1
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
2
|
Kabbout M, Dakhlallah D, Sharma S, Bronisz A, Srinivasan R, Piper M, Marsh CB, Ostrowski MC. MicroRNA 17-92 cluster mediates ETS1 and ETS2-dependent RAS-oncogenic transformation. PLoS One 2014; 9:e100693. [PMID: 24968297 PMCID: PMC4072627 DOI: 10.1371/journal.pone.0100693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 01/01/2023] Open
Abstract
The ETS-family transcription factors Ets1 and Ets2 are evolutionarily conserved effectors of the RAS/ERK signaling pathway, but their function in Ras cellular transformation and biology remains unclear. Taking advantage of Ets1 and Ets2 mouse models to generate Ets1/Ets2 double knockout mouse embryonic fibroblasts, we demonstrate that deletion of both Ets1 and Ets2 was necessary to inhibit HrasG12V induced transformation both in vitro and in vivo. HrasG12V expression in mouse embryonic fibroblasts increased ETS1 and ETS2 expression and binding to cis-regulatory elements on the c-Myc proximal promoter, and consequently induced a robust increase in MYC expression. The expression of the oncogenic microRNA 17-92 cluster was increased in HrasG12V transformed cells, but was significantly reduced when ETS1 and ETS2 were absent. MYC and ETS1 or ETS2 collaborated to increase expression of the oncogenic microRNA 17-92 cluster in HrasG12V transformed cells. Enforced expression of exogenous MYC or microRNA 17-92 rescued HrasG12V transformation in Ets1/Ets2-null cells, revealing a direct function for MYC and microRNA 17-92 in ETS1/ETS2-dependent HrasG12V transformation.
Collapse
Affiliation(s)
- Mohamed Kabbout
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Graduate Program in Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
- Solid Tumor Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Duaa Dakhlallah
- Graduate Program in Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudarshana Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Solid Tumor Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Agnieszka Bronisz
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Solid Tumor Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ruchika Srinivasan
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Graduate Program in Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
- Solid Tumor Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Melissa Piper
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael C. Ostrowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Solid Tumor Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
3
|
Jedlicka P, Sui X, Sussel L, Gutierrez-Hartmann A. Ets transcription factors control epithelial maturation and transit and crypt-villus morphogenesis in the mammalian intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1280-90. [PMID: 19264912 DOI: 10.2353/ajpath.2009.080409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ets transcription factor family are widely expressed in both the developing and mature mammalian intestine, but their biological functions remain primarily uncharacterized. We used a dominant repressor transgene approach to probe the function of epithelial Ets factors in the homeostasis of the crypt-villus unit, the functional unit of the small intestine. We show that targeted expression in small intestinal epithelium of a fusion protein composed of the Engrailed repressor domain and the Erm DNA-binding domain (En/Erm) results in marked disruption of normal crypt-villus homeostasis, including a cell-autonomous disturbance of epithelial maturation, increased epithelial transit, severe villus dysmorphogenesis, and crypt dysmorphogenesis. The epithelial maturation disturbance is independent of the regulation of TGFbetaRII levels, in contrast to Ets-mediated epithelial differentiation during development; rather, regulation of Cdx2 expression may play a role. The villus dysmorphogenesis is independent of alterations in the crypt-villus boundary and inappropriate beta-catenin activation, and thus appears to represent a new mechanism controlling villus architectural organization. An Analysis of animals mosaic for En/Erm expression suggests that crypt nonautonomous mechanisms underlie the crypt dysmorphogenesis phenotype. Our studies thus uncover novel Ets-regulated pathways of intestinal homeostasis in vivo. Interestingly, the overall En/Erm phenotype of disturbed crypt-villus homeostasis is consistent with recently identified Ets function(s) in the restriction of intestinal epithelial tumorigenesis.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Center, PO Box 6511, MS 8104, Aurora CO 80045, USA.
