation and tumour cell survival. Historically, targeting transcription factors in the context of cancer has been very challenging. Nevertheless, we formulated a DNA vaccine to generate a MYB-specific immune response in the belief MYB peptides might be aberrantly presented on the cell surface of CRC cells. MYB, like many tumour antigens, is weakly immunogenic as it is a 'self' antigen and is subject to tolerance. To break tolerance, a fusion vaccine was generated comprising a full-length MYB complementary DNA (cDNA) flanked by two potent CD4-epitopes derived from tetanus toxoid. Vaccination was achieved against tumours initiated by two distinct highly aggressive, syngeneic cancer cell lines (CT26 and MC38) that express MYB. This was done in BALB/c and C57BL/6 mouse strains respectively. We introduced multiple inactivating mutations into the oncogene sequence for safety and sub-cloned the cDNA into a Food and Drug Administration (FDA)-compliant vector. We used low dose cyclophosphamide (CY) to overcome T-regulatory cell immune suppression, and anti-program cell death receptor 1 (anti-PD-1) antibodies to block T-cell exhaustion. Anti-PD-1 administered alone slightly delayed tumour growth in MC38 and more effectively in CT26 bearing mice, while CY treatment alone did not. We found that therapeutic vaccination elicits protection when MC38 tumour burden is low, mounts tumour-specific cell killing and affords enhanced protection when MC38 and CT26 tumour burden is higher but only in combination with anti-PD-1 antibody or low dose CY, respectively.
Collapse
|
7
|
Hwang JE, Ahn JW, Kwon SJ, Kim JB, Kim SH, Kang SY, Kim DS. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol Biol Rep 2014; 41:7671-81. [PMID: 25098603 DOI: 10.1007/s11033-014-3660-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/27/2014] [Indexed: 11/24/2022]
Abstract
Tocopherols are micronutrients with antioxidant properties. They are synthesized by photosynthetic bacteria and plants, and play important roles in animal and human nutrition. In this study, we isolated a new rice mutant line with elevated tocopherol content (MRXII) from an in vitro mutagenized population induced by gamma irradiation. The mutant exhibited greater seed longevity than the control, indicating a crucial role for tocopherols in maintaining viability during quiescence, and displayed faster seedling growth during the early growth stage. To study the molecular mechanism underlying vitamin E biosynthesis, we examined the expression patterns of seven rice genes encoding vitamin E biosynthetic enzymes. Accumulation levels of the OsVTE2 transcript and OsVTE2 protein in the MRXII mutant were significantly higher than in the control. Sequence analysis revealed that the MRXII mutant harbored a point mutation in the OsVTE2 promoter region, which resulted in the generation of MYB transcription factor-binding cis-element. These results help identify the promoter regions that regulate OsVTE2 transcription, and offer insights into the regulation of tocopherol content.
Collapse
Affiliation(s)
- Jung Eun Hwang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NPAD, Pinto C, Soo ETL, van Denderen BJW, Hill P, Ramsay RG, Sarcevic B, Newgreen DF, Thompson EW. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 2013; 15:R113. [PMID: 24283570 PMCID: PMC3979034 DOI: 10.1186/bcr3580] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. METHODS MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann-Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). RESULTS Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. CONCLUSIONS This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Collapse
|
9
|
Complete genome sequence of a J subgroup avian leukosis virus isolated from local commercial broilers. J Virol 2013; 86:11937-8. [PMID: 23043170 DOI: 10.1128/jvi.02009-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) isolate GDKP1202 was isolated from a 50-day-old local yellow commercial broiler in the Guangdong province of China in 2012. Here we report the complete genomic sequence of the GDKP1202 isolate, which caused high mortality, serious growth suppression, thymic atrophy, and liver enlargement in commercial broilers. A novel potential binding site (5'-GGCACCTCC-3') for c-myb was identified in the GDKP1202 genome. These findings will provide additional insights into the molecular characteristics in the genomes and pathogenicity of ALV-J.
Collapse
|
10
|
Manzotti G, Mariani SA, Corradini F, Bussolari R, Cesi V, Vergalli J, Ferrari-Amorotti G, Fragliasso V, Soliera AR, Cattelani S, Raschellà G, Holyoake TL, Calabretta B. Expression of p89(c-Mybex9b), an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells. Blood Cancer J 2012; 2:e71. [PMID: 22829973 PMCID: PMC3366069 DOI: 10.1038/bcj.2012.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023] Open
Abstract
The c-Myb gene encodes the p75c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is pc-Mybex9b, which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of pc-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of pc-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75c-Myb, pc-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of pc-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of pc-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34+ cells, without affecting the levels of p75c-Myb. Together, these studies indicate that expression of the low-abundance pc-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells.
Collapse
|
11
|
Chuang SF, Su LH, Cho CC, Pan YJ, Sun CH. Functional redundancy of two Pax-like proteins in transcriptional activation of cyst wall protein genes in Giardia lamblia. PLoS One 2012; 7:e30614. [PMID: 22355320 PMCID: PMC3280250 DOI: 10.1371/journal.pone.0030614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan organism G. lamblia.
Collapse
Affiliation(s)
- Shen-Fung Chuang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
12
|
Mitani Y, Rao PH, Futreal PA, Roberts DB, Stephens PJ, Zhao YJ, Zhang L, Mitani M, Weber RS, Lippman SM, Caulin C, El-Naggar AK. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome. Clin Cancer Res 2011; 17:7003-14. [PMID: 21976542 PMCID: PMC3225955 DOI: 10.1158/1078-0432.ccr-11-1870] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the molecular genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. EXPERIMENTAL DESIGN Multimolecular and genetic techniques complemented with massive pair-ended sequencing and single-nucleotide polymorphism array analyses were used on tumor specimens from 30 new and 52 previously analyzed fusion transcript-negative ACCs by reverse transcriptase PCR (RT-PCR). MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients' survival. RESULTS The FISH analysis showed 34 of 82 (41.5%) fusion-positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% whereas fusion transcript forming incidence was 38.2%. Significant statistical association between the 5' MYB transcript expression and patient survival was found. CONCLUSIONS We conclude that: (i) t(6;9) results in complex genetic and molecular alterations in ACC, (ii) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, (iii) noncanonical MYB-NFIB gene fusions occur in a subset of tumors, (iv) high MYB expression correlates with worse patient survival.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Su LH, Pan YJ, Huang YC, Cho CC, Chen CW, Huang SW, Chuang SF, Sun CH. A novel E2F-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2011; 286:34101-20. [PMID: 21835923 PMCID: PMC3190776 DOI: 10.1074/jbc.m111.280206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/09/2011] [Indexed: 01/01/2023] Open
Abstract
Giardia lamblia differentiates into resistant walled cysts for survival outside the host and transmission. During encystation, synthesis of cyst wall proteins is coordinately induced. The E2F family of transcription factors in higher eukaryotes is involved in cell cycle progression and cell differentiation. We asked whether Giardia has E2F-like genes and whether they influence gene expression during Giardia encystation. Blast searches of the Giardia genome database identified one gene (e2f1) encoding a putative E2F protein with two putative DNA-binding domains. We found that the e2f1 gene expression levels increased significantly during encystation. Epitope-tagged E2F1 was found to localize to nuclei. Recombinant E2F1 specifically bound to the thymidine kinase and cwp1-3 gene promoters. E2F1 contains several key residues for DNA binding, and mutation analysis revealed that its binding sequence is similar to those of the known E2F family proteins. The E2F1-binding sequences were positive cis-acting elements of the thymidine kinase and cwp1 promoters. We also found that E2F1 transactivated the thymidine kinase and cwp1 promoters through its binding sequences in vivo. Interestingly, E2F1 overexpression resulted in a significant increase of the levels of CWP1 protein, cwp1-3 gene mRNA, and cyst formation. We also found E2F1 can interact with Myb2, a transcription factor that coordinate up-regulates the cwp1-3 genes during encystation. Our results suggest that E2F family has been conserved during evolution and that E2F1 is an important transcription factor in regulation of the Giardia cwp genes, which are key to Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Li-Hsin Su
