1
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
2
|
Semreen AM, Alsoud LO, Semreen MH, Ahmed M, Al-Hroub HM, El-Awady R, Ramadan WS, Abuhelwa A, Bustanji Y, Soares NC, Alzoubi KH. Multi-omics analysis revealed significant metabolic changes in brain cancer cells treated with paclitaxel and/or topotecan. Heliyon 2024; 10:e39420. [PMID: 39524752 PMCID: PMC11550653 DOI: 10.1016/j.heliyon.2024.e39420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2023] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) stands as the most common primary malignant brain tumor. Despite the best standard therapies, GBM survivors have a brief survival time, about 24 months on average. The treatment is troublesome because the cancer cells may not respond well to specific therapies as they grow within an extensive network of blood vessels. Our study aims to evaluate the impact of paclitaxel 5.3 μg/mL and topotecan 0.26 μM solely and in pairwise combination on the resultant metabolic and proteomic signatures of the U87 cell line while using the precise ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF) analytical technology. The U87 cells wear treated with DMSO, paclitaxel 5.3 μM, topotecan 0.26 μM, and their combinations. Using One-way ANOVA, we observed 14 significantly altered metabolites compared to those cells treated with DMSO. For combination treatment (paclitaxel and topotecan), 11 metabolites were significantly dysregulated. Sparse partial least squares-discriminant analysis (sPLS-DA) revealed minimal overlap, highlighting distinctions among the four groups. While for proteomics, a total of 79 proteins were significantly dysregulated among the groups. These findings can aid in identifying new biomarkers associated with the utilized drugs and creating a map for targeted therapy. EIF3F, GNB2L1, HINT2, and RPA3 were shown to be significantly upregulated in the combination group relative to the control. Moreover, ribosome, apoptosis, HIF-1 signaling, arginine and proline, glutathione, purine metabolism, apelin signaling pathway, and glycolysis were significantly altered in the combination group. Overall, this study underscores the effectiveness of multi-omics approaches in revealing the molecular mechanisms driving chemotherapy responses in cancer cells. Additionally, this work generates a comprehensive list of molecular alterations that can serve as a foundation for further investigations and inform personalized healthcare strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Ahlam M. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Munazza Ahmed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmad Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohamed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohamed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
3
|
Chen CH, Huang YM, Grillet L, Hsieh YC, Yang YW, Lo KY. Gallium maltolate shows synergism with cisplatin and activates nucleolar stress and ferroptosis in human breast carcinoma cells. Cell Oncol (Dordr) 2023; 46:1127-1142. [PMID: 37067747 DOI: 10.1007/s13402-023-00804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Breast cancer is the most common cancer in women. Triple-negative breast cancer (TNBC) is an aggressive disease with poor outcomes. TNBC lacks effective targeted treatments, and the development of drug resistance limits the effectiveness of chemotherapy. It is crucial to identify new drugs that can enhance the efficacy of traditional chemotherapy to reduce drug resistance and side effects. METHODS TNBC cell lines, MDA-MB-231 and Hs 578T, and a normal cell line, MCF-10 A, were included in this study. The cells were treated with gallium maltolate (GaM), and their transcriptome was analyzed. Ferroptosis and nucleolar stress markers were detected by qPCR, western blotting, fluorescence microscopy, and flow cytometry. The impairment of ribosome synthesis was evaluated by northern blotting and sucrose gradients. RESULTS GaM triggered cell death via apoptosis and ferroptosis. In addition, GaM impaired translation and activated nucleolar stress. Cisplatin (DDP) is a chemotherapeutic agent for advanced breast cancer. While single treatment with GaM or DDP at low concentrations did not impact cell growth, co-administration enhanced cell death in TNBC but not in normal breast cells. The enhancement of ferroptosis and nucleolar stress could be observed in TNBC cell lines after co-treatment. CONCLUSIONS These results suggest that GaM synergizes with cisplatin via activation of nucleolar stress and ferroptosis in human breast carcinoma cells. GaM is marginally toxic to normal cells but impairs the growth of TNBC cell lines. Thus, GaM has the potential to be used as a therapeutic agent against TNBC.
Collapse
Affiliation(s)
- Chieh-Hsin Chen
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yi-Ming Huang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist, Taipei City, 100225, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan.
| |
Collapse
|
4
|
Fu X, Yang Y, Zhang D. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma. Liver Int 2022; 42:696-709. [PMID: 34854209 PMCID: PMC9299813 DOI: 10.1111/liv.15115] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/16/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Worldwide, hepatocellular carcinoma (HCC) is one of the most common causes of death in people. Albumin (ALB) is considered as an important indicator for HCC prognosis, and evidence has shown HCC cell growth can be regulated by ALB. However, the role of ALB in hepatocarcinogenesis and the mechanism of action is still unknown. METHODS The expression of ALB was determined by clinical profiles, immunohistochemistry, and western blot. Wound healing and Transwell assays were conducted to evaluate the effects of ALB during migration and invasion in HCC. We used mass spectrometry coupled isobaric tags for relative and absolute quantitation (iTRAQ)-technology to identify secretory differentially expressed proteins (DEPs) in ALB knockdown HepG2 cells. Western blot, reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay techniques were used for verification. RESULTS We suggested that ALB was associated with aggressive metastasis and depleting ALB significantly promoted invasion and migration of HCC. A total of 210 DEPs were identified after silencing of ALB. We observed that a negative correlation between ALB and urokinase plasminogen activator surface receptor (uPAR) expression levels. CONCLUSIONS ALB acts as a tumour suppressor and plays a key role in HCC progression, particularly in invasion and metastasis. Suppression of ALB promoted migration and invasion of HCC cells by increasing uPAR, matrix metalloproteinase (MMP2), and MMP9.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixuan Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dazhi Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Kong XZ, Song Y, Liu JX, Zheng CH, Yuan SS, Wang J, Dai LY. Joint Lp-Norm and L 2,1-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery. Front Genet 2021; 12:621317. [PMID: 33708239 PMCID: PMC7940841 DOI: 10.3389/fgene.2021.621317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
The dimensionality reduction method accompanied by different norm constraints plays an important role in mining useful information from large-scale gene expression data. In this article, a novel method named Lp-norm and L2,1-norm constrained graph Laplacian principal component analysis (PL21GPCA) based on traditional principal component analysis (PCA) is proposed for robust tumor sample clustering and gene network module discovery. Three aspects are highlighted in the PL21GPCA method. First, to degrade the high sensitivity to outliers and noise, the non-convex proximal Lp-norm (0 < p < 1)constraint is applied on the loss function. Second, to enhance the sparsity of gene expression in cancer samples, the L2,1-norm constraint is used on one of the regularization terms. Third, to retain the geometric structure of the data, we introduce the graph Laplacian regularization item to the PL21GPCA optimization model. Extensive experiments on five gene expression datasets, including one benchmark dataset, two single-cancer datasets from The Cancer Genome Atlas (TCGA), and two integrated datasets of multiple cancers from TCGA, are performed to validate the effectiveness of our method. The experimental results demonstrate that the PL21GPCA method performs better than many other methods in terms of tumor sample clustering. Additionally, this method is used to discover the gene network modules for the purpose of finding key genes that may be associated with some cancers.