| | | | | | | |
Collapse
|
4
|
Li M, Zhang P. The function of APC/CCdh1 in cell cycle and beyond. Cell Div 2009; 4:2. [PMID: 19152694 PMCID: PMC2635356 DOI: 10.1186/1747-1028-4-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/19/2009] [Indexed: 02/07/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase playing essential functions in mitosis. It is conserved from yeast to human and relies on two adaptor proteins, Cdc20 and Cdh1, to bring in substrates. Both APCCdc20 and APCCdh1 are implicated in the control of mitosis through mediating ubiquitination and degradation of important mitotic regulators such as cyclin B1, securin, and Plk1. In addition, APCCdh1 is thought to prevent premature S phase entry by limiting the accumulation of mitotic cyclins in G1 and to regulate processes unrelated to cell cycle. In this review, we will summarize our current understanding of APCCdh1 function in cell cycle and beyond.
Collapse
Affiliation(s)
- Min Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
5
|
Kim S, Denny CT, Wisdom R. Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins. Mol Cell Biol 2006; 26:2467-78. [PMID: 16537893 PMCID: PMC1430316 DOI: 10.1128/mcb.26.7.2467-2478.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key molecular event in the genesis of Ewing's sarcoma is the consistent presence of chromosomal translocations that result in the formation of proteins in which the amino terminus of EWS is fused to the carboxyl terminus, including the DNA binding domain, of one of five different Ets family proteins. These fusion proteins function as deregulated transcription factors, resulting in aberrant control of gene expression. Recent data indicate that some EWS-Ets target promoters, including the uridine phosphorylase (UPP) promoter, harbor tandem binding sites for Ets and AP-1 proteins. Here we show that those Ets family proteins that participate in Ewing's sarcoma, including Fli1, ERG, and ETV1, cooperatively bind these tandem elements with Fos-Jun while other Ets family members do not. Analysis of this cooperativity in vitro shows that (i) many different spatial arrangements of the Ets and AP-1 sites support cooperative binding, (ii) the bZIP motifs of Fos and Jun are sufficient to support this cooperativity, and (iii) both the Ets domain and carboxy-terminal sequences of Fli1 are important for cooperative DNA binding. EWS-Fli1 activates the expression of UPP mRNA, is directly bound to the UPP promoter, and transforms 3T3 fibroblasts; in contrast, a C-terminally truncated mutant form of EWS-Fli1 that cannot cooperatively bind DNA with Fos-Jun is defective in all of these properties. The results show that the ability of EWS-Ets proteins to cooperatively bind DNA with Fos-Jun is critical to the biologic activities of these proteins. The results have implications for understanding the pathogenesis of Ewing's sarcoma. In addition, they may be relevant to the mechanisms of Ras-dependent activation of genes that harbor tandem Ets and AP-1 binding sites.
Collapse
Affiliation(s)
- Sungeun Kim
- Division of Hematology/Oncology and UC Davis Cancer Center, University of California at Davis, USA
| | | | | |
Collapse
|
6
|
Suriano AR, Sanford AN, Kim N, Oh M, Kennedy S, Henderson MJ, Dietzmann K, Sullivan KE. GCF2/LRRFIP1 represses tumor necrosis factor alpha expression. Mol Cell Biol 2005; 25:9073-81. [PMID: 16199883 PMCID: PMC1265793 DOI: 10.1128/mcb.25.20.9073-9081.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is an important mediator of inflammation, apoptosis, and the development of secondary lymphoid structures. Multiple polymorphic microsatellites have been identified in and around the gene, and there are also multiple single-base pair biallelic polymorphisms in the introns and promoter. The TNF-alpha -308 promoter polymorphism is a G-to-A transition which has been statistically associated with various autoimmune disorders. Some studies have found that it may directly mediate the increased transcription of TNF-alpha in some circumstances. This study characterizes proteins interacting at the polymorphic promoter site. Affinity purification of binding proteins and confirmatory chromatin immunoprecipitation assays were used to identify the proteins. Electrophoretic mobility shift analyses and surface plasmon resonance were used to define binding characteristics. Proteins interacting at this site include GCF2/LRRFIP1 and Ets-1. GCF2/LRRFIP1 appears to act as a repressor and occupies the -308 site in cells that do not make TNF-alpha. Cells competent to produce TNF-alpha have Ets-1 bound to the -308 promoter site. Active transcription is accompanied by NF-kappaB and c-Jun binding to the proximal promoter. Thus, dynamic changes on the TNF-alpha promoter, particularly at the -308 site, accompany the transition from repressed to active transcription. GCF2/LRRFIP1 is the first TNF-alpha repressor identified.