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Jiao Pan
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chang Huang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chao-Cheng Cho
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Wei Chen
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shao-Wei Huang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sheng-Fung Chuang
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Hung Sun
- From the Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
14
|
Zhou F, Zhang L, van Laar T, van Dam H, Ten Dijke P. GSK3β inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 2011; 22:3533-40. [PMID: 21795403 PMCID: PMC3172276 DOI: 10.1091/mbc.e11-06-0483] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The level of c-Myb is a determining factor in the response of leukemia cells to GSK3β kinase inhibiton, which is of particular interest for the therapy of leukemia and cancers that have c-Myb amplifications. Glycogen synthase kinase 3β (GSK3β) regulates diverse physiological processes, including metabolism, development, oncogenesis, and neuroprotection. GSK3β kinase activity has been reported to be critical for various types of cancer cells, but the mechanism has remained elusive. In this study we examine the mechanism by which GSK3β regulates the survival of leukemia cells. We demonstrate that upon GSK3β kinase inhibition different types of leukemia cells show severe proliferation defects as a result of apoptosis. The transcription factor c-Myb is found to be the main target of GSK3β inhibition in cell survival. GSK3β inactivation reduces the expression of c-Myb by promoting its ubiquitination-mediated degradation, thereby inhibiting the expression of c-Myb–dependent antiapoptotic genes Bcl2 and survivin. Coimmunoprecipitation, reporter assays, chromatin immunoprecipitation, and knockdown studies show that c-Myb needs to interact and cooperate with transcription factor LEF-1 in the activation of Bcl2 and survivin and that both transcription factors are required for cell survival. These data reveal an as-yet-unknown mechanism by which GSK3β controls cell survival.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | | | | | | | | |
Collapse
|
15
|
Wang YT, Pan YJ, Cho CC, Lin BC, Su LH, Huang YC, Sun CH. A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2010; 285:32213-26. [PMID: 20699219 DOI: 10.1074/jbc.m110.156620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. EUKARYOTIC CELL 2010; 9:1566-76. [PMID: 20693303 DOI: 10.1128/ec.00100-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protozoan parasite Giardia lamblia undergoes stage differentiation in the small intestine of the host to an environmentally resistant and infectious cyst. Encystation involves the secretion of an extracellular matrix comprised of cyst wall proteins (CWPs) and a β(1-3)-GalNAc homopolymer. Upon the induction of encystation, genes coding for CWPs are switched on, and mRNAs coding for a Myb transcription factor and enzymes involved in cyst wall glycan synthesis are upregulated. Encystation in vitro is triggered by several protocols, which call for changes in bile concentrations or availability of lipids, and elevated pH. However, the conditions for induction are not standardized and we predicted significant protocol-specific side effects. This makes reliable identification of encystation factors difficult. Here, we exploited the possibility of inducing encystation with two different protocols, which we show to be equally effective, for a comparative mRNA profile analysis. The standard encystation protocol induced a bipartite transcriptional response with surprisingly minor involvement of stress genes. A comparative analysis revealed a core set of only 18 encystation genes and showed that a majority of genes was indeed upregulated as a side effect of inducing conditions. We also established a Myb binding sequence as a signature motif in encystation promoters, suggesting coordinated regulation of these factors.
Collapse
|
17
|
Pan YJ, Cho CC, Kao YY, Sun CH. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2009; 284:17975-88. [PMID: 19423705 DOI: 10.1074/jbc.m109.012047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of a protective cyst wall is required for survival outside of the host and for infection of Giardia lamblia. Little is known of gene regulation of the cyst wall proteins (CWPs) during differentiation into dormant cysts. WRKY homologues constitute a large family of DNA-binding proteins in plants that are involved in several key cellular functions, including disease resistance, stress response, dormancy, and development. A putative wrky gene has been identified in the G. lamblia genome. We found that wrky expression levels increased significantly during encystation. The epitope-tagged WRKY was translocated into the nuclei during encystation. Recombinant WRKY specifically bound to its own promoter and the encystation-induced cwp1 and cwp2 promoters. WRKY contains several key residues for DNA binding, and mutation analysis revealed that its binding sequences are similar to those of the known plant WRKY proteins and that two of them are positive cis-acting elements of the wrky and cwp2 promoters. Overexpression of WRKY increased the cwp1-2 and myb2 mRNA levels, and these gene promoters were bound by WRKY in vivo. Interestingly, the wrky and cwp1-2 genes were up-regulated by ERK1 (extracellular signal-related kinase 1) overexpression, suggesting that WRKY may be a downstream component of the ERK1 pathway. In addition, a WRKY mutant that cannot enter nuclei and an ERK1 mutant lacking the predicted kinase domain showed decreased cwp1-2 gene expression. Our results suggest that the WRKY family has been conserved during evolution and that WRKY is an important transactivator of the cwp1-2 genes during G. lamblia differentiation into dormant cysts.
Collapse
Affiliation(s)
- Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
18
|
Huang YC, Su LH, Lee GA, Chiu PW, Cho CC, Wu JY, Sun CH. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J Biol Chem 2008; 283:31021-9. [PMID: 18768462 DOI: 10.1074/jbc.m805023200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myb family transcription factors are important in regulating cell proliferation, differentiation, and cell cycle progression. Giardia lamblia differentiates into infectious cysts to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. We have identified an encystation-induced Myb2 protein, which binds to the promoter regions of the cwp genes and myb2 itself in vitro. To elucidate the role of Myb2 in G. lamblia, we tested the hypothesis that Myb2 can activate encystation-induced genes. We found that overexpression of Myb2 resulted in an increase of expression of CWP1 at both protein and mRNA levels. Interestingly, the Myb2-overexpressing trophozoites had increased capability to differentiate into cysts. In cotransfection assays, Myb2 was able to transactivate the cwp promoters and its own promoter in vivo, suggesting that its gene can be positively autoregulated. Moreover, deletion of the N- or C-terminal domain resulted in a decrease of transactivation and autoregulation function of Myb2. We also found that the promoter of a newly identified encystation-induced gene, the giardial myeloid leukemia factor-like gene, has the Myb2 binding sites and that its mRNA levels were increased by Myb2 overexpression. Chromatin immunoprecipitation assays confirmed that Myb2 was bound to the promoters with its binding sites. Transfection of the myb2 antisense construct reduced the levels of the cwp1 transcripts and cyst formation. Our results suggest that Myb2 is a potent transactivator of the cwp genes and other endogenous genes and plays an important role in G. lamblia differentiation into cysts.
Collapse
Affiliation(s)
- Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Transcriptional repression of c-Myb and GATA-2 is involved in the biologic effects of C/EBPalpha in p210BCR/ABL-expressing cells. Blood 2008; 112:1942-50. [PMID: 18550858 DOI: 10.1182/blood-2007-09-114975] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ectopic C/EBPalpha expression in p210(BCR/ABL)-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To assess the underlying mechanisms, C/EBPalpha targets were identified by microarray analyses. Upon C/EBPalpha activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562, and chronic myelogenous leukemia (CML) blast crisis (BC) primary cells but only c-Myb levels decreased slightly in CD34(+) normal progenitors. The role of these 2 genes for the effects of C/EBPalpha was assessed by perturbing their expression in K562 cells. Ectopic c-Myb expression blocked the proliferation inhibition- and differentiation-inducing effects of C/EBPalpha, whereas c-Myb siRNA treatment enhanced C/EBPalpha-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. Ectopic GATA-2 expression suppressed the proliferation inhibitory effect of C/EBPalpha but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBPalpha induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBPalpha activation. In summary, the effects of C/EBPalpha in p210(BCR/ABL)-expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has nonidentical consequences for proliferation and differentiation of K562 cells, the effects of C/EBPalpha appear to involve dif-ferent transcription-regulated targets.