Collapse
Affiliation(s)
| | | | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Chun-Hou Zheng
- School of Computer Science, Qufu Normal University, Rizhao, China
| | | | | | | |
Collapse
|
6
|
Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther 2021; 6:68. [PMID: 33597534 PMCID: PMC7889628 DOI: 10.1038/s41392-020-00444-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
In addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.
Collapse
Affiliation(s)
- Ping Song
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XKey Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
7
|
HumanaFly: high-throughput transgenesis and expression of breast cancer transcripts in Drosophila eye discovers the RPS12-Wingless signaling axis. Sci Rep 2020; 10:21013. [PMID: 33273532 PMCID: PMC7713366 DOI: 10.1038/s41598-020-77942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023] Open
Abstract
Drosophila melanogaster has been a model for multiple human disease conditions, including cancer. Among Drosophila tissues, the eye development is particularly sensitive to perturbations of the embryonic signaling pathways, whose improper activation in humans underlies various forms of cancer. We have launched the HumanaFly project, whereas human genes expressed in breast cancer patients are screened for their ability to aberrate development of the Drosophila eye, hoping to thus identify novel oncogenes. Here we report identification of a breast cancer transgene, which upon expression in Drosophila produces eye malformation similar to the famous Glazed phenotype discovered by Thomas Morgan and decades later dissected to originate from mis-expression of Wingless (Wg). Wg is the ortholog of human Wnt proteins serving as ligands to initiate the developmental/oncogenic Wnt signaling pathway. Through genetic experiments we identified that this transgene interacted with the Wg production machinery, rather than with Wg signal transduction. In Drosophila imaginal discs, we directly show that the transgene promoted long-range diffusion of Wg, affecting expression of the Wg target genes. The transgene emerged to encode RPS12—a protein of the small ribosomal subunit overexpressed in several cancer types and known to also possess extra-ribosomal functions. Our work identifies RPS12 as an unexpected regulator of secretion and activity of Wnts. As Wnt signaling is particularly important in the context of breast cancer initiation and progression, RPS12 might be implicated in tumorigenesis in this and other Wnt-dependent cancers. Continuation of our HumanaFly project may bring further discoveries on oncogenic mechanisms.
Collapse
|
8
|
Ge J, Huang X, Wang P, Lu C. Expression of biogenesis of ribosomes BRX1 is associated with malignant progression and prognosis in colorectal cancer. Transl Cancer Res 2020; 9:5595-5602. [PMID: 35117923 PMCID: PMC8798812 DOI: 10.21037/tcr-20-2564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Upregulated ribosome synthesis is associated with an increased risk of cancer onset. However, the role of biogenesis of ribosomes BRX1 (BRIX1), which is involved in the synthesis of ribosomal 60S subunits, in the progression and prognosis of colorectal cancer (CRC) is not clear. METHODS Sixty CRC patients requiring surgical treatment were enrolled in the present prospective study. Patient characteristics were collected at admission. The CRC tissue samples and adjacent normal tissue samples from patients were collected for further quantitative reverse transcription-polymerase chain reaction and Western blot. All enrolled patients were followed up for 12 months, and overall patient survival during follow-up was recorded. RESULTS The level of BRIX1 mRNA in CRC tissues was higher compared with that in adjacent normal tissues (1.0±0.5 vs. 5.5±1.7, P<0.01). Similarly, the level of the BRIX1 protein in CRC tissues was significantly higher than that in adjacent normal tissues (1.0±0.6 vs. 6.4±2.1, P<0.01). On further analysis, we found that the levels of BRIX1 mRNA and protein were positively correlated with tumor stage. Patients at stages III-IV had a higher expression of BRIX1 mRNA and protein than at stages I-II. The Kaplan-Meier survival curve indicated that patients with higher level of the BRIX1 protein had a lower overall survival rate. The Cox proportional hazards model was used to identify tumor stage III or IV, poor differentiation, and elevated expression of the BRIX1 protein as risk factors for the overall survival of CRC patients. CONCLUSIONS BRIX1 expression is positively correlated with CRC tumor stage; it also acts as a risk factor for the overall survival of CRC patients.
Collapse
Affiliation(s)
- Jianxin Ge
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Xiaoli Huang
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Ping Wang
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Cuihua Lu
- Department of Gastroenterology, the Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Jakopovic B, Horvatić A, Klobučar M, Gelemanović A, Grbčić P, Oršolić N, Jakopovich I, Kraljević Pavelić S. Treatment With Medicinal Mushroom Extract Mixture Inhibits Translation and Reprograms Metabolism in Advanced Colorectal Cancer Animal Model as Evidenced by Tandem Mass Tags Proteomics Analysis. Front Pharmacol 2020; 11:1202. [PMID: 32973493 PMCID: PMC7472604 DOI: 10.3389/fphar.2020.01202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer type in both males and females, with about 35% of patients being diagnosed in stage IV metastatic disease. Despite advancements in treatment, life expectancy in patients with metastatic disease is still not satisfying. Due to frequent drug resistance during conventional and targeted cancer treatments, the development and testing of multi-target therapies is an important research field. Medicinal mushrooms specific isolated compounds as well as complex extract mixtures have been studied in depth, and many mushroom species have been proven to be non-toxic multi-target inhibitors of specific oncogenic pathways, as well as potent immunomodulators. In this study, we have performed a tandem mass tags qualitative and quantitative proteomic analyses of CT26.WT colon cancer tumor tissues from Balb/c mice treated with the studied medicinal mushroom extract mixture, with or without 5-fluorouracil. Besides significantly improved survival, obtained results reveal that Agarikon.1 alone, and in combination with 5-fluorouracil exert their anticancer effects by affecting several fundamental processes important in CRC progression. Bioinformatic analysis of up- and downregulated proteins revealed that ribosomal biogenesis and translation is downregulated in treatment groups, while the unfolded protein response (UPR), lipid metabolism and tricarboxylic acid cycle (TCA) are upregulated. Moreover, we found that many known clinical biomarkers and protein clusters important in CRC progression and prognosis are affected, which are a good basis for an expanded translational study of the herein presented treatment.
Collapse
Affiliation(s)
| | - Anita Horvatić
- Proteomics Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Klobučar
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
10
|
Alam E, Maaliki L, Nasr Z. Ribosomal protein S3 selectively affects colon cancer growth by modulating the levels of p53 and lactate dehydrogenase. Mol Biol Rep 2020; 47:6083-6090. [PMID: 32748020 DOI: 10.1007/s11033-020-05683-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2019] [Accepted: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Ribosomal protein S3 (RPS3) is a component of the 40S ribosomal subunit. It is known to function in ribosome biogenesis and as an endonuclease. RPS3 has been shown to be over expressed in colon adenocarcinoma but its role in colon cancer is still unknown. In this study, we aim at determining the expression levels of RPS3 in a colon cancer cell line Caco-2 compared to a normal colon mucosa cell line NCM-460 and study the effects of targeting this protein by siRNA on cellular behavior. RPS3 was found to be expressed in both cell lines. However, siRNA treatment showed a more protruding effect on Caco-2 cells compared to NCM-460 cells. RPS3 knockdown led to a significant decrease in the proliferation, survival, migration and invasion and an increase in the apoptosis of Caco-2 cells. Western blot analysis demonstrated that these effects correlated with an increase in the level of the tumor suppressor p53 and a decrease in the level and activity of lactate dehydrogenase (LDH), an enzyme involved in the metabolism of cancer cells. No significant effect was shown in normal colon NCM-460 cells. Targeting p53 by siRNA did not affect RPS3 levels indicating that p53 may be a downstream target of RPS3. However, the concurrent knockdown of RPS3 and p53 showed no change in LDH level in Caco-2 cells suggesting an interesting interplay among the three proteins. These findings might present RPS3 as a selective molecular marker in colon cancer and an attractive target for colon cancer therapy.
