1
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
2
|
da Silva DV, Nordholm J, Madjo U, Pfeiffer A, Daniels R. Assembly of subtype 1 influenza neuraminidase is driven by both the transmembrane and head domains. J Biol Chem 2012; 288:644-53. [PMID: 23150659 DOI: 10.1074/jbc.m112.424150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuraminidase (NA) is one of the two major influenza surface antigens and the main influenza drug target. Although NA has been well characterized and thought to function as a tetramer, the role of the transmembrane domain (TMD) in promoting proper NA assembly has not been systematically studied. Here, we demonstrate that in the absence of the TMD, NA is synthesized and transported in a predominantly inactive state. Substantial activity was rescued by progressive truncations of the stalk domain, suggesting the TMD contributes to NA maturation by tethering the stalk to the membrane. To analyze how the TMD supports NA assembly, the TMD was examined by itself. The NA TMD formed a homotetramer and efficiently trafficked to the plasma membrane, indicating the TMD and enzymatic head domain drive assembly together through matching oligomeric states. In support of this, an unrelated strong oligomeric TMD rescued almost full NA activity, whereas the weak oligomeric mutant of this TMD restored only half of wild type activity. These data illustrate that a large soluble domain can force assembly with a poorly compatible TMD; however, optimal assembly requires coordinated oligomerization between the TMD and the soluble domain.
Collapse
Affiliation(s)
- Diogo V da Silva
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
3
|
Wang N, Glidden EJ, Murphy SR, Pearse BR, Hebert DN. The cotranslational maturation program for the type II membrane glycoprotein influenza neuraminidase. J Biol Chem 2008; 283:33826-37. [PMID: 18849342 DOI: 10.1074/jbc.m806897200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The earliest steps in nascent protein maturation greatly affect its overall efficiency. Constraints placed on maturing proteins at these early stages limit available conformations and help to direct the native maturation process. For type II membrane proteins, these cotranslational constraints include N- and C-terminal membrane tethering, chaperone binding, and disulfide bond formation. The cotranslational maturation process for the type II membrane glycoprotein influenza neuraminidase (NA) was investigated to provide a deeper understanding of these initial endoplasmic reticulum events. The type II orientation provides experimental advantages to monitor the first maturation steps. Calnexin was shown to cotranslationally interact with NA prior to calreticulin. These interactions were required for the efficient maturation of NA as it prematurely formed intramolecular disulfides and aggregated when calnexin and calreticulin interactions were abolished. Lectin chaperone binding slowed the NA maturation process, increasing its fidelity. Carbohydrates were required for NA maturation in a regio-specific manner. A subset of NA formed intermolecular disulfides and oligomerized cotranslationally. This fraction increased in the absence of calnexin and calreticulin binding. NA dimerization also occurred for an NA mutant lacking the critical large loop disulfide bond, indicating that dimerization did not require proper NA oxidation. The strict evaluation of proper maturation carried out by the quality control machinery was instilled at the tetramerization step. This study illustrates the type II membrane protein maturation process and shows how important cotranslational events contribute to the proper cellular maturation of glycoproteins.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
4
|
Palermo LM, Hafenstein SL, Parrish CR. Purified feline and canine transferrin receptors reveal complex interactions with the capsids of canine and feline parvoviruses that correspond to their host ranges. J Virol 2006; 80:8482-92. [PMID: 16912298 PMCID: PMC1563853 DOI: 10.1128/jvi.00683-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell infection processes and host ranges of canine parvovirus (CPV) and feline panleukopenia virus (FPV) are controlled by their capsid interactions with the transferrin receptors (TfR) on their host cells. Here, we expressed the ectodomains of wild-type and mutant TfR and tested those for binding to purified viral capsids and showed that different naturally variant strains of the viruses were associated with variant interactions with the receptors which likely reflect the optimization of the viral infection processes in the different hosts. While all viruses bound the feline TfR, reflecting their tissue culture host ranges, a naturally variant mutant of CPV (represented by the CPV type-2b strain) that became the dominant virus worldwide in 1979 showed significantly lower levels of binding to the feline TfR. The canine TfR ectodomain did not bind to a detectable level in the in vitro assays, but this appears to reflect the naturally low affinity of that interaction, as only low levels of binding were seen when the receptor was expressed on mammalian cells; however, that was sufficient to allow endocytosis and infection. The apical domain of the canine TfR controls the specific interaction with CPV capsids, as a canine TfR mutant altering a glycosylation site in that domain bound FPV, CPV-2, and CPV-2b capsids efficiently. Enzymatic removal of the N-linked glycans did not allow FPV binding to the canine TfR, suggesting that the protein sequence difference is itself important. The purified feline TfR inhibited FPV and CPV-2 binding and infection of feline cells but not CPV-2b, indicating that the receptor binding may be able to prevent the attachment to the same receptor on cells.