Collapse
Affiliation(s)
- April R Suriano
- University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang G, Khalaf W, van de Locht L, Jansen JH, Gao M, Thompson MA, van der Reijden BA, Gutmann DH, Delwel R, Clapp DW, Hiebert SW. Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol 2005; 25:5869-79. [PMID: 15988004 PMCID: PMC1168824 DOI: 10.1128/mcb.25.14.5869-5879.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Von Recklinghausen's disease is a relatively common familial genetic disorder characterized by inactivating mutations of the Neurofibromatosis-1 (NF1) gene that predisposes these patients to malignancies, including an increased risk for juvenile myelomonocytic leukemia. However, NF1 mutations are not common in acute myeloid leukemia (AML). Given that the RUNX1 transcription factor is the most common target for chromosomal translocations in acute leukemia, we asked if NF1 might be regulated by RUNX1. In reporter assays, RUNX1 activated the NF1 promoter and cooperated with C/EBPalpha and ETS2 to activate the NF1 promoter over 80-fold. Moreover, the t(8;21) fusion protein RUNX1-MTG8 (R/M), which represses RUNX1-regulated genes, actively repressed the NF1 promoter. R/M associated with the NF1 promoter in vivo and repressed endogenous NF1 gene expression. In addition, similar to loss of NF1, R/M expression enhanced the sensitivity of primary myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor. Our results indicate that the NF1 tumor suppressor gene is a direct transcriptional target of RUNX1 and the t(8;21) fusion protein, suggesting that suppression of NF1 expression contributes to the molecular pathogenesis of AML.
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Mice
- Neurofibromatosis 1/genetics
- Neurofibromin 1/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/metabolism
- RUNX1 Translocation Partner 1 Protein
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Genyan Yang
- Department of Biochemistry, Vanderbilt University School of Medicine, PRB 512, 23rd and Pierce, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hanson JL, Hawke NA, Kashatus D, Baldwin AS. The nuclear factor kappaB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res 2004; 64:7248-55. [PMID: 15492243 DOI: 10.1158/0008-5472.can-03-3898] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extensive data indicate that oncoproteins, such as oncogenic H-Ras, initiate signal transduction cascades that ultimately lead to the activation of specific transcription factors. We and others have previously demonstrated that Ras activates the inherent transcriptional activation function of the transcription factor nuclear factor kappaB (NF-kappaB). Supportive of the importance of NF-kappaB in transformation, Ras-induced cellular transformation can be suppressed by expression of IkappaBalpha, an inhibitor of NF-kappaB, or by dominant-negative forms of the upstream activator IkappaB kinase (IKK). However, conclusive evidence for a requirement for NF-kappaB subunits in oncogenic transformation has not been reported. Furthermore, there is little understanding of the gene targets controlled by NF-kappaB that might support oncogenic conversion. The data presented here demonstrate that, although both p65 and c-Rel enhance the frequency of Ras-induced cellular transformation, these NF-kappaB subunits are not essential for Ras to transform spontaneously immortalized murine fibroblasts. Microarray analysis identified a set of genes induced by Ras that is dependent on NF-kappaB for their expression and that likely play contributory roles in promoting Ras-induced oncogenic transformation.