Collapse
Affiliation(s)
- Elie Alam
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O.B. 100, Tripoli, Lebanon
| | - Lama Maaliki
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O.B. 100, Tripoli, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O.B. 100, Tripoli, Lebanon.
| |
Collapse
|
11
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
12
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Zhang Y, Wu W, Qu H. Integrated Analysis of the Gene Expression Changes During Colorectal Cancer Progression by Bioinformatic Methods. J Comput Biol 2019; 26:1168-1176. [PMID: 31246501 DOI: 10.1089/cmb.2019.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
We attempted to analyze the aberrant pathways and genes underlying the successive stages of colorectal cancer (CRC). The CRC related microarray data (GSE77953) were retrieved from Gene Expression Omnibus database, which included 17 colonic adenoma, 17 carcinoma, 11 CRC metastases, and 13 normal colonic epithelium samples. The differential expression patterns in colonic adenoma, carcinoma, and metastases were analyzed. Gene functional interaction (FI) and coexpressed network were constructed. Pathway enrichment analysis was performed to investigate the perturbed pathways, and disease-related genes were explored based on the Comparative Toxicogenomics Database. Total 438 genes were identified to be differentially expressed in colonic adenoma, 885 in carcinoma and 736 in metastases. The upregulated genes in adenoma were significantly related with ribosome, oxidative phosphorylation, and protein export related pathways. The downregulated genes in carcinoma and metastases were enriched in the same pathways, such as nitrogen metabolism, mineral absorption, and steroid hormone biosynthesis. FI network was constructed with 219 and 3914 edges, which were further divided to 12 modules. The genes in module 0 were closely related with ribosome, protein export, and RNA transport. Coexpressed genes were enriched in ribosome, protein export, and mineral absorption pathways. Total eight common upregulated genes were found to be the CRC-related genes such as RNF43 (ring finger protein 43), EIF3H (eukaryotic translation initiation factor 3 subunit H), and STRAP (serine/threonine kinase receptor associated protein). The common downregulated genes included ABCG2 (ATP binding cassette subfamily G member 2), GCG (glucagon), and SULT1A1 (sulfotransferase family 1A member 1). Oxidative phosphorylation, nitrogen metabolism, mineral absorption, and protein synthesis may significantly be perturbed in the progression of CRC. The overexpression of EIF3H may be the predictor for CRC formation.
Collapse
Affiliation(s)
- Yudong Zhang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenxiang Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hao Qu
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Vanichtantikul A, Hodge KG, Somparn P, Saethang T, Triratanachat S, Pisitkun T, Lertkhachonsuk R. Proteomic identification of predictive biomarkers for malignant transformation in complete hydatidiform moles. Placenta 2019; 77:58-64. [PMID: 30827356 DOI: 10.1016/j.placenta.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Protein expression in cells are associated with oncogenesis. This study aims to explore proteomic profiles and discover potential biomarkers that can predict malignant transformation of hydatidiform mole. METHODS Retrospective analysis was done in 14 cases of remission hydatidiform mole and 14 cases of hydatidiform mole who later developed malignancy (GTN group). Molar tissues were retrieved from -70 °C frozen tissue. Subsequently, a large-scale proteomic analysis was performed to identify proteins and compare their abundance levels in the preserved molar tissues from these two groups using a dimethyl-labeling technique coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 2,153 proteins were identified from all samples. 22 and 10 proteins were significantly up-regulated and down-regulated, respectively, in the GTN group compared with the mole group. These altered proteins were found in several biological groups such as cell-cell adhesion, secreted proteins, and ribonucleoproteins. Several hormone-related proteins were among the most up-regulated proteins in the GTN group including choriogonadotropin subunit beta (β-hCG) and alpha (α-hCG), growth/differentiation factor 15, as well as both pregnancy-specific beta-1-glycoproteins 2 and 3. In contrast, protein S100-A11 and l-lactate dehydrogenase A chain, were down-regulated in molar tissue from most patients in the GTN group. DISCUSSION This study identified a set of differentially expressed proteins in molar tissues that could potentially be further examined as predictive biomarkers for the malignant transformation of CHMs. A molar proteome database was constructed and can be accessible online at http://sysbio.chula.ac.th/Database/GTD_DB/Supplementary_Data.xlsx.
Collapse
Affiliation(s)
- Asama Vanichtantikul
- Placental Related Disease Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Kenneth G Hodge
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Thammakorn Saethang
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Surang Triratanachat
- Division of Gynecologic Cytopathology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Ruangsak Lertkhachonsuk
- Placental Related Disease Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand.
| |
Collapse
|
15
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Wang P, Gao L, Hu Y, Li F. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks. BMC Bioinformatics 2018; 19:394. [PMID: 30373534 PMCID: PMC6206826 DOI: 10.1186/s12859-018-2434-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Comprehensive analyzing multi-omics biological data in different conditions is important for understanding biological mechanism in system level. Multiple or multi-layer network model gives us a new insight into simultaneously analyzing these data, for instance, to identify conserved functional modules in multiple biological networks. However, because of the larger scale and more complicated structure of multiple networks than single network, how to accurate and efficient detect conserved functional biological modules remains a significant challenge. RESULTS Here, we propose an efficient method, named ConMod, to discover conserved functional modules in multiple biological networks. We introduce two features to characterize multiple networks, thus all networks are compressed into two feature matrices. The module detection is only performed in the feature matrices by using multi-view non-negative matrix factorization (NMF), which is independent of the number of input networks. Experimental results on both synthetic and real biological networks demonstrate that our method is promising in identifying conserved modules in multiple networks since it improves the accuracy and efficiency comparing with state-of-the-art methods. Furthermore, applying ConMod to co-expression networks of different cancers, we find cancer shared gene modules, the majority of which have significantly functional implications, such as ribosome biogenesis and immune response. In addition, analyzing on brain tissue-specific protein interaction networks, we detect conserved modules related to nervous system development, mRNA processing, etc. CONCLUSIONS: ConMod facilitates finding conserved modules in any number of networks with a low time and space complexity, thereby serve as a valuable tool for inference shared traits and biological functions of multiple biological system.