Collapse
Affiliation(s)
- Laura M Palermo
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA.
| | | | | |
Collapse
|
5
|
Hueffer K, Palermo LM, Parrish CR. Parvovirus infection of cells by using variants of the feline transferrin receptor altering clathrin-mediated endocytosis, membrane domain localization, and capsid-binding domains. J Virol 2004; 78:5601-11. [PMID: 15140957 PMCID: PMC415789 DOI: 10.1128/jvi.78.11.5601-5611.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The feline and canine transferrin receptors (TfRs) bind canine parvovirus to host cells and mediate rapid capsid uptake and infection. The TfR and its ligand transferrin have well-described pathways of endocytosis and recycling. Here we tested several receptor-dependent steps in infection for their role in virus infection of cells. Deletions of cytoplasmic sequences or mutations of the Tyr-Thr-Arg-Phe internalization motif reduced the rate of receptor uptake from the cell surface, while polar residues introduced into the transmembrane sequence resulted in increased degradation of transferrin. However, the mutant receptors still mediated efficient virus infection. In contrast, replacing the cytoplasmic and transmembrane sequences of the feline TfR with those of the influenza virus neuraminidase (NA) resulted in a receptor that bound and endocytosed the capsid but did not mediate viral infection. This chimeric receptor became localized to detergent-insoluble membrane domains. To test the effect of structural virus receptor interaction on infection, two chimeric receptors were prepared which contained antibody-variable domains that bound the capsid in place of the TfR ectodomain. These chimeric receptors bound CPV capsids and mediated uptake but did not result in cell infection. Adding soluble feline TfR ectodomain to the virus during that uptake did not allow infection.
Collapse
Affiliation(s)
- Karsten Hueffer
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
6
|
Barman S, Adhikary L, Chakrabarti AK, Bernas C, Kawaoka Y, Nayak DP. Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding. J Virol 2004; 78:5258-69. [PMID: 15113907 PMCID: PMC400379 DOI: 10.1128/jvi.78.10.5258-5269.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus neuraminidase (NA), a type II transmembrane glycoprotein, possesses receptor-destroying activity and thereby facilitates virus release from the cell surface. Among the influenza A viruses, both the cytoplasmic tail (CT) and transmembrane domain (TMD) amino acid sequences of NA are highly conserved, yet their function(s) in virus biology remains unknown. To investigate the role of amino acid sequences of the CT and TMD on the virus life cycle, we systematically mutagenized the entire CT and TMD of NA by converting two to five contiguous amino acids to alanine. In addition, we also made two chimeric NA by replacing the CT proximal one-third amino acids of the NA TMD [NA(1T2N)NA] and the entire NA TMD (NATRNA) with that of human transferrin receptor (TR) (a type II transmembrane glycoprotein). We rescued transfectant mutant viruses by reverse genetics and examined their phenotypes. Our results show that all mutated and chimeric NAs could be rescued into transfectant viruses. Different mutants showed pleiotropic effects on virus growth and replication. Some mutants (NA2A5, NA3A7, and NA4A10) had little effect on virus growth while others (NA3A2, NA5A27, and NA5A31) produced about 50- to 100-fold-less infectious virus and still some others (NA5A14, NA4A19, and NA4A23) exhibited an intermediate phenotype. In general, mutations towards the ectodomain-proximal sequences of TMD progressively caused reduction in NA enzyme activity, affected lipid raft association, and attenuated virus growth. Electron microscopic analysis showed that these mutant viruses remained aggregated and bound to infected cell surfaces and could be released from the infected cells by bacterial NA treatment. Moreover, viruses containing mutations in the extreme N terminus of the CT (NA3A2) as well as chimeric NA containing the TMD replaced partially [NA(1T2N)NA] or fully (NATRNA) with TR TMD caused reduction in virus growth and exhibited the morphological phenotype of elongated particles. These results show that although the sequences of NA CT and TMD per se are not absolutely essential for the virus life cycle, specific amino acid sequences play a critical role in providing structural stability, enzyme activity, and lipid raft association of NA. In addition, aberrant morphogenesis including elongated particle formation of some mutant viruses indicates the involvement of NA in virus morphogenesis and budding.