Collapse
Affiliation(s)
- Julie L Hanson
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, and Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
9
|
Shuman JD, Sebastian T, Kaldis P, Copeland TD, Zhu S, Smart RC, Johnson PF. Cell cycle-dependent phosphorylation of C/EBPbeta mediates oncogenic cooperativity between C/EBPbeta and H-RasV12. Mol Cell Biol 2004; 24:7380-91. [PMID: 15314150 PMCID: PMC507001 DOI: 10.1128/mcb.24.17.7380-7391.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCAAT/enhancer binding protein beta (C/EBPbeta) is a widely expressed transcription factor whose activity is regulated by oncogenic Ha-RasV12 signaling. C/EBPbeta is essential for the development of mouse skin tumors containing Ras mutations and can cooperate with RasV12 to transform NIH 3T3 cells. Here we have investigated Ras-induced phosphorylation of C/EBPbeta in fibroblasts and report a novel proline-directed phosphoacceptor site at Ser64 within the transactivation domain. Ser64 phosphorylation was induced by activated Ras and Raf but was not blocked by chemical inhibitors of MEK1/2, phosphatidylinositol 3-kinase, JNK, or p38 mitogen-activated protein kinases. Ser64 was efficiently phosphorylated in vitro by the cyclin-dependent kinases Cdk2 and Cdc2. Thr189, previously identified as an ERK1/2 phosphorylation site that regulates C/EBPbeta activity, was also a substrate for Cdk phosphorylation. Ser64 and Thr189 phosphorylation was low in serum-starved (G0) cells but was strongly increased in mid-G1 cells and in cells arrested in S or M phase. In addition, phosphorylation on both sites was blocked by treating cells with the Cdk inhibitor roscovitine. In contrast to wild-type C/EBPbeta, which enhances transformation of NIH 3T3 cells, mutants bearing alanine substitutions at Ser64 and/or Thr189 inhibited RasV12-induced focus formation. Our findings support a role for C/EBPbeta as a nuclear effector of Ras signaling and transformation, and they indicate that cell cycle-dependent phosphorylation of C/EBPbeta on Ser64 and Thr189 is required to promote Ras-induced transformation of NIH 3T3 cells.
Collapse
Affiliation(s)
- Jon D Shuman
- Laboratory of Protein Dynamics and Signaling, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS. Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. ACTA ACUST UNITED AC 2004; 165:263-73. [PMID: 15117969 PMCID: PMC2172030 DOI: 10.1083/jcb.200309102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated coexpression of colony-stimulating factor receptor (CSF-1R) and its ligand, CSF-1, correlates with invasiveness and poor prognosis of a variety of epithelial tumors (Kacinski, B.M. 1995. Ann. Med. 27:79–85). Apart from recruitment of macrophages to the tumor site, the mechanisms by which CSF-1 may potentiate invasion are poorly understood. We show that autocrine CSF-1R activation induces hyperproliferation and a profound, progressive disruption of junctional integrity in acinar structures formed by human mammary epithelial cells in three-dimensional culture. Acini coexpressing receptor and ligand exhibit a dramatic relocalization of E-cadherin from the plasma membrane to punctate intracellular vesicles, accompanied by its loss from the Triton-insoluble fraction. Interfering with Src kinase activity, either by pharmacological inhibition or mutation of the Y561 docking site on CSF-1R, prevents E-cadherin translocation, suggesting that CSF-1R disrupts cell adhesion by uncoupling adherens junction complexes from the cytoskeleton and promoting cadherin internalization through a Src-dependent mechanism. These findings provide a mechanistic basis whereby CSF-1R could contribute to invasive progression in epithelial cancers.