Collapse
Affiliation(s)
- Peizhuo Wang
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Feng Li
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| |
Collapse
|
17
|
Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal 2018; 26:1180-1191. [PMID: 29976410 PMCID: PMC9303038 DOI: 10.1016/j.jfda.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Flavonoids luteolin and quercetin can inhibit growth and metastasis of cancer cells. In our previous report, luteolin and quercetin was shown to block Akt/mTOR/c-Myc signaling. Here, we found luteolin and quercetin reduced protein level and transactivation activity of RPS19 in A431-III cells, which is isolated from parental A431 (A431-P) cell line. Further investigation the inhibitory mechanism of luteolin and quercetin on RPS19, we found c-Myc binding sites on RPS19 promoter. The Akt inhibitor LY294002, mTOR inhibitor rapamycin and c-Myc inhibitor 10058-F4 significantly suppressed RPS19 expression and transactivation activities. Overexpression and knockdown of c-Myc in cancer cells show RPS19 expression was regulated by c-Myc. Furthermore, Knockdown and overexpression of RPS19 was used to analyze of the function of RPS19 in cancer cells. The epithelial-mesenchymal transition (EMT) markers and metastasis abilities of cancer cells were also regulated by RPS19. These data suggest that luteolin and quercetin might inhibit metastasis of cancer cells by blocking Akt/mTOR/c-Myc signaling pathway to suppress RPS19-activated EMT signaling.
Collapse
|
18
|
Tang W, Xiao Y, Li G, Zheng X, Yin Y, Wang L, Zhu Y. Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:127-134. [PMID: 29425843 DOI: 10.1016/j.ecoenv.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuanyuan Xiao
- School of Life Sciences, Southwest University, Chongqing 400716, China
| | - Guannan Li
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xi Zheng
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yaru Yin
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lingyan Wang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
19
|
El-Naggar AM, Sorensen PH. Translational control of aberrant stress responses as a hallmark of cancer. J Pathol 2018; 244:650-666. [PMID: 29293271 DOI: 10.1002/path.5030] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
20
|
Kim Y, Lee MS, Kim HD, Kim J. Ribosomal protein S3 (rpS3) secreted from various cancer cells is N-linked glycosylated. Oncotarget 2018; 7:80350-80362. [PMID: 27384988 PMCID: PMC5348324 DOI: 10.18632/oncotarget.10180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
Ribosomal protein S3 (rpS3) is a 243 amino acid component of the 40S ribosomal small subunit. It has multiple roles in translation and extra-ribosomal functions like apoptosis and DNA repair. RpS3 is secreted only in cancer cell lines. Presently, mass spectrometry analysis revealed rpS3 to be glycosylated at the Asn165 residue. A point mutation at this residue decreased secretion of rpS3 in cancer cell lines. Secretion was also inhibited by the endoplasmic reticulum (ER)-Golgi transport inhibitor Brefeldin A and by Tunicamycin, an inhibitor of N-linked glycosylation. N-linked glycosylation of rpS3 was confirmed as necessary for rpS3 secretion into culture media via the ER-Golgi dependent pathway. RpS3 bound to Concanavalin A, a carbohydrate binding lectin protein, while treatment with peptide-N-glycosidase F shifted the secreted rpS3 to a lower molecular weight band. In addition, the N165G mutant of rpS3 displayed reduced secretion compared to the wild-type. An in vitro binding assay detected rpS3 homodimer formation via the N-terminal region (rpS3:1–85) and a middle region (rpS3:95–158). The results indicate that the Asn 165 residue of rpS3 is a critical site for N-linked glycosylation and passage through the ER-Golgi secretion pathway.
Collapse
Affiliation(s)
- YongJoong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min Seon Lee
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Li H, Guo Q. Characterization of biomarkers in stroke based on ego-networks and pathways. Biotechnol Lett 2017; 39:1835-1842. [DOI: 10.1007/s10529-017-2430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023]
|
22
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Wang M, Lemos B. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 2017; 13:e1006994. [PMID: 28880866 PMCID: PMC5605086 DOI: 10.1371/journal.pgen.1006994] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2017] [Revised: 09/19/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy. The 45S and 5S ribosomal DNA (rDNA) arrays contain hundreds of rDNA copies, with substantial variability across individuals in human populations. Although physically unlinked, the arrays also exhibit joint variation across individual genotypes. However, whether this co-variation in copy number (CN) is universally observed across all tissues is unknown. It also remains unknown if rDNA CN might vary across tissues and in cancer lineages. Here we showed that most cancers undergo coupled 5S rDNA array amplification and 45S rDNA loss, and concerted 5S-45S CN variation in some but not all tissues. The coupled 5S amplification and 45S loss is associated with the presence of certain somatic genetic alterations, as well as increased estimates of cancerous cell proliferation rate and nucleolar activity. Our research uncovers frequent and contrasting changes in rDNA CN in cancers of diverse tissue origin and associated with diverse mutational contexts of tumor suppressors and oncogenes. The observations raise the prospects of using the rDNA arrays as re-emerging targets in novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Meng Wang
- Department of Environmental Health & Molecular and Integrative Physiological Sciences program, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences program, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
The uS8, uS4, eS31, and uL14 Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4876954. [PMID: 28791303 PMCID: PMC5534291 DOI: 10.1155/2017/4876954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/04/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
Abstract
The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
Collapse
|
25
|
Vincenzetti S, Felici A, Ciarrocchi G, Pucciarelli S, Ricciutelli M, Ariani A, Polzonetti V, Polidori P. Comparative proteomic analysis of two clam species: Chamelea gallina and Tapes philippinarum. Food Chem 2017; 219:223-229. [PMID: 27765220 DOI: 10.1016/j.foodchem.2016.09.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
Clams have long been a fisheries and aquaculture sector of great importance in Italy, the main resource of fisheries is the Chamelea gallina of indigenous origin, whereas clams breeding is supported almost entirely by the Tapes philippinarum, a species of Indo-Pacific origin. Bivalve molluscs quality depends mainly on the water quality, and then by a series of factors such as water temperature and salinity, gametogenic cycle, food availability, and environmental conditions, that affect the Condition Index. In this work crude extracts obtained from the edible part of Chamelea gallina and Tapes philippinarum were analyzed by a proteomic approach based on a two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry, in order to detect biomarkers useful for identification of the two kinds of clams and to assess their nutritional characteristics. As a result, four differentially expressed spots were found and identified, namely enolase, cyclophilin-A, ribosomal protein L13 and actin-1.
Collapse
Affiliation(s)
- Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy.
| | - Alberto Felici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Giorgio Ciarrocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Ambra Ariani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
26
|
Proteomic assessment of colorectal cancers and respective resection margins from patients of the Amazon state of Brazil. J Proteomics 2017; 154:59-68. [DOI: 10.1016/j.jprot.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
|
27
|
Deisenroth C, Franklin DA, Zhang Y. The Evolution of the Ribosomal Protein-MDM2-p53 Pathway. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026138. [PMID: 27908926 DOI: 10.1101/cshperspect.a026138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
The progression of our understanding of ribosomal proteins as static building blocks of the ribosome to highly integrated sensors of p53 surveillance and function has achieved a tremendous rate of growth over the past several decades. As the workhorse of the cell, ribosomes are responsible for translating the genetic code into the functional units that drive cell growth and proliferation. The seminal identification of ribosomal protein binding to MDM2, the negative regulator of p53, has evolved into a paradigm for ribosomal protein-MDM2-p53 signaling that extends into processes as diverse as energy metabolism to proliferation. The central core of signaling occurs when perturbations to rRNA synthesis, processing, and assembly modulate the rate of ribosome biogenesis, signaling a nucleolar stress response to p53. This has led to identification of a number of disease pathologies related to ribosomal protein dysfunction that are manifested as developmental disorders or cancer. Advancing research into the basic mechanics of ribosomal protein-MDM2-p53 signaling is paving the way for novel translational research into biomarker identification and therapeutic strategies for ribosome-related diseases.