Collapse
Affiliation(s)
- Subrata Barman
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, University of California-Los Angeles School of Medicine, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | |
Collapse
|
7
|
Barman S, Nayak DP. Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. J Virol 2000; 74:6538-45. [PMID: 10864667 PMCID: PMC112163 DOI: 10.1128/jvi.74.14.6538-6545.2000] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. Previously, it was shown that the transmembrane domain (TMD) of NA provides a determinant(s) for apical sorting and raft association (A. Kundu, R. T. Avalos, C. M. Sanderson, and D. P. Nayak, J. Virol. 70:6508-6515, 1996). In this report, we have analyzed the sequences in the NA TMD involved in apical transport and raft association by making chimeric TMDs from NA and human transferring receptor (TR) TMDs and by mutating the NA TMD sequences. Our results show that the COOH-terminal half of the NA TMD (amino acids [aa] 19 to 35) was significantly involved in raft association, as determined by Triton X-100 (TX-100) resistance. However, in addition, the highly conserved residues at the extreme NH(2) terminus of the NA TMD were also critical for TX-100 resistance. On the other hand, 19 residues (aa 9 to 27) at the NH(2) terminus of the NA TMD were sufficient for apical sorting. Amino acid residues 14 to 18 and 27 to 31 had the least effect on apical transport, whereas mutations in the amino acid residues 11 to 13, 23 to 26, and 32 to 35 resulted in altered polarity for the mutant proteins. These results indicated that multiple regions in the NA TMD were involved in apical transport. Furthermore, these results support the idea that the signals for apical sorting and raft association, although residing in the NA TMD, are not identical and vary independently and that the NA TMD also possesses an apical determinant(s) which can interact with apical sorting machineries outside the lipid raft.
Collapse
Affiliation(s)
- S Barman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095-1747, USA
| | | |
Collapse
|
8
|
Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol 1996; 70:6653-7. [PMID: 8794300 PMCID: PMC190706 DOI: 10.1128/jvi.70.10.6653-6657.1996] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have analyzed the mechanism by which the matrix (M1) protein associates with cellular membranes during influenza A virus assembly. Interaction of the M1 protein with the viral hemagglutinin (HA) or neuraminidase (NA) glycoprotein was extensively analyzed by using wild-type and transfectant influenza viruses as well as recombinant vaccinia viruses expressing the M1 protein, HA, or NA. Membrane binding of the M1 protein was significantly stimulated at the late stage of virus infection. Using recombinant vaccinia viruses, we found that a relatively small fraction (20 to 40%) of the cytoplasmic M1 protein associated with cellular membranes in the absence of other viral proteins, while coexpression of the HA and the NA stimulated membrane binding of the M1 protein. The stimulatory effect of the NA (>90%) was significant and higher than that of the HA (>60%). Introduction of mutations into the cytoplasmic tail of the NA interfered with its stimulatory effect. Meanwhile, the HA may complement the defective NA and facilitate virus assembly in cells infected with the NA/TAIL(-) transfectant. In conclusion, the highly conserved cytoplasmic tails of the HA and NA play an important role in virus assembly.