Collapse
Affiliation(s)
- Carolyn N Wrobel
- Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sevinsky JR, Whalen AM, Ahn NG. Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol Cell Biol 2004; 24:4534-45. [PMID: 15121870 PMCID: PMC400447 DOI: 10.1128/mcb.24.10.4534-4545.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) facilitates cell cycle progression in most mammalian cells, but in certain cell types prolonged signaling through this pathway promotes differentiation and lineage-specific gene expression through mechanisms that are poorly understood. Here, we characterize the transcriptional regulation of platelet GPIIb integrin (CD41) by ERK during megakaryocyte differentiation. ERK-dependent transactivation involves the proximal promoter of GPIIb within 114 bp upstream of the transcriptional start site. GATA, Ets, and Sp1 consensus sequences within this region are each necessary and function combinatorially in ERK-activated transcription. MafB/Kreisler is induced in response to ERK and synergizes with GATA and Ets to enhance transcription from the proximal promoter. The requirement for MafB in promoter regulation is demonstrated by inhibition of transactivation following dominant-negative or antisense suppression of MafB function. Thus, ERK promotes megakaryocyte differentiation by coordinate regulation of nuclear factors that synergize in GPIIb promoter regulation. These results establish a novel role for MafB as a regulator of ERK-induced gene expression.
Collapse
Affiliation(s)
- Joel R Sevinsky
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
12
|
Jenkins BJ, Grail D, Inglese M, Quilici C, Bozinovski S, Wong P, Ernst M. Imbalanced gp130-dependent signaling in macrophages alters macrophage colony-stimulating factor responsiveness via regulation of c-fms expression. Mol Cell Biol 2004; 24:1453-63. [PMID: 14749363 PMCID: PMC344172 DOI: 10.1128/mcb.24.4.1453-1463.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which interleukin-6 (IL-6) family cytokines, which utilize the common receptor signaling subunit gp130, influence monocyte/macrophage development remain unclear. Here we have utilized macrophages devoid of either gp130-dependent STAT1/3 (gp130(Delta STAT/Delta STAT)) or extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinase (gp130(Y757F/Y757F)) activation to assess the individual contribution of each pathway to macrophage formation. While the inhibition by IL-6 of macrophage colony-stimulating factor (M-CSF)-induced colony formation observed in gp130(wt/wt) mice was abolished in gp130(Delta STAT/Delta STAT) mice, inhibition of macrophage colony formation was enhanced in gp130(Y757F/Y757F) mice. In gp130(Delta STAT/Delta STAT) bone marrow-derived macrophages (BMMs), both IL-6- and M-CSF-induced ERK1/2 tyrosine phosphorylation was enhanced. By contrast, tyrosine phosphorylation of ERK1/2 in response to M-CSF was reduced in gp130(Y757F/Y757F) BMMs, and the pattern of ERK1/2 activation in gp130 mutant BMMs correlated with their opposing responsiveness to M-CSF-induced proliferation. When compared to the level of expression in gp130(wt/wt) BMMs, c-fms expression was elevated in gp130(Delta STAT/Delta STAT) BMMs but reduced in gp130(Y757F/Y757F) BMMs. Finally, an ERK1/2 inhibitor suppressed M-CSF-induced BMM proliferation, and this result corresponded to a reduction in c-fms expression. Collectively, these results provide a functional and causal correlation between gp130-dependent ERK MAP kinase signaling and c-fms gene activation, a finding that provides a potential mechanism underlying the inhibition of M-CSF-dependent macrophage development by IL-6 family cytokines in mice.