Collapse
Affiliation(s)
- Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709
| | - Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
28
|
Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol 2016; 17:236. [PMID: 27884178 PMCID: PMC5123215 DOI: 10.1186/s13059-016-1104-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Background Ribosomes are highly conserved molecular machines whose core composition has traditionally been regarded as invariant. However, recent studies have reported intriguing differences in the expression of some ribosomal proteins (RPs) across tissues and highly specific effects on the translation of individual mRNAs. Results To determine whether RPs are more generally linked to cell identity, we analyze the heterogeneity of RP expression in a large set of human tissues, primary cells, and tumors. We find that about a quarter of human RPs exhibit tissue-specific expression and that primary hematopoietic cells display the most complex patterns of RP expression, likely shaped by context-restricted transcriptional regulators. Strikingly, we uncover patterns of dysregulated expression of individual RPs across cancer types that arise through copy number variations and are predictive for disease progression. Conclusions Our study reveals an unanticipated plasticity of RP expression across normal and malignant human cell types and provides a foundation for future characterization of cellular behaviors that are orchestrated by specific RPs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1104-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
29
|
Drosophila Enhancer of Rudimentary Homolog, ERH, Is a Binding Partner of RPS3, RPL19, and DDIT4, Suggesting a Mechanism for the Nuclear Localization of ERH. Mol Biol Int 2016; 2016:8371819. [PMID: 27830090 PMCID: PMC5088337 DOI: 10.1155/2016/8371819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022] Open
Abstract
The protein enhancer of rudimentary homolog, ERH, is a small, highly conserved protein that has been found in animals, plants, and protists. Genetic and biochemical interactions have implicated ERH in the regulation of pyrimidine biosynthesis, DNA replication, transcription, mRNA splicing, cellular proliferation, tumorigenesis, and the Notch signaling pathway. In vertebrates and insects, ERH is nuclearly localized; however, an examination of the ERH amino-acid sequence does not reveal any nuclear localization signals. In this paper we show that the first 24 amino acids contain sequences necessary and sufficient for nuclear localization. Through yeast two-hybrid screens, three new binding partners of ERH, RPS3, RPL19, and DDIT4, were identified. RPS3 was isolated from both human and Drosophila screens. These interactions suggest functions of ERH in cell growth, cancer, and DNA repair. The ERH sequences necessary for the interactions between ERH and RPS3 and RPL19 are mapped onto the same 24-amino-acid region in ERH which are necessary for nuclear localization, suggesting that ERH is localizing to the nucleus through binding to one of its DNA-binding partners, such as RPS3 or RPL19.
Collapse
|
30
|
Lu JF, Pokharel D, Padula MP, Bebawy M. A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids. J Biochem 2016; 160:281-289. [PMID: 27154960 DOI: 10.1093/jb/mvw033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Microvesicles (MVs) serve as vectors of nucleic-acid dissemination and are important mediators of intercellular communication. However, the functionality of packaged nucleic acids on recipient cells following transfer of MV cargo has not been clearly elucidated. This limitation is attributed to a lack of methodology available in assessing protein translation following homotypic intercellular transfer of nucleic acids. Using surface peptide shaving we have demonstrated that MVs derived from human leukaemic cells transfer functional P-glycoprotein transcripts, conferring drug-efflux capacity to recipient cells. We demonstrate expression of newly synthesized protein using Western blot. Furthermore, we show functionality of translated P-gp protein in recipient cells using Calcein-AM dye exclusion assays on flow cytometry. Newly synthesized 170 kDa P-gp was detected in recipient cells after coculture with shaven MVs and these proteins were functional, conferring drug efflux. This is the first demonstration of functionality of transferred nucleic acids between human homotypic cells as well as the translation of the cancer multidrug-resistance protein in recipient cells following intercellular transfer of its transcript. This study supports the significant role of MV's in the transfer of deleterious traits in cancer populations and describes a new paradigm in mechanisms governing the acquisition of traits in cancer cell populations.
Collapse
Affiliation(s)
- Jamie F Lu
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Deep Pokharel
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, New South Wales 2007, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, the Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
31
|
RPS12 increases the invasiveness in cervical cancer activated by c-Myc and inhibited by the dietary flavonoids luteolin and quercetin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
|
32
|
Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One 2015; 10:e0141334. [PMID: 26506620 PMCID: PMC4624638 DOI: 10.1371/journal.pone.0141334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.
Collapse
Affiliation(s)
- William H. Yong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Maryam Shabihkhani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuai Yang
- Department of Neurosurgery, General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan L. Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jimmy C. Menjivar
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bowen Wei
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gregory M. Lucey
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sergey Mareninov
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zugen Chen
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linda M. Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert Lai
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy F. Cloughesy
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Cho-Lea Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Liu H, Liang S, Yang X, Ji Z, Zhao W, Ye X, Rui J. RNAi-mediated RPL34 knockdown suppresses the growth of human gastric cancer cells. Oncol Rep 2015; 34:2267-72. [PMID: 26323242 PMCID: PMC4583519 DOI: 10.3892/or.2015.4219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2015] [Accepted: 08/07/2015] [Indexed: 01/23/2023] Open
Abstract
An increasing body of evidence suggests that ribosomal proteins may have ribosome-independent functions and may be involved in various physiological and pathological processes. To examine the role of ribosomal protein L34 (RPL34) in cancer transformation, we assessed its expression in gastric cancer cell lines and found it highly expressed. We further used lentivirus-mediated small interfering RNAs (siRNAs) to knockdown RPL34 expression in the human gastric cancer cell line SGC-7901. RNA interference (RNAi)-mediated inhibition of RPL34 expression in SGC-7901 cells significantly suppressed cell proliferation, increased apoptosis and arrested cells in the S phase. The results of the present study suggest that RPL34 plays a critical role in cell proliferation, cell cycle distribution and apoptosis of human malignant gastric cells.