Collapse
Affiliation(s)
- M Enami
- Department of Biochemistry, Kanazawa University School of Medicine, Ishikawa, Japan
| | | |
Collapse
|
9
|
Yang XF, Crine P, Boileau G. The nature of topogenic sequences determines the transport competence of topological mutants of neutral endopeptidase-24.11. Biochem J 1995; 312 ( Pt 1):99-105. [PMID: 7492341 PMCID: PMC1136232 DOI: 10.1042/bj3120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type II integral membrane proteins are anchored by a signal-peptide/membrane-anchor domain (SA domain) located near their N-terminus, whereas type I membrane proteins are anchored by stop-transfer sequences usually located near the C-terminus. In this study we have attempted to transform neutral endopeptidase-24.11 (EC 3.4.24.11; NEP), a type II membrane protein, into a type I membrane protein. Three type I mutant proteins were constructed by fusion of topogenic sequences to the C-terminus of SecNEP, a soluble form of NEP. The first two type I mutants, SecNEP-TMC and SecNEP-TMIC, were constructed by fusing in frame the cytosolic and SA domains of NEP to the C-terminus of SecNEP. These two fusion proteins differ only in the orientation of the cytosolic tail. The third type I mutant, SecNEP-ACE, was constructed by fusing in frame the stop-transfer and cytosolic domains of angiotensin I-converting enzyme (EC 3.4.15.1; ACE) to the C-terminus of SecNEP. Our results suggest that: (1) the NEP ectodomain can be anchored with a type I topology in the endoplasmic reticulum (ER) membrane by both NEP and ACE topogenic sequences; (2) SecNEP-TMC and SecNEP-TMIC were transport-incompetent and needed proteolytic cleavage in the C-terminal region to leave the ER, whereas SecNEP-ACE was transported out of the ER as a type I membrane protein. Therefore we concluded that the nature of topogenic sequences determines the transport-competence of topological mutants of neutral endopeptidase-24.11.
Collapse
Affiliation(s)
- X F Yang
- Département de biochimie, Faculté de médecine, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
10
|
Jaunin P, Jaisser F, Beggah AT, Takeyasu K, Mangeat P, Rossier BC, Horisberger JD, Geering K. Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na,K-pumps. J Cell Biol 1993; 123:1751-9. [PMID: 8276895 PMCID: PMC2290884 DOI: 10.1083/jcb.123.6.1751] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ubiquitous Na,K- and the gastric H,K-pumps are heterodimeric plasma membrane proteins composed of an alpha and a beta subunit. The H,K-ATPase beta subunit (beta HK) can partially act as a surrogate for the Na,K-ATPase beta subunit (beta NK) in the formation of functional Na,K-pumps (Horisberger et al., 1991. J. Biol. Chem. 257:10338-10343). We have examined the role of the transmembrane and/or the ectodomain of beta NK in (a) its ER retention in the absence of concomitant synthesis of Na,K-ATPase alpha subunits (alpha NK) and (b) the functional expression of Na,K-pumps at the cell surface and their activation by external K+. We have constructed chimeric proteins between Xenopus beta NK and rabbit beta HK by exchanging their NH2-terminal plus transmembrane domain with their COOH-terminal ectodomain (beta NK/HK, beta HK/NK). We have expressed these constructs with or without coexpression of alpha NK in the Xenopus oocyte. In the absence of alpha NK, Xenopus beta NK and all chimera that contained the ectodomain of beta NK were retained in the ER while beta HK and all chimera with the ectodomain of beta HK could leave the ER suggesting that ER retention of unassembled Xenopus beta NK is mediated by a retention signal in the ectodomain. When coexpressed with alpha NK, only beta NK and beta NK/HK chimera assembled efficiently with alpha NK leading to similar high expression of functional Na,K-pumps at the cell surface that exhibited, however, a different apparent K+ affinity. beta HK or chimera with the transmembrane domain of beta HK assembled less efficiently with alpha NK leading to lower expression of functional Na,K-pumps with a different apparent K+ affinity. The data indicate that the transmembrane domain of beta NK is important for efficient assembly with alpha NK and that both the transmembrane and the ectodomain of beta subunits play a role in modulating the transport activity of Na,K-pumps.