Collapse
|
20
|
A transcriptional enhancer from the coding region of ADAMTS5. PLoS One 2008; 3:e2184. [PMID: 18478108 PMCID: PMC2364661 DOI: 10.1371/journal.pone.0002184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/02/2008] [Indexed: 01/12/2023] Open
Abstract
Background The revelation that the human genome encodes only ∼25,000 genes and thus cannot account for phenotypic complexity has been one of the biggest surprises in the post-genomic era. However, accumulating evidence suggests that transcriptional regulation may be in large part responsible for this observed mammalian complexity. Consequently, there has been a strong drive to locate cis-regulatory regions in mammalian genomes in order to understand the unifying principles governing these regions, including their genomic distribution. Although a number of systematic approaches have been developed, these all discount coding sequence. Methodology/Principal Findings Using the computational tool PRI (Pattern-defined Regulatory Islands), which does not mask coding sequence, we identified a regulatory region associated with the gene ADAMTS5 that encompasses the entirety of the essential coding exon 2. We demonstrate through a combination of chromatin immunoprecipitation and reporter gene studies that this region can not only bind the myogenic transcription factors MYOD and myogenin and the E-protein HEB but can also function as a very strong myogenic transcriptional enhancer. Conclusions/Significance Thus, we report the identification and detailed characterization of an exonic enhancer. Ultimately, this leads to the interesting question of why evolution would be so parsimonious in the functional assignment of sequence.
Collapse
|
21
|
Liu DX, Biswas SC, Greene LA. B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth factor deprivation and DNA damage. J Neurosci 2005; 24:8720-5. [PMID: 15470138 PMCID: PMC6729960 DOI: 10.1523/jneurosci.1821-04.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of cell cycle elements plays a required role in neuronal apoptosis associated with both development and neurodegenerative disorders. We demonstrated previously that neuron survival requires gene repression mediated by the cell cycle transcription factor E2F (E2 promoter binding factor) and that apoptotic stimuli lead to de-repression of E2F-regulated genes and consequent death. However, the downstream mediators of such death have been unclear. The transcription factors B- and C-myb are E2F-regulated genes that are induced in neurons by apoptotic stimuli. Here, we examine the role of B- and C-myb induction in neuron death. Antisense and siRNA constructs that effectively block the upregulation of B- and C-myb provide substantial protection against death of cultured neuronal PC12 cells, sympathetic neurons, and cortical neurons elicited by either NGF withdrawal or DNA damage. There is also significant protection from death induced by direct E2F-dependent gene de-repression. Our findings thus establish required roles for B- and C-myb in neuronal apoptosis.
Collapse
Affiliation(s)
- David X Liu
- Department of Pathology, Center for Neurobiology and Behavior and Taub Center for Alzheimer's Disease Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
22
|
Gaillard C, Le Rouzic E, Créminon C, Perbal B. Alteration of C-MYB DNA binding to cognate responsive elements in HL-60 variant cells. Mol Pathol 2002; 55:325-35. [PMID: 12354938 PMCID: PMC1187265 DOI: 10.1136/mp.55.5.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2002] [Indexed: 02/04/2023]
Abstract
AIMS To establish whether the MYB protein expressed in HL-60 variant cells, which are cells resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA) induced differentiation, is able to bind MYB recognition elements (MREs) involved in the transcriptional regulation of myb target genes. In addition, to determine whether alterations in the binding of the MYB protein to MREs affects HL-60 cell proliferation and differentiation. METHODS Nuclear extracts of HL-60 variant cells exhibiting different degrees of resistance to TPA induced monocytic differentiation were used in electrophoretic mobility shift experiments (EMSAs), bandshift experiments performed with labelled oliogonucleotides containing the MYB consensus binding sequences. RESULTS The MYB protein contained in nuclear extracts from HL-60 variant cells did not bind efficiently to the MYB recognition elements identified in the mim-1 and PR264 promoters. Molecular cloning of the myb gene and analysis of the MYB protein expressed in the HL-60 variant cells established that the lack of binding did not result from a structural alteration of MYB in these cells. The lack of MRE binding did not abrogate the ability of variant HL-60s to proliferate and to undergo differentiation. Furthermore, the expression of the PR264/SC35 splicing factor was not affected as a result of the altered MYB DNA binding activity. CONCLUSIONS Because the MYB protein expressed in HL-60 variant cells did not appear to be structurally different from the MYB protein expressed in parental HL-60 cells, it is possible that the HL-60 variant cells contain a MYB binding inhibitory factor (MBIF) that interferes with MYB binding on MREs. The increased proliferation rate of HL-60 variant cells and their reduced serum requirement argues against the need for direct MYB binding in the regulation of cell growth.
Collapse
Affiliation(s)
- C Gaillard
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7 D Diderot, 75005 Paris, France
| | | | | | | |
Collapse
|
23
|
Lauder A, Castellanos A, Weston K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001; 21:5797-805. [PMID: 11486019 PMCID: PMC87299 DOI: 10.1128/mcb.21.17.5797-5805.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 06/07/2001] [Indexed: 01/14/2023] Open
Abstract
During T-cell activation, c-Myb is induced upon interleukin 2 (IL-2) stimulation and is required for correct proliferation of cells. In this paper, we provide evidence that IL-2-mediated induction of the c-myb gene occurs via the phosphoinositide 3-kinase (PI3K) signaling pathway, that protein kinase B (PKB) is the principal transducer of this signal, and that activation of the c-myb promoter can be abolished by deletion of conserved E2F and NF-kappaB binding sites. We show that Myb is required to protect activated peripheral T cells from bcl-2-independent apoptosis and that overexpression of oncogenic v-Myb is antiapoptotic. Overexpression of a Myb dominant-negative transgene abrogates PKB-mediated protection from apoptosis. Taken together, these results suggest that induction of c-myb transcription is an important downstream event for PKB-mediated protection of T cells from programmed cell death.
Collapse
Affiliation(s)
- A Lauder
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
24
|
Schmidt M, Nazarov V, Stevens L, Watson R, Wolff L. Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol Cell Biol 2000; 20:1970-81. [PMID: 10688644 PMCID: PMC110814 DOI: 10.1128/mcb.20.6.1970-1981.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-myb is a frequent target of retroviral insertional mutagenesis in murine leukemia virus-induced myeloid leukemia. Induction of the leukemogenic phenotype is generally associated with inappropriate expression of this transcriptional regulator. Despite intensive investigations, the target genes of c-myb that are specifically involved in development of these myeloid lineage neoplasms are still unknown. In vitro assays have indicated that c-myc may be a target gene of c-Myb; however, regulation of the resident chromosomal gene has not yet been demonstrated. To address this question further, we analyzed the expression of c-myc in a myeloblastic cell line, M1, expressing a conditionally active c-Myb-estrogen receptor fusion protein (MybER). Activation of MybER both prevented the growth arrest induced by interleukin-6 (IL-6) and rapidly restored c-myc expression in nearly terminal differentiated cells that had been exposed to IL-6 for 3 days. Restoration occurred in the presence of a protein synthesis inhibitor but not after a transcriptional block, indicating that c-myc is a direct, transcriptionally regulated target of c-Myb. c-myc is a major target that transduces Myb's proliferative signal, as shown by the ability of a c-Myc-estrogen receptor fusion protein alone to also reverse growth arrest in this system. To investigate the possibility that this regulatory connection contributes to Myb's oncogenicity, we expressed a dominant negative Myb in the myeloid leukemic cell line RI-4-11. In this cell line, c-myb is activated by insertional mutagenesis and cannot be effectively down regulated by cytokine. Myb's ability to regulate c-myc's expression was also demonstrated in these cells, showing a mechanism through which the proto-oncogene c-myb can exert its oncogenic potential in myeloid lineage hematopoietic cells.