Collapse
Affiliation(s)
- Hui Liu
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shaohua Liang
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xi Yang
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhaoning Ji
- Department of Medical Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenying Zhao
- Department of Medical Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaobing Ye
- Department of Medical Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jing Rui
- Department of Medical Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
34
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Ueda M, Iguchi T, Nambara S, Saito T, Komatsu H, Sakimura S, Hirata H, Uchi R, Takano Y, Shinden Y, Eguchi H, Masuda T, Sugimachi K, Yamamoto H, Doki Y, Mori M, Mimori K. Overexpression of Transcription Termination Factor 1 is Associated with a Poor Prognosis in Patients with Colorectal Cancer. Ann Surg Oncol 2015; 22 Suppl 3:S1490-8. [PMID: 26036188 DOI: 10.1245/s10434-015-4652-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND RNA polymerase 1 transcription termination factor (TTF1) mediates the transcription of ribosomal RNA (rRNA). In the current study, we investigated the clinical and biological significance of the TTF1 gene in colorectal cancer (CRC). METHODS The expression of TTF1 messenger RNA (mRNA) in tumor and normal tissues from 136 patients with CRC was examined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). We also performed in vitro cell proliferation and migration assays in TTF1-expressing CRC cells. The biological role of TTF1 in CRC was further elucidated using gene set enrichment analysis (GSEA) with CRC samples. RESULTS TTF1 expression was significantly higher in tumor tissues than in corresponding normal tissues (p = 0.016). In clinicopathological analysis, the high-TTF1 expression group showed a higher incidence of liver metastasis and lymphatic invasion than the low-TTF1 expression group (p < 0.05), and tended to have more frequent venous invasion than the low-TTF1 expression group. Furthermore, the high-TTF1 expression group had a significantly poorer prognosis than the low-TTF1 expression group (p = 0.011). Moreover, overexpression of TTF1 enhanced the proliferation and migration capacity of CRC cells in vitro. GSEA revealed that TTF1 was significantly associated with the RAS and MYC pathways, and this observation was confirmed in samples from 136 patients with CRC. CONCLUSION TTF1 was involved in cancer progression via the RAS and MYC pathways in CRC, suggesting that TTF1 may be a prognostic indicator and therapeutic target in CRC.
Collapse
Affiliation(s)
- Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan. .,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shotaro Sakimura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Takano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshiaki Shinden
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.
| |
Collapse
|
36
|
Chen R, Dawson DW, Pan S, Ottenhof NA, de Wilde RF, Wolfgang CL, May DH, Crispin DA, Lai LA, Lay AR, Waghray M, Wang S, McIntosh MW, Simeone DM, Maitra A, Brentnall TA. Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma. J Transl Med 2015; 95:43-55. [PMID: 25347153 PMCID: PMC4281293 DOI: 10.1038/labinvest.2014.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2014] [Revised: 08/06/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated.
Collapse
Affiliation(s)
- Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David W Dawson
- 1] Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA [2] Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Niki A Ottenhof
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roeland F de Wilde
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Damon H May
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - David A Crispin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Meghna Waghray
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shouli Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou, China
| | - Martin W McIntosh
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - Diane M Simeone
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Anirban Maitra
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
37
|
Dysregulation of apoptotic signaling pathways by interaction of RPLP0 and cathepsin X/Z in gastric cancer. Pathol Res Pract 2014; 211:62-70. [PMID: 25433997 DOI: 10.1016/j.prp.2014.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/30/2023]
Abstract
Cathepsin X (CTSX, also called cathepsin Z/P) is a cysteine protease that still plays an unknown role in human cancer. It has been shown to bind cell surface heparin sulphate proteoglycans and integrins, indicating possible functions of CTSX in cellular adhesion, phagocytosis, and immune response. Our previous studies have shown an association between Helicobacter pylori (H. pylori) infection, a strong up-regulation of CTSX, and development of gastric cancer. In this study, yeast two-hybrid analysis revealed that RPLP0, a ribosomal protein P0, interacts with the human CTSX protein in gastric cancer. The CTSX/RPLP0 interaction was confirmed by co-immunoprecipitation assays. In addition, co-localization studies in cancer cell line N87 and gastric cancer tissue samples were performed. Laserscan microscopy revealed a shuttling of RPLP0 (and CTSX) from cytoplasm to the nucleus after CTSX knockdown. Down-regulation of RPLP0 resulted in G1 arrest of gastric cancer cells, whereas knockdown of CTSX led to G1 arrest and apoptosis after 48 h. Knockdown of both proteins caused increased apoptosis. RPLP0 deficiency could suppress cell growth and cell cycle progression by down-regulating CDK2. It was further demonstrated that RPLP0 affected p21 expression, but did not change the expression of Cyclin E. Down-regulation of both proteins at least through CDK2 suggests an anti-apoptotic effect on gastric cancer cells and opens up new possibilities for apoptotic immune modulation and gastric cancer therapy.
Collapse
|
38
|
Abstract
Meningiomas represent one-third of all primary brain tumors and cause 35,000 new cases each year. Because of this high incidence, we sought to determine if there are proteomic differences between meningiomas and neighboring tissues. Two-dimensional gel electrophoresis and mass spectrometry were used to detect differentially expressed proteins in tumor samples, using arachnoid tissue as a control. Western blot analysis was used to validate the identified candidate proteins. We obtained quantitative data on 112 proteins, 17 of which were down-regulated and 26 of which were up-regulated in meningiomas relative to normal arachnoid tissue. Our analysis showed that the expression of galectin-3, vimentin, and endoplasmin was decreased significantly in meningiomas. The expression of 40S ribosomal protein S12, glutathione S-transferase P, and hypoxia up-regulated protein 1 was increased significantly (P < 0.05). The six above-mentioned differentially expressed proteins might be closely involved with the development of meningiomas. The results of this study provide basic insights into the proteome of meningiomas and provide a preliminary database for further research to enhance understanding of meningioma development.
Collapse
|
39
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
40
|
Lau TP, Roslani AC, Lian LH, Chai HC, Lee PC, Hilmi I, Goh KL, Chua KH. Pair-wise comparison analysis of differential expression of mRNAs in early and advanced stage primary colorectal adenocarcinomas. BMJ Open 2014; 4:e004930. [PMID: 25107436 PMCID: PMC4127931 DOI: 10.1136/bmjopen-2014-004930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES To characterise the mRNA expression patterns of early and advanced stage colorectal adenocarcinomas of Malaysian patients. DESIGN Comparative expression analysis. SETTING AND PARTICIPANTS We performed a combination of annealing control primer (ACP)-based PCR and reverse transcription-quantitative real-time PCR for the identification of differentially expressed genes (DEGs) associated with early and advanced stage primary colorectal tumours. We recruited four paired samples from patients with colorectal cancer (CRC) of Dukes' A and B for the preliminary differential expression study, and a total of 27 paired samples, ranging from CRC stages I to IV, for subsequent confirmatory test. The tumouric samples were obtained from the patients with CRC undergoing curative surgical resection without preoperative chemoradiotherapy. The recruited patients with CRC were newly diagnosed with CRC, and were not associated with any hereditary syndromes, previously diagnosed cancer or positive family history of CRC. The paired non-cancerous tissue specimens were excised from macroscopically normal colonic mucosa distally located from the colorectal tumours. PRIMARY AND SECONDARY OUTCOME MEASURES The differential mRNA expression patterns of early and advanced stage colorectal adenocarcinomas compared with macroscopically normal colonic mucosa were characterised by ACP-based PCR and reverse transcription-quantitative real-time PCR. RESULTS The RPL35, RPS23 and TIMP1 genes were found to be overexpressed in both early and advanced stage colorectal adenocarcinomas (p<0.05). However, the ARPC2 gene was significantly underexpressed in early colorectal adenocarcinomas, while the advanced stage primary colorectal tumours exhibited an additional overexpression of the C6orf173 gene (p<0.05). CONCLUSIONS We characterised two distinctive gene expression patterns to aid in the stratification of primary colorectal neoplasms among Malaysian patients with CRC. Further work can be done to assess and compare the mRNA expression levels of these identified DEGs between each CRC stage group, stages I-IV.