Collapse
Affiliation(s)
- Brendan J Jenkins
- Ludwig Institute for Cancer Research, Colon Molecular and Cell Biology Laboratory, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Man AK, Young LJT, Tynan JA, Lesperance J, Egeblad M, Werb Z, Hauser CA, Muller WJ, Cardiff RD, Oshima RG. Ets2-dependent stromal regulation of mouse mammary tumors. Mol Cell Biol 2003; 23:8614-25. [PMID: 14612405 PMCID: PMC262691 DOI: 10.1128/mcb.23.23.8614-8625.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 02/18/2003] [Accepted: 08/25/2003] [Indexed: 11/20/2022] Open
Abstract
The Ets2 transcription factor is regulated by mitogen-activated protein (MAP) kinase phosphorylation of a single threonine residue. We generated by gene targeting a single codon mutation in Ets2 substituting Ala for the critical Thr-72 phosphorylation site (Ets2A72), to investigate the importance of MAP kinase activation of Ets2 in embryo and tumor development. Ets2(A72/A72) mice are viable and develop normally. However, combining the Ets2A72 allele with a deletion mutant of Ets2 results in lethality at E11.5 and shows that Ets2A72 is a hypomorphic allele. Mammary tumors caused by transgenic polyomavirus middle T antigen, activated Neu(Erbb2), or the combination of Neu and transgenic VEGF (Neu; VEGF-25) were all restricted in Ets2(A72/A72) females. The Ets2(A72/A72) restriction on Neu; VEGF-25 tumor growth was associated with increased p21Cip1 expression. The size of tumors transplanted into fat pads of mice with Ets2 targeted alleles was correlated directly with Ets2 activity and fewer stromal cells expressing matrix metalloproteinase 9 (MMP-9). Decreased MMP-3 and MMP-9 mRNAs were confirmed in Ets2(A72/A72) macrophages. Activation of Ets2 at Thr-72 acts in the stroma, downstream of vascular endothelial growth factor production, in part through the regulation of macrophage proteases to support the progression of Neu- and polyomavirus middle-T-initiated mammary tumors.
Collapse
Affiliation(s)
- Albert K Man
- The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Duan Z, Horwitz M. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc Natl Acad Sci U S A 2003; 100:5932-7. [PMID: 12721361 PMCID: PMC156304 DOI: 10.1073/pnas.1031694100] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 03/24/2003] [Indexed: 12/16/2022] Open
Abstract
Gfi-1 is a zinc finger transcriptional repressor originally recognized for its role in T cell differentiation and lymphomas. Recent experiments reveal that gene-targeted Gfi-1-deficient mice are neutropenic and that Gfi-1 mutations cause human neutropenia. In both cases, myeloid progenitor cells lose the ability to distinctly differentiate granulocytes from monocytes. The molecular mechanism of the hematopoietic abnormalities caused by Gfi-1 deficiency remains undetermined because of a lack of known Gfi-1 target genes. To identify Gfi-1 targets in vivo, we performed large-scale chromatin immunoprecipitation analysis on a set of 34 candidate genes in myeloblast (KG-1 and HL-60), monoblast (U937), and T lymphocyte cell lines (Jurkat), in concert with RT-PCR-based expression profiling. We identified 32 Gfi-1 binding sites in a functionally variable set of 16 genes, including complements of cell-cycle regulators, transcription factors, and granulocyte-specific markers. Cluster analysis of expression patterns and chromatin immunoprecipitation data reveals that Gfi-1 targets a subset of genes differentiating hematopoietic lineages and therefore plays a relatively superior role in the hierarchy of factors governing stem cell differentiation.