Collapse
Affiliation(s)
- M Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
25
|
Campanero MR, Armstrong M, Flemington E. Distinct cellular factors regulate the c-myb promoter through its E2F element. Mol Cell Biol 1999; 19:8442-50. [PMID: 10567569 PMCID: PMC84947 DOI: 10.1128/mcb.19.12.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most E2F-driven promoters are transiently activated around the G(1)/S transition. Although the promoter for the c-myb proto-oncogene harbors an E2F element, it is induced early in G(1) following entry into the cell cycle. Furthermore, this promoter remains active throughout subsequent cell cycles. Since E2F sites function as repressor elements during G(1) (due to the association of pRb with E2F factors), we investigated whether the E2F element in the c-myb promoter is regulated differently than E2F elements in promoters that are repressed during G(1). By gel shift analysis, the E2F element from the c-myb promoter was found to form a unique complex, referred to as E2Fmyb-sp, which was not observed with E2F elements from several other promoters. Antibodies to DP-1, E2F1 to -5, p107, or pRb failed to either supershift or block E2Fmyb-sp complex formation. Methylation interference experiments indicate that the DNA contact residues for the E2Fmyb-sp complex are distinct from but overlapping with residues required for the binding of E2F proteins. In addition to the identification of E2Fmyb-sp, we have found that SP-1 binds to the c-myb E2F element. Functional studies revealed that E2Fmyb-sp and/or SP-1 are required to achieve full activation of the c-myb promoter in different cell types and to maintain elevated expression of the c-myb promoter during G(1) in NIH 3T3 cells. These studies demonstrate that E2F elements can be regulated differently through the binding of unique sets of proteins.
Collapse
Affiliation(s)
- M R Campanero
- Harvard University and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Abstract
The myb gene family consists of three members, named A, B and c-myb which encode nuclear proteins that function as transcriptional transactivators. Proteins encoded by these three genes exhibit a tripartate structure with an N-terminal DNA-binding domain, a central transactivation domain and a C-terminal regulatory domain. These proteins exhibit highest homology in their DNA binding domains and appear to bind DNA with overlapping sequence specificities. Transactivation by myb gene family varies considerably depending on cell type and promoter context suggesting a dependence on interaction with other cell type specific co-factors. While the C-terminal domains of A-Myb and c-Myb proteins exert a negative regulatory effect on their transcriptional transactivation function, the C-terminal domain of B-Myb appears to function as a positive regulator of this activity. One or more of these proteins interact with other transcription factors such as Ets-2, CEBP and NF-M. In addition, expression of these genes is cell cycle-regulated and inhibition of their expression with antisense oligonucleotides has been found to affect cell cycle-progression, cell division and/or differentiation. Members of the myb gene family exhibit different temporal and spatial expression patterns suggesting a distinctive function for each of these genes. Gene knockout experiments show that these genes play an essential role in development. Loss of c-myb function results in embryonic lethality due to failure of fetal hepatic hematopoiesis. A-myb null mutant mice, on the other hand are viable but exhibit growth abnormalities, and defects in spermatogenesis and female breast development. While the role of c-myb in oncogenesis is well established, future experiments are likely to provide further clues regarding the role of A-myb and B-myb in tumorigenesis.
Collapse
Affiliation(s)
- I H Oh
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
27
|
Wang KL, Warner JR. Positive and negative autoregulation of REB1 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:4368-76. [PMID: 9632820 PMCID: PMC109020 DOI: 10.1128/mcb.18.7.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
Reb1p is a DNA binding protein of Saccharomyces cerevisiae that has been implicated in the activation of transcription by polymerase (Pol) II, in the termination of transcription by Pol I, and in the organization of nucleosomes. Studies of the transcriptional control of the REB1 gene have led us to identify three Reb1p binding sites in the 5' region of the its gene, termed A, B, and C, at positions -110, -80, and +30 with respect to transcription initiation. In vitro, Reb1p binds to the three sites with the relative affinity of A >/= C > B. Kinetic parameters suggest that when both A and C sites are present on the same DNA molecule, the C site may recruit Reb1p for the A site. In vivo the A and B sites each contribute to the transcription activity of REB1 in roughly additive fashion. Mutation of both A and B sites abolishes transcription. On the other hand, the C site is a negative element, reducing transcription by 40%. In cells overexpressing Reb1p, the C site reduces transcription by more than 80%. This effect can be transposed to another transcription unit, demonstrating that the effect of Reb1p binding at the C site does not depend on interaction with upstream Reb1p molecules. Relocation of the C site to a position 105 bp downstream of the transcription initiation site abolishes its effect, suggesting that it does not act as a conventional attenuator of transcription. We conclude that binding of Reb1p at the C site hinders formation of the initiation complex. This arrangement of Reb1p binding sites provides a positive and negative mechanism to autoregulate the expression of REB1. Such an arrangement could serve to dampen the inevitable fluctuation in Rep1p levels caused by the intermittent presence of its mRNA within an individual cell.
Collapse
Affiliation(s)
- K L Wang
- Department of Cell Biology, Albert Einstein College of Medicine, The Bronx, New York 10461, USA
| | | |
Collapse
|
28
|
Nicolaides NC, Littman SJ, Modrich P, Kinzler KW, Vogelstein B. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 1998; 18:1635-41. [PMID: 9488480 PMCID: PMC108878 DOI: 10.1128/mcb.18.3.1635] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1997] [Accepted: 11/26/1997] [Indexed: 02/06/2023] Open
Abstract
Defects in mismatch repair (MMR) genes result in a mutator phenotype by inducing microsatellite instability (MI), a characteristic of hereditary nonpolyposis colorectal cancers (HNPCC) and a subset of sporadic colon tumors. Present models describing the mechanism by which germ line mutations in MMR genes predispose kindreds to HNPCC suggest a "two-hit" inactivation of both alleles of a particular MMR gene. Here we present experimental evidence that a nonsense mutation at codon 134 of the hPMS2 gene is sufficient to reduce MMR and induce MI in cells containing a wild-type hPMS2 allele. These results have significant implications for understanding the relationship between mutagenesis and carcinogenesis and the ability to generate mammalian cells with mutator phenotypes.