Collapse
Affiliation(s)
- P Jaunin
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu YF, Meyer AN, Webster MK, Lee BA, Donoghue DJ. The v-sis protein retains biological activity as a type II membrane protein when anchored by various signal-anchor domains, including the hydrophobic domain of the bovine papilloma virus E5 oncoprotein. J Cell Biol 1993; 123:549-60. [PMID: 8227125 PMCID: PMC2200122 DOI: 10.1083/jcb.123.3.549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Membrane-anchored forms of the v-sis oncoprotein have been previously described which are oriented as type I transmembrane proteins and which efficiently induce autocrine transformation. Several examples of naturally occurring membrane-anchored growth factors have been identified, but all exhibit a type I orientation. In this work, we wished to construct and characterize membrane-anchored growth factors with a type II orientation. These experiments were designed to determine whether type II membrane-anchored growth factors would in fact exhibit biological activity. Additionally, we wished to determine whether the hydrophobic domain of the E5 oncoprotein of bovine papilloma virus (BPV) can function as a signal-anchor domain to direct type II membrane insertion. Type II derivatives of the v-sis oncoprotein were constructed, with the NH2 terminus intracellular and the COOH terminus extracellular, by substituting the NH2 terminal signal sequence with the signal-anchor domain of a known type II membrane protein. The signal-anchor domains of neuraminidase (NA), asialoglycoprotein receptor (ASGPR) and transferrin receptor (TR) all yielded biologically active type II derivatives of the v-sis oncoprotein. Although transforming all of the type II signal/anchor-sis proteins exhibited a very short half-life. The short half-life exhibited by the signal/anchor-sis constructs suggests that, in some cases, cellular transformation may result from the synthesis of growth factors so labile that they activate undetectable autocrine loops. The E5 oncoprotein encoded by BPV exhibits amino acid sequence similarity with PDGF, activates the PDGF beta-receptor, and thus resembles a miniature membrane-anchored growth factor with a putative type II orientation. The hydrophobic domain of the E5 oncoprotein, when substituted in place of the signal sequence of v-sis, was indistinguishable compared with the signal-anchor domains of NA, TR, and ASGPR, demonstrating its ability to function as a signal-anchor domain. NIH 3T3 cells transformed by the signal/anchor-sis constructs exhibited morphological reversion upon treatment with suramin, indicating a requirement for ligand/receptor interactions in a suramin-sensitive compartment, most likely the cell surface. In contrast, NIH 3T3 cells transformed by the E5 oncoprotein did not exhibit morphological reversion in response to suramin.
Collapse
Affiliation(s)
- Y F Xu
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0322
| | | | | | | | | |
Collapse
|
12
|
Bilsel P, Castrucci MR, Kawaoka Y. Mutations in the cytoplasmic tail of influenza A virus neuraminidase affect incorporation into virions. J Virol 1993; 67:6762-7. [PMID: 8411379 PMCID: PMC238117 DOI: 10.1128/jvi.67.11.6762-6767.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.