Collapse
Affiliation(s)
- Zhijun Duan
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, 1705 Northeast Pacific Street, HSB-K236B, P.O. Box 357720, Seattle, WA 98195, USA
| | | |
Collapse
|
15
|
Vasseur S, Malicet C, Calvo EL, Labrie C, Berthezene P, Dagorn JC, Iovanna JL. Gene expression profiling by DNA microarray analysis in mouse embryonic fibroblasts transformed by rasV12 mutated protein and the E1A oncogene. Mol Cancer 2003. [PMID: 12685932 PMCID: PMC153489 DOI: 10.1186/1476-4598-2-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ras is an area of intensive biochemical and genetic studies and characterizing downstream components that relay ras-induced signals is clearly important. We used a systematic approach, based on DNA microarray technology to establish a first catalog of genes whose expression is altered by ras and, as such, potentially involved in the regulation of cell growth and transformation. RESULTS We used DNA microarrays to analyze gene expression profiles of rasV12/E1A-transformed mouse embryonic fibroblasts. Among the approximately 12,000 genes and ESTs analyzed, 815 showed altered expression in rasV12/E1A-transformed fibroblasts, compared to control fibroblasts, of which 203 corresponded to ESTs. Among known genes, 202 were up-regulated and 410 were down-regulated. About one half of genes encoding transcription factors, signaling proteins, membrane proteins, channels or apoptosis-related proteins was up-regulated whereas the other half was down-regulated. Interestingly, most of the genes encoding structural proteins, secretory proteins, receptors, extracellular matrix components, and cytosolic proteins were down-regulated whereas genes encoding DNA-associated proteins (involved in DNA replication and reparation) and cell growth-related proteins were up-regulated. These data may explain, at least in part, the behavior of transformed cells in that down-regulation of structural proteins, extracellular matrix components, secretory proteins and receptors is consistent with reversion of the phenotype of transformed cells towards a less differentiated phenotype, and up-regulation of cell growth-related proteins and DNA-associated proteins is consistent with their accelerated growth. Yet, we also found very unexpected results. For example, proteases and inhibitors of proteases as well as all 8 angiogenic factors present on the array were down-regulated in transformed fibroblasts although they are generally up-regulated in cancers. This observation suggests that, in human cancers, proteases, protease inhibitors and angiogenic factors could be regulated through a mechanism disconnected from ras activation. CONCLUSIONS This study established a first catalog of genes whose expression is altered upon fibroblast transformation by rasV12/E1A. This catalog is representative of the genome but not exhaustive, because only one third of expressed genes was examined. In addition, contribution to ras signaling of post-transcriptional and post-translational modifications was not addressed. Yet, the information gathered should be quite useful to future investigations on the molecular mechanisms of oncogenic transformation.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche INSERM EMI 0116, 163 Avenue de Luminy, BP172, 13009 Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
de Kerchove d'Exaerde A, Cartaud J, Ravel-Chapuis A, Seroz T, Pasteau F, Angus LM, Jasmin BJ, Changeux JP, Schaeffer L. Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Rep 2002; 3:1075-81. [PMID: 12393756 PMCID: PMC1307595 DOI: 10.1093/embo-reports/kvf220] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The localized transcription of several muscle genes at the motor endplate is controlled by the Ets transcription factor GABP. To evaluate directly its contribution to the formation of the neuromuscular junction, we generated transgenic mice expressing a general Ets dominant-negative mutant specifically in skeletal muscle. Quantitative RT-PCR analysis demonstrated that the expression of genes containing an Ets-binding site was severely affected in the mutant mice. Conversely, the expression of other synaptic genes, including MuSK and Rapsyn, was unchanged. In these animals, muscles expressing the mutant transcription factor developed normally, but examination of the post-synaptic morphology revealed marked alterations of both the primary gutters and secondary folds of the neuromuscular junction. Our results demonstrate that Ets transcription factors are crucial for the normal formation of the neuromuscular junction. They further show that Ets-independent mechanisms control the synaptic expression of a distinct set of synaptic genes.