Collapse
Affiliation(s)
- N C Nicolaides
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA. nnicolaides.@magainin.com
| | | | | | | | | |
Collapse
|
29
|
Nicolaides NC, Holroyd KJ, Ewart SL, Eleff SM, Kiser MB, Dragwa CR, Sullivan CD, Grasso L, Zhang LY, Messler CJ, Zhou T, Kleeberger SR, Buetow KH, Levitt RC. Interleukin 9: a candidate gene for asthma. Proc Natl Acad Sci U S A 1997; 94:13175-80. [PMID: 9371819 PMCID: PMC24282 DOI: 10.1073/pnas.94.24.13175] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Asthma is a complex heritable inflammatory disorder of the airways associated with clinical signs of atopy and bronchial hyperresponsiveness. Recent studies localized a major gene for asthma to chromosome 5q31-q33 in humans. Thus, this segment of the genome represents a candidate region for genes that determine susceptibility to bronchial hyperresponsiveness and atopy in animal models. Homologs of candidate genes on human chromosome 5q31-q33 are found in four regions in the mouse genome, two on chromosome 18, and one each on chromosomes 11 and 13. We assessed bronchial responsiveness as a quantitative trait in mice and found it linked to chromosome 13. Interleukin 9 (IL-9) is located in the linked region and was analyzed as a gene candidate. The expression of IL-9 was markedly reduced in bronchial hyporesponsive mice, and the level of expression was determined by sequences within the qualitative trait locus (QTL). These data suggest a role for IL-9 in the complex pathogenesis of bronchial hyperresponsiveness as a risk factor for asthma.
Collapse
Affiliation(s)
- N C Nicolaides
- Magainin Institute of Molecular Medicine, Magainin Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marhamati DJ, Bellas RE, Arsura M, Kypreos KE, Sonenshein GE. A-myb is expressed in bovine vascular smooth muscle cells during the late G1-to-S phase transition and cooperates with c-myc to mediate progression to S phase. Mol Cell Biol 1997; 17:2448-57. [PMID: 9111313 PMCID: PMC232093 DOI: 10.1128/mcb.17.5.2448] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Myb family of transcription factors is defined by homology within the DNA binding domain and includes c-Myb, A-Myb, and B-Myb. The protein products of the myb genes all bind the Myb-binding site (MBS) [YG(A/G)C(A/C/G)GTT(G/A)]. A-myb has been found to display a limited pattern of expression. Here we report that bovine aortic smooth muscle cells (SMCs) express A-myb. Sequence analysis of isolated bovine A-myb cDNA clones spanning the entire coding region indicated extensive homology with the human gene, including the putative transactivation domain. Expression of A-myb was cell cycle dependent; levels of A-myb RNA increased in the late G1-to-S phase transition following serum stimulation of serum-deprived quiescent SMC cultures and peaked in S phase. Nuclear run-on analysis revealed that an increased rate of transcription can account for most of the increase in A-myb RNA levels. Treatment of SMC cultures with 5,6-dichlorobenzimidazole riboside, a selective inhibitor of RNA polymerase II, indicated an approximate 4-h half-life for A-myb mRNA during the S phase of the cell cycle. Expression of A-myb by SMCs was stimulated by basic fibroblast growth factor, in a cell density-dependent fashion. Cotransfection of a human A-myb expression vector activated a multimerized MBS element-driven reporter construct approximately 30-fold in SMCs. The activity of c-myb and c-myc promoters, which both contain multiple MBS elements, were similarly transactivated, approximately 30- and 50-fold, respectively, upon cotransfection with human A-myb. Lastly, A-myb RNA levels could be increased by a combination of phorbol ester plus insulin-like growth factor 1. To test the role of myb family members in progression through the cell cycle, we comicroinjected c-myc and myb expression vectors into serum-deprived quiescent SMCs. The combination of c-myc and either A-myb or c-myb but not B-myb synergistically led to entry into S phase, whereas microinjection of any vector alone had little effect on S phase entry. Thus, these results suggest that A-myb is a potent transactivator in bovine SMCs and that its expression induces progression into S phase of the cell cycle.
Collapse
Affiliation(s)
- D J Marhamati
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
31
|
Phan SC, Feeley B, Withers D, Boxer LM. Identification of an inducible regulator of c-myb expression during T-cell activation. Mol Cell Biol 1996; 16:2387-93. [PMID: 8628306 PMCID: PMC231227 DOI: 10.1128/mcb.16.5.2387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Resting T cells express very low levels of c-Myb protein. During T-cell activation, c-myb expression is induced and much of the increase in expression occurs at the transcriptional level. We identified a region of the c-myb 5' flanking sequence that increased c-myb expression during T-cell activation. In vivo footprinting by ligation-mediated PCR was performed to correlate in vivo protein binding with functional activity. A protein footprint was visible over this region of the c-myb 5' flanking sequence in activated T cells but not in unactivated T cells. An electrophoretic mobility shift assay (EMSA) with nuclear extract from activated T cells and an oligonucleotide of this binding site demonstrated a new protein-DNA complex, referred to as CMAT for c-myb in activated T cells; this complex was not present in unactivated T cells. Because the binding site showed some sequence similarity with the nuclear factor of activated T cells (NFAT) binding site, we compared the kinetics of induction of the two binding complexes and the molecular masses of the two proteins. Studies of the kinetics of induction showed that the NFAT EMSA binding complex appeared earlier than the CMAT complex. The NFAT protein migrated more slowly in a sodium dodecyl sulfate-polyacrylamide gel than the CMAT protein did. In addition, an antibody against NFAT did not cross-react with the CMAT protein. The appearance of the CMAT binding complex was inhibited by both cyclosporin A and rapamycin. The CMAT protein appears to be a novel inducible protein involved in the regulation of c-myb expression during T-cell activation.
Collapse
Affiliation(s)
- S C Phan
- Center for Molecular Biology in Medicine, Palo Alto VAMC, California 94304, USA
| | | | | | | |
Collapse
|
32
|
Gryaznov S, Skorski T, Cucco C, Nieborowska-Skorska M, Chiu CY, Lloyd D, Chen JK, Koziolkiewicz M, Calabretta B. Oligonucleotide N3'-->P5' phosphoramidates as antisense agents. Nucleic Acids Res 1996; 24:1508-14. [PMID: 8628685 PMCID: PMC145826 DOI: 10.1093/nar/24.8.1508] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Uniformly modified oligonucleotide N3'-->P5' phosphoramidates, where every 3'-oxygen is replaced by a 3'-amino group, were synthesized. These compounds have very high affinity to single-stranded RNAs and thus have potential utility as antisense agents. As was shown in this study, the oligonucleotide phosphoramidates are resistant to digestion with snake venom phosphodiesterase, to nuclease activity in a HeLa cell nuclear extract, or to nuclease activity in 50% human plasma, where no significant hydrolysis was observed after 8 h. These compounds were used in various in vitro cellular systems as antisense compounds addressed to different targeted regions of c-myb, c-myc and bcr-abl mRNAs. C-myb antisense phosphoramidates at 5 microM caused sequence and dose-dependent inhibition of HL-60 cell proliferation and a 75% reduction in c-myb protein and RNA levels, as determined by Western blot and RT-PCR analysis. Analogous results were observed for anti-c-myc phosphoramidates, where a complete cytostatic effect for HL-60 cells was observed at 1 microM concentration for fully complementary, but not for mismatched compounds, which were indistinguishable from untreated controls. This was correlated with a 93% reduction in c-myc protein level. Moreover, colony formation by the primary CML cells was also inhibited 75-95% and up to 99% by anti-c-myc and anti-bcr-abl phosphoramidate oligonucleotides, respectively, in a sequence- and dose-dependent manner within a 0.5 nM-5 microM dose range. At these concentrations the colony-forming ability of normal bone marrow cells was not affected. The presented in vitro data indicate that oligonucleotide N3'-->P5' phosphoramidates could be used as specific and efficient antisense agents.