Collapse
Affiliation(s)
- Tze Pheng Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - April Camilla Roslani
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lay Hoong Lian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ping Chin Lee
- School of Science and Technology, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Ida Hilmi
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean Lee Goh
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm Bowel Dis 2014; 20:1147-56. [PMID: 24859296 DOI: 10.1097/mib.0000000000000067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Instability of housekeeping genes (HKG), supposedly unregulated and hence used as normalizers, may dramatically change conclusions of quantitative PCR experiments. The effect of bowel inflammation on HKG remains unknown. Expression stability of 15 HKG (ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ) in 166 bowel specimens (91 normal, 35 cancerous, and 40 inflamed) was ranked by coefficients of variation (CV%) or using dedicated software: geNorm and NormFinder. The RPS23, PPIA, and RPLP0 were top-ranked, whereas IPO8, UBC and TBP were the lowest-ranked HKG across inflamed/cancerous/normal colonic tissues. The pairs RPS23/RPLP0, PGK1/MRPL19, or PPIA/RPLP0 were optimal reference by CV%, NormFinder, and geNorm, respectively. Colon inflammation affected HKG more pronouncedly than cancer with ACTB significantly down- and B2M upregulated. In inflammatory bowel disease (IBD), different genes were top-ranked in a large and small bowel, whereas TBP, UBC, and IPO8 were lowest-ranked in both. For patients with IBD at large, RPS23/PPIA, PGK1/MRPL19, and PPIA/RPLP0 were found optimal by CV%, NormFinder, and geNorm, respectively. ACTB and B2M expression was related to CRC stage and positively correlated with clinical activity of IBD. Although GAPDH was upregulated neither in CRC nor IBD, it tended to positively correlate with tumor depth and Crohn's disease activity index. Normalizing against GAPDH affected experimental conclusions in a small but not large bowel. Bowel inflammation significantly affects several classic HKG. The pair PPIA/RPLP0 is a common optimal reference for studies encompassing tissues sampled from colorectal cancer and IBD patients. Using ACTB or B2M is not recommended.
Collapse
|
42
|
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588:2571-9. [PMID: 24747423 DOI: 10.1016/j.febslet.2014.04.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.
Collapse
Affiliation(s)
- Lior Golomb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Croatia
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Whittemore K, Sykes K. A microarray method for identifying tumor antigens by screening a tumor cDNA expression library against cancer sera. Hum Vaccin Immunother 2013; 9:2178-88. [PMID: 23851590 PMCID: PMC3906402 DOI: 10.4161/hv.25634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2013] [Revised: 06/18/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
The immune system responds to tumor cells. The challenge has been how to effectively use these responses to treat or protect against cancer. Toward the goal of developing a cancer vaccine, we are pursuing methodologies for the discovery and testing of useful antigens. We present an array-based approach for discovering these B cell antigens by directly screening for specific host-sera reactivity to lysates from tumor-derived cDNA expression libraries. Several cancer-specific antigens were identified, and these are currently being validated as potential candidates.
Collapse
Affiliation(s)
- Kurt Whittemore
- Center for Innovations in Medicine; The Biodesign Institute; Arizona State University; Tempe, AZ USA
- Biological Design Program; Arizona State University; Tempe, AZ USA
| | - Kathryn Sykes
- Center for Innovations in Medicine; The Biodesign Institute; Arizona State University; Tempe, AZ USA
- HealthTell, Inc.; Chandler, AZ USA
| |
Collapse
|
44
|
Sudhamalla B, Kumar M, Kumar RS, Sashi P, Yasin UM, Ramakrishna D, Rao PN, Bhuyan AK. Enzyme dimension of the ribosomal protein S4 across plant and animal kingdoms. Biochim Biophys Acta Gen Subj 2013; 1830:5335-41. [PMID: 23791937 DOI: 10.1016/j.bbagen.2013.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2013] [Revised: 05/10/2013] [Accepted: 06/09/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND The protein S4 of the smaller ribosomal subunit is centrally important for its anchorage role in ribosome assembly and rRNA binding. Eubacterial S4 also facilitates synthesis of rRNA, and restrains translation of ribosomal proteins of the same polycistronic mRNA. Eukaryotic S4 has no homolog in eubacterial kingdom, nor are such extraribosomal functions of S4 known in plants and animals even as genetic evidence suggests that deficiency of S4X isoform in 46,XX human females may produce Turner syndrome (45,XO). METHODS Recombinant human S4X and rice S4 were used to determine their enzymatic action in the cleavage of synthetic peptide substrates and natural proteins. We also studied autoproteolysis of the recombinant S4 proteins, and examined the growth and proliferation of S4-transfected human embryonic kidney cells. RESULTS Extraribosomal enzyme nature of eukaryotic S4 is described. Both human S4X and rice S4 are cysteine proteases capable of hydrolyzing a wide spectrum of peptides and natural proteins of diverse origin. Whereas rice S4 also cleaves the -XXXD↓- consensus sequence assumed to be specific for caspase-9 and granzyme B, human S4 does not. Curiously, both human and rice S4 show multiple-site autoproteolysis leading to self-annihilation. Overexpression of human S4 blocks the growth and proliferation of transfected embryonic kidney cells, presumably due to the extraribosomal enzyme trait reported. CONCLUSIONS The S4 proteins of humans and rice, prototypes of eukaryota, are non-specific cysteine proteases in the extraribosomal milieu. GENERAL SIGNIFICANCE The enzyme nature of S4 is relevant toward understanding not only the origin of ribosomal proteins, but also processes in cell biology and diseases.