Collapse
Affiliation(s)
- P Bilsel
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318
| | | | | |
Collapse
|
13
|
Vincent MJ, Raja NU, Jabbar MA. Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 1993; 67:5538-49. [PMID: 8350411 PMCID: PMC237957 DOI: 10.1128/jvi.67.9.5538-5549.1993] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is a transmembrane phosphoprotein which induces rapid degradation of CD4 in the endoplasmic reticulum (ER). To identify sequences in CD4 for Vpu-induced degradation, we generated four chimeric envelope glycoproteins having the ectodomain of HIV-1 gp160, the anchor domain of CD4, and 38, 25, 24, and 18 amino acids (aa) of the CD4 cytoplasmic domain. Using the vaccinia virus-T7 RNA polymerase expression system, we analyzed the expression of chimeric proteins in the presence and absence of Vpu. In singly transfected cells, the chimeric envelope glycoproteins having 38, 24, and 18 aa of the CD4 cytoplasmic domain were endoproteolytically cleaved and biologically active in the fusion of HeLa CD4+ cells. However, one of the chimeras having 25 aa of the CD4 cytoplasmic tail was retained in the ER using the transmembrane ER retention signal and was defective in membrane fusion. Furthermore, biochemical analyses of the coexpressing cells revealed that the Vpu protein induced degradation of the envelope glycoproteins having 38, 25, and 24 aa of the CD4 cytoplasmic tail and degradation occurred in the ER. Consequently, the fusion-competent glycoproteins did not induce the formation of syncytia in HeLa CD4+ cells expressing Vpu. However, the HIV-1 gp160 and chimeric envelope glycoprotein having the membrane-proximal 18 aa of the CD4 cytoplasmic tail were stable and fusion competent in cells expressing Vpu. In addition, we examined the stability of CD4 molecules in the presence of Vpu. Coexpression analyses revealed that the Vpu protein induced degradation of CD4 whereas mutant CD4 having the membrane-proximal 18 aa of the cytoplasmic domain was relatively stable in the presence of Vpu. Taken together, these studies have elucidated that the Vpu protein requires sequences or sequence determinants in the cytoplasmic domain of CD4 to induce degradation of the glycoproteins in the cell.
Collapse
Affiliation(s)
- M J Vincent
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | |
Collapse
|
14
|
Verrey F, Drickamer K. Determinants of oligomeric structure in the chicken liver glycoprotein receptor. Biochem J 1993; 292 ( Pt 1):149-55. [PMID: 8503842 PMCID: PMC1134281 DOI: 10.1042/bj2920149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The oligomeric state of the chicken liver receptor (chicken hepatic lectin), which mediates endocytosis of glycoproteins terminating with N-acetylglucosamine, has been investigated using physical methods as well as chemical cross-linking. Receptor isolated from liver and from transfected rat fibroblasts expressing the full-length polypeptide is a homotrimer immediately following solubilization in non-ionic detergent, but forms the previously observed hexamer during purification. These results are most consistent with the presence of a trimer of receptor polypeptides in liver membranes and in transfected cells. Analysis of truncated receptors reveals that the C-terminal extracellular portion of this type-II transmembrane protein does not form stable oligomers when isolated from the membrane anchor and cytoplasmic tail. The behaviour of chimeric receptors, in which the cytoplasmic tail of the glycoprotein receptor is replaced with the corresponding segments of rat liver asialoglycoprotein receptor or the beta-subunit of Na+,K(+)-ATPase, or with unrelated sequences from globin, indicates that the cytoplasmic tail influences oligomer stability. Replacement of N-terminal portions of the receptor with corresponding segments of influenza virus neuraminidase results in formation of tetramers, suggesting that the membrane anchor and flanking sequences are important determinants of oligomer formation.
Collapse
Affiliation(s)
- F Verrey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
15
|
Qiu Z, Hobman TC, McDonald HL, Seto NO, Gillam S. Role of N-linked oligosaccharides in processing and intracellular transport of E2 glycoprotein of rubella virus. J Virol 1992; 66:3514-21. [PMID: 1583721 PMCID: PMC241132 DOI: 10.1128/jvi.66.6.3514-3521.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|