Collapse
Affiliation(s)
- S Gryaznov
- Lynx Therapeutics, Inc., Hayward, CA 94545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deng QL, Ishii S, Sarai A. Binding site analysis of c-Myb: screening of potential binding sites by using the mutation matrix derived from systematic binding affinity measurements. Nucleic Acids Res 1996; 24:766-74. [PMID: 8604322 PMCID: PMC145691 DOI: 10.1093/nar/24.4.766] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The c-Myb oncoprotein is known to bind to multiple sites in the promoters of target genes. We have developed a protocol to screen the binding site of c-Myb by using the systematic binding data derived form measurements of binding affinity for oligonucleotide containing a known Myb-binding site and its complete single mutants. We first applied the method to predict the binding affinity for the known binding sites and compared with available experimental data. The predicated binding sites agree with many putative binding sites of known target promoters. However, there are some binding sites not predicated by the analysis. These sequences deviate from the consensus sequence derived from the binding analyses. In the light of the structure of Myb-DNA complex, these results indicate that different DNA-binding modes may be used by c-Myb to recognize different classes of binding sites. We also screened the sequence database for potential Myb-binding sites, and found sequences of several promoters that have not been identified experimentally but could be the target for c-Myb.
Collapse
Affiliation(s)
- Q L Deng
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
34
|
Oelgeschläger M, Krieg J, Lüscher-Firzlaff JM, Lüscher B. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Mol Cell Biol 1995; 15:5966-74. [PMID: 7565749 PMCID: PMC230848 DOI: 10.1128/mcb.15.11.5966] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of c-Myb has been implicated in the regulation of the binding of c-Myb to DNA. We show that murine c-Myb is phosphorylated at Ser-11 and -12 in vivo and that these sites can be phosphorylated in vitro by casein kinase II (CKII), analogous to chicken c-Myb. An efficient method to study DNA binding properties of full-length c-Myb and Myb mutants under nondenaturing conditions was developed. It was found that a Myb mutant in which Ser-11 and -12 were replaced with Ala (Myb Ala-11/12), wild-type c-Myb, and Myb Asp-11/12 bound to the A site of the mim-1 promoter with decreasing affinities. In agreement with this finding, Myb Ala-11/12 transactivated better than wild-type c-Myb and Myb Asp-11/12 on the mim-1 promoter or a synthetic Myb-responsive promoter. Similar observations were made for the myeloid-specific neutrophil elastase promoter. The presence of NF-M or an NF-M-like activity abolished partially the differences seen with the Ser-11/12 mutants, suggesting that the reduced DNA binding due to negative charge at positions 11 and 12 can be compensated for by NF-M. Since no direct interaction of c-Myb and NF-M was observed, we propose that the cooperativity is mediated by a third factor. Our data offer two possibilities for how casein kinase II phosphorylation can influence c-Myb function: first, by reducing c-Myb DNA binding and thereby influencing transactivation, and second, by enhancing the apparent cooperativity between c-Myb and NF-M or an NF-M-like activity.
Collapse
Affiliation(s)
- M Oelgeschläger
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
35
|
Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 1995; 96:2461-8. [PMID: 7593635 PMCID: PMC185899 DOI: 10.1172/jci118304] [Citation(s) in RCA: 398] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive production of collagen type I is a major contributor to hepatic fibrosis. Activated (myofibroblastic), but not quiescent, hepatic stellate cells (lipocytes) have a high level of collagen type I and alpha-smooth muscle actin expression. Therefore, stellate cell activation is a critical step in hepatic fibrosis. Here we show that quiescent stellate cells were activated by the generation of free radicals with ascorbate/FeSO4 and by malondialdehyde, a product of lipid peroxidation. In addition, stellate cell activation by collagen type I matrix and TGF alpha was blocked by antioxidants, such as d-alpha-tocopherol and butylated hydroxytoluene. Moreover, oxidative stress, TGF alpha and collagen type I markedly stimulated stellate cell entry into S-phase, NFkB activity, and c-myb expression, which were prevented by antioxidants. c-myb antisense oligonucleotide blocked the activation and proliferation of stellate cells induced by TGF alpha. Nuclear extracts from activated, but not from quiescent, stellate cells formed a complex with the critical promoter E box of the alpha-smooth muscle actin gene, which was disrupted by c-myb and NFkB65 antibodies, and competed by c-myb and NFkB cognate DNA. c-Myb expression was also stimulated in activated stellate cells in carbon tetrachloride-induced hepatic injury and fibrogenesis. This study indicates that oxidative stress plays an essential role, through the induction of c-myb and NFkB, on stellate cell activation.
Collapse
Affiliation(s)
- K S Lee
- Department of Medicine, Veterans Affairs Medical Center, San Diego, California, USA
| | | | | | | |
Collapse
|
36
|
Perrotti D, Melotti P, Skorski T, Casella I, Peschle C, Calabretta B. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol Cell Biol 1995; 15:6075-87. [PMID: 7565760 PMCID: PMC230859 DOI: 10.1128/mcb.15.11.6075] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process.
Collapse
Affiliation(s)
- D Perrotti
- Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ess KC, Whitaker TL, Cost GJ, Witte DP, Hutton JJ, Aronow BJ. A central role for a single c-Myb binding site in a thymic locus control region. Mol Cell Biol 1995; 15:5707-15. [PMID: 7565722 PMCID: PMC230821 DOI: 10.1128/mcb.15.10.5707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Locus control regions (LCRs) are powerful assemblies of cis elements that organize the actions of cell-type-specific trans-acting factors. A 2.3-kb LCR in the human adenosine deaminase (ADA) gene first intron, which controls expression in thymocytes, is composed of a 200-bp enhancer domain and extended flanking sequences that facilitate activation from within chromatin. Prior analyses have demonstrated that the enhancer contains a 28-bp core region and local adjacent augmentative cis elements. We now show that the core contains a single critical c-Myb binding site. In both transiently cotransfected human cells and stable chromatin-integrated yeast cells, c-Myb strongly transactivated reporter constructs that contained polymerized core sequences. c-Myb protein was strongly evident in T lymphoblasts in which the enhancer was active and was localized within discrete nuclear structures. Fetal murine thymus exhibited a striking concordance of endogenous c-myb expression with that of mouse ADA and human ADA LCR-directed transgene expression. Point mutation of the c-Myb site within the intact 2.3-kb LCR severely attenuated enhancer activity in transfections and LCR activity in transgenic thymocytes. Within the context of a complex enhancer and LCR, c-Myb can act as an organizer of thymocyte-specific gene expression via a single binding site.
Collapse
Affiliation(s)
- K C Ess
- Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
38
|
Russo MW, Sevetson BR, Milbrandt J. Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci U S A 1995; 92:6873-7. [PMID: 7624335 PMCID: PMC41432 DOI: 10.1073/pnas.92.15.6873] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NGFI-A (also called Egr1, Zif268, or Krox24) and the closely related proteins Krox20, NGFI-C, and Egr3 are zinc-finger transcription factors encoded by immediate-early genes which are induced by a wide variety of extracellular stimuli. NGFI-A has been implicated in cell proliferation, macrophage differentiation, synaptic activation, and long-term potentiation, whereas Krox20 is critical for proper hindbrain segmentation and peripheral nerve myelination. In previous work, a structure/function analysis of NGFI-A revealed a 34-aa inhibitory domain that was hypothesized to be the target of a cellular factor that represses NGFI-A transcriptional activity. Using the yeast two-hybrid system, we have isolated a cDNA clone which encodes a protein that interacts with this inhibitory domain and inhibits the ability of NGFI-A to activate transcription. This NGFI-A-binding protein, NAB1, is a 570-aa nuclear protein that bears no obvious sequence homology to known proteins. NAB1 also represses Krox20 activity, but it does not influence Egr3 or NGFI-G, thus providing a mechanism for the differential regulation of this family of immediate-early transcription factors.