Collapse
Affiliation(s)
- Babu Sudhamalla
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen D, Zhang R, Shen W, Fu H, Liu S, Sun K, Sun X. RPS12-specific shRNA inhibits the proliferation, migration of BGC823 gastric cancer cells with S100A4 as a downstream effector. Int J Oncol 2013; 42:1763-9. [PMID: 23546393 DOI: 10.3892/ijo.2013.1872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2013] [Accepted: 03/06/2013] [Indexed: 11/05/2022] Open
Abstract
Our previous study using suppression subtractive hybridization (SSH), cDNA microarray and semi-quantitative RT-PCR showed that RPS12 was overexpressed in gastric cancer and it was closely related to metastasis. However, the role of RPS12 in gastric cancer is not clear, which led us to conduct the current study to further investigate the effects of RPS12 on the proliferation and migration of gastric cancer cells, and also to explore the underlying molecular mechanisms. RNA interference was used to inhibit the expression of RPS12. The expression of RPS12 and S100A4 in gastric cancer cells was determined using semi-quantitative RT-PCR and western blot analysis. Cell proliferation and migration were detected by MTT and transwell assay, respectively. In addition, the promoter activity of S100A4 was measured by a Dual-Luciferase Reporter Assay System. We found that RNAi‑mediated RPS12 downregulation led to reduced proliferation and migration of BGC823 and SGC7901 gastric cancer cells. Further results showed that RPS12 inhibition led to reduced S100A4 expression and decreased promoter activity of S100A4 in BGC823 cells. We demonstrated that ectopic expression of S100A4 reversed the reduced proliferation and migration ability after RPS12 inhibition in BGC823 cells. Our findings provide the first demonstration that RPS12 plays important roles in regulating the proliferation and migration of gastric cancer cells. S100A4 can mediate the effects of RPS12 as a downstream effector.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Medical Genetics, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Ma XR, Sim EUH, Ling TY, Tiong TS, Subramaniam SK, Khoo ASB. Expression trend of selected ribosomal protein genes in nasopharyngeal carcinoma. Malays J Med Sci 2012; 19:23-30. [PMID: 23613646 PMCID: PMC3629677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Ribosomal proteins are traditionally associated with protein biosynthesis until recent studies that implicated their extraribosomal functions in human diseases and cancers. Our previous studies using GeneFishing™ DEG method and microarray revealed underexpression of three ribosomal protein genes, RPS26, RPS27, and RPL32 in cancer of the nasopharynx. Herein, we investigated the expression pattern and nucleotide sequence integrity of these genes in nasopharyngeal carcinoma to further delineate their involvement in tumourigenesis. The relationship of expression level with clinicopathologic factors was also statistically studied. METHODS Quantitative Polymerase Chain Reaction was performed on nasopharyngeal carcinoma and their paired normal tissues. Expression and sequence of these three genes were analysed. RESULTS All three ribosomal protein genes showed no significant difference in transcript expressions and no association could be established with clinicopathologic factors studied. No nucleotide aberrancy was detected in the coding regions of these genes. CONCLUSION There is no early evidence to substantiate possible involvement of RPS26, RPS27, and RPL32 genes in NPC tumourigenesis.
Collapse
Affiliation(s)
- Xiang-Ru Ma
- Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | | | | | | | | | | |
Collapse
|
47
|
Shenoy N, Kessel R, Bhagat TD, Bhattacharyya S, Yu Y, McMahon C, Verma A. Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 2012; 5:32. [PMID: 22709827 PMCID: PMC3438023 DOI: 10.1186/1756-8722-5-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10467, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sudhamalla B, Yadaiah M, Ramakrishna D, Bhuyan AK. Cysteine protease attribute of eukaryotic ribosomal protein S4. Biochim Biophys Acta Gen Subj 2012; 1820:1535-42. [PMID: 22579920 DOI: 10.1016/j.bbagen.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ribosomal proteins often carry out extraribosomal functions. The protein S4 from the smaller subunit of Escherichia coli, for instance, regulates self synthesis and acts as a transcription factor. In humans, S4 might be involved in Turner syndrome. Recent studies also associate many ribosomal proteins with malignancy, and cell death and survival. The list of extraribosomal functions of ribosomal proteins thus continues to grow. METHODS Enzymatic action of recombinant wheat S4 on fluorogenic peptide substrates Ac-XEXD↓-AFC (N-acetyl-residue-Glu-residue-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR↓-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin) as well as proteins has been examined under a variety of solution conditions. RESULTS Eukaryotic ribosomal protein S4 is an endoprotease exhibiting all characteristics of cysteine proteases. The K(m) value for the cleavage of Z-FR↓-AMC by a cysteine mutant (C41F) is about 70-fold higher relative to that for the wild-type protein under identical conditions, implying that S4 is indeed a cysteine protease. Interestingly, activity responses of the S4 protein and caspases toward environmental parameters, including pH, temperature, ionic strength, and Mg(2+) and Zn(2+) concentrations, are quite similar. Respective kinetic constants for their cleavage action on Ac-LEHD↓-AFC are also similar. However, S4 cannot be a caspase, because unlike the latter it also hydrolyzes the cathepsin substrate Z-FR↓-AMC. GENERAL SIGNIFICANCE The eukaryotic S4 is a generic cysteine protease capable of hydrolyzing a broad spectrum of synthetic substrates and proteins. The enzyme attribute of eukaryotic ribosomal protein S4 is a new phenomenon. Its possible involvement in cell growth and proliferations are presented in the light of known extraribosomal roles of ribosomal proteins.
Collapse
Affiliation(s)
- Babu Sudhamalla
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | |
Collapse
|
49
|
Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y, Huo J, Ning X, Sun L, Chen Y, Sun S, Fan D. Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J Cell Mol Med 2012; 15:296-306. [PMID: 19912438 PMCID: PMC3822796 DOI: 10.1111/j.1582-4934.2009.00969.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Our previous works revealed that human ribosomal protein S13 (RPS13) was up-regulated in multidrug-resistant gastric cancer cells and overexpression of RPS13 could protect gastric cancer cells from drug-induced apoptosis. The present study was designed to explore the role of RPS13 in tumorigenesis and development of gastric cancer. The expression of RPS13 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining and Western blot analysis. It was found RPS13 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPS13 was then genetically overexpressed in gastric cancer cells or knocked down by RNA interference. It was demonstrated that up-regulation of RPS13 accelerated the growth, enhanced in vitro colony forming and soft agar cologenic ability and promoted in vivo tumour formation potential of gastric cancer cells. Meanwhile, down-regulation of RPS13 in gastric cancer cells resulted in complete opposite effects. Moreover, overexpression of RPS13 could promote G1 to S phase transition whereas knocking down of RPS13 led to G1 arrest of gastric cancer cells. It was further demonstrated that RPS13 down-regulated p27kip1 expression and CDK2 kinase activity but did not change the expression of cyclin D, cyclin E, CDK2, CDK4 and p16INK4A. Taken together, these data indicate that RPS13 could promote the growth and cell cycle progression of gastric cancer cells at least through inhibiting p27kip1 expression.
Collapse
Affiliation(s)
- Xueyan Guo
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Golomb L, Bublik DR, Wilder S, Nevo R, Kiss V, Grabusic K, Oren M. Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol Cell 2012; 45:222-32. [PMID: 22284678 PMCID: PMC3270374 DOI: 10.1016/j.molcel.2011.11.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2011] [Revised: 07/13/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
Members of the β-karyopherin family mediate nuclear import of ribosomal proteins and export of ribosomal subunits, both required for ribosome biogenesis. We report that transcription of the β-karyopherin genes importin 7 (IPO7) and exportin 1 (XPO1), and several additional nuclear import receptors, is regulated positively by c-Myc and negatively by p53. Partial IPO7 depletion triggers p53 activation and p53-dependent growth arrest. Activation of p53 by IPO7 knockdown has distinct features of ribosomal biogenesis stress, with increased binding of Mdm2 to ribosomal proteins L5 and L11 (RPL5 and RPL11). Furthermore, p53 activation is dependent on RPL5 and RPL11. Of note, IPO7 and XPO1 are frequently overexpressed in cancer. Altogether, we propose that c-Myc and p53 counter each other in the regulation of elements within the nuclear transport machinery, thereby exerting opposing effects on the rate of ribosome biogenesis. Perturbation of this balance may play a significant role in promoting cancer.
Collapse
Affiliation(s)
- Lior Golomb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Debora Rosa Bublik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sylvia Wilder
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vladimir Kiss
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kristina Grabusic
- Department of Molecular medicine and Biotechnology, University of Rijeka, School of Medicine, Rijeka 51000, Croatia
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|