Collapse
Affiliation(s)
- M W Russo
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
39
|
Citro G, Szczylik C, Ginobbi P, Zupi G, Calabretta B. Inhibition of leukaemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells. Br J Cancer 1994; 69:463-7. [PMID: 8123474 PMCID: PMC1968841 DOI: 10.1038/bjc.1994.84] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The inhibitory effect of c-myb antisense oligodeoxynucleotides (ODNs) conjugated to folic acid (FA) on HL-60 cell proliferation was examined. Folic acid was covalently linked to a polylysine chain and purified by gel chromatography. Sterile FA-polylysine was complexed with c-myb sense and antisense. Exposure of HL-60 cells to the FA-polylysine-c-myb antisense ODN complex resulted in a down-regulation of c-myb expression and a greater inhibition of proliferation than that obtained using free ODNs. Moreover, FA-polylysine conjugate alone or complexed to c-myb sense ODN was not toxic to cells. The antigenic properties and uptake of the vitamin were not affected by the polylysine chain. These data suggest that this strategy is potentially useful for the selective delivery of anti-oncogene-targeted ODNs into cancer cells.
Collapse
Affiliation(s)
- G Citro
- Laboratorio Chemioterapia Sperimentale, Istituto Tumori Regina Elena, Roma, Italy
| | | | | | | | | |
Collapse
|
40
|
Oncogenic truncation of the first repeat of c-Myb decreases DNA binding in vitro and in vivo. Mol Cell Biol 1994. [PMID: 8246954 DOI: 10.1128/mcb.13.12.7334] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncogenic activation of c-Myb in both avian and murine systems often involves N-terminal truncation. In particular, the first of three DNA-binding repeats in c-Myb has been largely deleted during the genesis of the v-myb oncogenes of avian myeloblastosis virus and E26 avian leukemia virus. This finding suggests that the first DNA-binding repeat may have an important role in cell growth control. We demonstrate that truncation of the first DNA-binding repeat of c-Myb is sufficient for myeloid transformation in culture, but deletion of the N-terminal phosphorylation site and adjacent acidic region is not. Truncation of the first repeat decreases the ability of a Myb-VP16 fusion protein to trans activate the promoter of a Myb-inducible gene (mim-1) involved in differentiation. Moreover, truncation of the first repeat decreases the ability of the Myb protein to bind DNA both in vivo and in vitro. These results suggest that N-terminal mutants of c-Myb may transform by regulating only a subset of those genes normally regulated by c-Myb.
Collapse
|
41
|
Dini PW, Lipsick JS. Oncogenic truncation of the first repeat of c-Myb decreases DNA binding in vitro and in vivo. Mol Cell Biol 1993; 13:7334-48. [PMID: 8246954 PMCID: PMC364804 DOI: 10.1128/mcb.13.12.7334-7348.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oncogenic activation of c-Myb in both avian and murine systems often involves N-terminal truncation. In particular, the first of three DNA-binding repeats in c-Myb has been largely deleted during the genesis of the v-myb oncogenes of avian myeloblastosis virus and E26 avian leukemia virus. This finding suggests that the first DNA-binding repeat may have an important role in cell growth control. We demonstrate that truncation of the first DNA-binding repeat of c-Myb is sufficient for myeloid transformation in culture, but deletion of the N-terminal phosphorylation site and adjacent acidic region is not. Truncation of the first repeat decreases the ability of a Myb-VP16 fusion protein to trans activate the promoter of a Myb-inducible gene (mim-1) involved in differentiation. Moreover, truncation of the first repeat decreases the ability of the Myb protein to bind DNA both in vivo and in vitro. These results suggest that N-terminal mutants of c-Myb may transform by regulating only a subset of those genes normally regulated by c-Myb.
Collapse
Affiliation(s)
- P W Dini
- Program in Cellular and Developmental Biology, State University of New York at Stony Brook 11794-5222
| | | |
Collapse
|
42
|
Skorski T, Nieborowska-Skorska M, Barletta C, Malaguarnera L, Szcyzlik C, Chen ST, Lange B, Calabretta B. Highly efficient elimination of Philadelphia leukemic cells by exposure to bcr/abl antisense oligodeoxynucleotides combined with mafosfamide. J Clin Invest 1993; 92:194-202. [PMID: 8325984 PMCID: PMC293565 DOI: 10.1172/jci116549] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Synthetic oligodeoxynucleotides complementary to the break-point junction of bcr-abl transcripts selectively inhibit the proliferation of Philadelphia-positive leukemic cells, but residual leukemic cells persist in antisense oligodeoxynucleotides-treated cultures. Cyclophosphamide derivatives such as mafosfamide and 4-hydroperoxycyclophosphamide are used at high doses for purging of Philadelphia leukemic cells from marrows but such treatment can be associated with delayed engraftment and prolonged cytopenias. To develop a more effective procedure that might optimize the killing of leukemia cells and the sparing of normal hematopoietic progenitor cells, a 1:1 mixture of Philadelphia leukemic cells and normal bone marrow cells was exposed to a combination of a low dose of mafosfamide and bcr-abl antisense oligodeoxynucleotides and assayed for growth ability in clonogenic assays and in immunodeficient mice. Bcr-abl transcripts were not detected in residual colonies, and cytogenetic analysis of individual colonies revealed a normal karyotype. Normal but not leukemic hematopoietic colonies of human origin were also detected in marrows of immunodeficient mice 1 mo after injection of the treated cells. Our results indicate that a combination of a conventional chemotherapeutic agent and a tumor-specific antisense oligodeoxynucleotide is highly effective in killing leukemic cells and in sparing a much higher number of normal progenitor cells as compared with high-dose mafosfamide treatment. This offers the prospect of a novel and more selective ex vivo treatment of chronic myelogenous leukemia.
Collapse
Affiliation(s)
- T Skorski
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Only the DNA binding and transactivation domains of c-Myb are required to block terminal differentiation of murine erythroleukemia cells. Mol Cell Biol 1993. [PMID: 8497265 DOI: 10.1128/mcb.13.6.3505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Myb protein is a transcription factor with an apparent but poorly defined role in hematopoietic cell growth and differentiation. The DNA binding and several transcriptional regulatory domains of the c-Myb protein have been defined by transient transfections into nonhematopoietic cell lines. Although the relationship between these domains and transformation has been studied, little is known about the function of these domains during hematopoietic maturation. Up-regulation of stably transfected c-myb in murine erythroleukemia (MEL) cells blocks terminal differentiation when MEL cells are induced to differentiate with N,N'-hexamethylene bisacetamide. To determine which functional domains of c-Myb are necessary and sufficient to block differentiation, mutated c-myb constructs under the control of a murine metallothionein promoter were transfected into C19 MEL cells, and stable clonal cell lines were established. The ability of Myb mutants to block differentiation paralleled their ability to transactivate transcription of a reporter gene containing Myb-responsive elements, by transient transfection into a lymphoid cell line. The smallest c-Myb mutant able to block differentiation consisted of the DNA binding domain juxtaposed to the transactivation domain. Therefore, the DNA binding domain and the transactivation domain are necessary and sufficient for c-Myb to block differentiation in MEL cells.
Collapse
|
44
|
Cuddihy AE, Brents LA, Aziz N, Bender TP, Kuehl WM. Only the DNA binding and transactivation domains of c-Myb are required to block terminal differentiation of murine erythroleukemia cells. Mol Cell Biol 1993; 13:3505-13. [PMID: 8497265 PMCID: PMC359820 DOI: 10.1128/mcb.13.6.3505-3513.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The c-Myb protein is a transcription factor with an apparent but poorly defined role in hematopoietic cell growth and differentiation. The DNA binding and several transcriptional regulatory domains of the c-Myb protein have been defined by transient transfections into nonhematopoietic cell lines. Although the relationship between these domains and transformation has been studied, little is known about the function of these domains during hematopoietic maturation. Up-regulation of stably transfected c-myb in murine erythroleukemia (MEL) cells blocks terminal differentiation when MEL cells are induced to differentiate with N,N'-hexamethylene bisacetamide. To determine which functional domains of c-Myb are necessary and sufficient to block differentiation, mutated c-myb constructs under the control of a murine metallothionein promoter were transfected into C19 MEL cells, and stable clonal cell lines were established. The ability of Myb mutants to block differentiation paralleled their ability to transactivate transcription of a reporter gene containing Myb-responsive elements, by transient transfection into a lymphoid cell line. The smallest c-Myb mutant able to block differentiation consisted of the DNA binding domain juxtaposed to the transactivation domain. Therefore, the DNA binding domain and the transactivation domain are necessary and sufficient for c-Myb to block differentiation in MEL cells.
Collapse
Affiliation(s)
- A E Cuddihy
- Navy Medical Oncology Branch, National Cancer Institute, Bethesda, Maryland 20889
| | | | | | | | | |
Collapse
|
45
|
Abstract
Activation of the murine c-myc promoter by murine c-Myb protein was examined in several cell lines by using a transient expression system in which Myb expression vectors activate the c-myc promoter linked to a chloramphenicol acetyltransferase reporter gene or a genomic beta-globin gene. S1 nuclease protection analyses confirmed that the induction of c-myc by c-Myb was transcriptional and affected both P1 and P2 start sites in a murine T-cell line, EL4, and a myelomonocytic line, WEHI-3. Mutational analyses of the c-myc promoter revealed that two distinct regions could confer Myb responsiveness in two T-cell lines, a distal site upstream of P1 and a proximal site within the first noncoding exon. In contrast, only the proximal site was required for other cell lineages examined. Five separate Myb-binding sites were located in this proximal site and found to be important for c-Myb trans activation. DNA binding was necessary for c-myc activation, as shown by the loss of function associated with mutation of Myb's DNA-binding domain and by trans-dominant repressor activity of the DNA binding, trans-activation-defective mutant. The involvement of additional protein factors was addressed by inhibiting protein synthesis with cycloheximide in a conditional expression system in which the activity of presynthesized Myb was under the control of estrogen. These experiments indicate that de novo synthesis of additional proteins was not necessary for c-myc trans activation. Together these data reveal two cell lineage-dependent pathways by which c-Myb regulates c-myc; however, both pathways are mechanistically indistinguishable in that direct DNA binding by Myb is required for activating c-myc whereas neither de novo protein synthesis nor other labile proteins are necessary.
Collapse
|
46
|
Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JP. Mechanism of c-myc regulation by c-Myb in different cell lineages. Mol Cell Biol 1993; 13:2858-69. [PMID: 8474446 PMCID: PMC359676 DOI: 10.1128/mcb.13.5.2858-2869.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the murine c-myc promoter by murine c-Myb protein was examined in several cell lines by using a transient expression system in which Myb expression vectors activate the c-myc promoter linked to a chloramphenicol acetyltransferase reporter gene or a genomic beta-globin gene. S1 nuclease protection analyses confirmed that the induction of c-myc by c-Myb was transcriptional and affected both P1 and P2 start sites in a murine T-cell line, EL4, and a myelomonocytic line, WEHI-3. Mutational analyses of the c-myc promoter revealed that two distinct regions could confer Myb responsiveness in two T-cell lines, a distal site upstream of P1 and a proximal site within the first noncoding exon. In contrast, only the proximal site was required for other cell lineages examined. Five separate Myb-binding sites were located in this proximal site and found to be important for c-Myb trans activation. DNA binding was necessary for c-myc activation, as shown by the loss of function associated with mutation of Myb's DNA-binding domain and by trans-dominant repressor activity of the DNA binding, trans-activation-defective mutant. The involvement of additional protein factors was addressed by inhibiting protein synthesis with cycloheximide in a conditional expression system in which the activity of presynthesized Myb was under the control of estrogen. These experiments indicate that de novo synthesis of additional proteins was not necessary for c-myc trans activation. Together these data reveal two cell lineage-dependent pathways by which c-Myb regulates c-myc; however, both pathways are mechanistically indistinguishable in that direct DNA binding by Myb is required for activating c-myc whereas neither de novo protein synthesis nor other labile proteins are necessary.
Collapse
Affiliation(s)
- J P Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sureau A, Soret J, Vellard M, Crochet J, Perbal B. The PR264/c-myb connection: expression of a splicing factor modulated by a nuclear protooncogene. Proc Natl Acad Sci U S A 1992; 89:11683-7. [PMID: 1465383 PMCID: PMC50620 DOI: 10.1073/pnas.89.24.11683] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously reported that expression of the c-myb gene in normal avian thymic cells proceeds through the intermolecular recombination of ET (thymus-specific) and c-myb coding sequences, thereby generating a novel type of c-myb product. Antisense transcripts expressed from the ET locus encode the extremely well-conserved splicing factor PR264/SC35. We now show that the human PR264 promoter sequences contain several myb-recognition elements that efficiently interact in vitro with the c-myb DNA-binding domain. Moreover, expression from the PR264 promoter is transactivated, both in vitro and in cultured cells, by different c-myb products. Thus, the PR264 gene is most likely a physiological target for the c-myb family of transcription factors.
Collapse
Affiliation(s)
- A Sureau
- Laboratoire d'Oncologie Virale et Moléculaire, Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | | | |
Collapse
|
48
|
Aurigemma RE, Blair DG, Ruscetti SK. Transactivation of erythroid transcription factor GATA-1 by a myb-ets-containing retrovirus. J Virol 1992; 66:3056-61. [PMID: 1560536 PMCID: PMC241066 DOI: 10.1128/jvi.66.5.3056-3061.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ME26 virus is a recombinant mouse retrovirus construct homologous to the avian E26 virus. Both encode a 135-kDa gag-myb-ets fusion protein which is localized in the nucleus. We have recently shown that ME26 virus can induce erythropoietin (Epo) responsiveness in hematopoietic cells. Mice infected with ME26 virus develop a hyperplasia of Epo-dependent hematopoietic precursor cells from which permanent cell lines can be established. In vitro, ME26 virus specifically induces Epo responsiveness in the interleukin-3-dependent myeloid cell line FDC-P2 by enhancing expression of the Epo receptor (EpoR). In the present study we demonstrate that ME26 virus infection of FDC-P2 cells also results in enhanced expression of beta-globin and the erythroid-specific transcription factor GATA-1, a protein which can transactivate both the EpoR promoter and globin genes. In addition, these cells exhibit a down-regulation of c-myb expression similar to that seen in differentiating erythroid cells. To determine the molecular basis for activation of erythroid genes in ME26 virus-infected cells, we carried out transient expression assays with DNA constructs of either the EpoR promoter of the GATA-1 promoter linked to reporter genes. Our results indicate that while ME26 virus did not directly enhance expression from the EpoR promoter, both it and its avian parent, E26, transactivated the GATA-1 promoter. Furthermore, ME26 virus cooperates with the GATA-1 protein to enhance expression of the EpoR gene. We propose that the mechanism by which ME26 virus induces erythroleukemia involves transactivation of the GATA-1 gene, thus positively regulating the expression of the EpoR and leading to the proliferation of a unique population of Epo-responsive cells. By specifically inducing Epo responsiveness in hematopoietic cells via transactivation of a transcription factor, ME26 virus utilizes a novel mechanism for retrovirus pathogenesis.
Collapse
Affiliation(s)
- R E Aurigemma
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | |
Collapse
|