Collapse
Affiliation(s)
- Alban de Kerchove d'Exaerde
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
- Laboratory of Neurophysiology, CP 601, Université Libre de Bruxelles, Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Jean Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR7592 CNRS, Université Paris6 et Paris7, 75251 Paris, France
| | - Aymeric Ravel-Chapuis
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| | - Thierry Seroz
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Fabien Pasteau
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| | - Lindsay M. Angus
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jean-Pierre Changeux
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
- Tel: +33 1 45688805; Fax: +33 1 45688836;
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| |
Collapse
|
17
|
Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002; 7:147-62. [PMID: 12465600 DOI: 10.1023/a:1020399802795] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colony stimulating factor 1 (CSF-1), a major regulator of the mononuclear phagocytic lineage, is expressed in more than 70% of human breast cancers and its expression is correlated with poor prognosis. Studies of CSF-1 null mutant mice demonstrated that CSF-1 plays an important role in normal mammary ductal development as well as in mammary tumor progression to metastasis. CSF-1 regulates these processes through the recruitment and regulation of macrophages, cells that become associated with mammary tumors and the terminal end buds at the end of the growing ducts. This phenomenon suggests that the tumors subvert normal developmental processes to allow invasion into the surrounding stroma, a process that gives the tumor access to the vasculature and consequently the promotion of metastasis. In addition, soluble CSF-1 secreted from the tumor acts to divert antitumor macrophage responses and suppresses the differentiation of mature tumor-antigen-presenting dendritic cell This review discusses these observations in detail and attempts to fit them into a larger picture of CSF-1 and macrophage action in the regulation of normal mammary gland development and tumor progression.
Collapse
Affiliation(s)
- Elaine Y Lin
- Center for Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | |
Collapse
|
18
|
Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A 2002; 99:207-12. [PMID: 11756662 PMCID: PMC117540 DOI: 10.1073/pnas.012437299] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2001] [Indexed: 01/17/2023] Open
Abstract
The basic leucine zipper transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) is expressed in many cell types, including keratinocytes. C/EBPbeta activity can be increased by phosphorylation through pathways stimulated by oncogenic Ras, although the biological implications of Ras-C/EBPbeta signaling are not currently understood. We report here that C/EBPbeta-nullizygous mice are completely refractory to skin tumor development induced by a variety of carcinogens and carcinogenesis protocols, including 7,12-dimethylbenz[a]anthracene-initiation/12-O-tetradecanoylphorbol 13-acetate promotion, that produce tumors containing oncogenic Ras mutations. No significant differences in TPA-induced epidermal keratinocyte proliferation were observed in C/EBPbeta-null versus wild-type mice. However, apoptosis was significantly elevated (17-fold) in the epidermal keratinocytes of 7,12-dimethylbenz[a]anthracene-treated C/EBPbeta-null mice compared with wild-type mice. In v-Ha-ras transgenic mice, C/EBPbeta deficiency also led to greatly reduced skin tumor multiplicity and size, providing additional evidence for a tumorigenesis pathway linking Ras and C/EBPbeta. Oncogenic Ras potently stimulated C/EBPbeta to activate a C/EBP-responsive promoter-reporter in keratinocytes and mutating an ERK1/2 phosphorylation site (T188) in C/EBPbeta abolished this Ras effect. Finally, we observed that C/EBPbeta participates in oncogenic Ras-induced transformation of NIH 3T3 cells. These findings indicate that C/EBPbeta has a critical role in Ras-mediated tumorigenesis and cell survival and implicate C/EBPbeta as a target for tumor inhibition.
Collapse
Affiliation(s)
- Songyun Zhu
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | | | | | |
Collapse
|
19
|
Remy P, Baltzinger M. The Ets-transcription factor family in embryonic development: lessons from the amphibian and bird. Oncogene 2000; 19:6417-31. [PMID: 11175358 DOI: 10.1038/sj.onc.1204044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the expression and role of Ets-genes during embryogenesis of amphibians and birds. In addition to overlapping expression domains, some of them exhibit cell type-specific expression. Many of them are expressed in migratory cells: neural crest, endothelial, and pronephric duct cells for instance. They are also transcribed in embryonic areas affected by epithelio-mesenchymal transitions. Both processes involve modifications of cellular adhesion. Ets-family genes appear to coordinate changes in the expression of adhesion molecules and degradation of the extracellular matrix upon regulation of matrix metalloproteinases and their specific inhibitors. These functions are essential for physiological processes like tissue remodelling during embryogenesis or wound healing. Unfortunately they also play a harmful role in metastasis. Recent studies in the nervous system showed that Ets-genes contribute to the establishment of a cellular identity. This identity could rely on definite cell-surface determinants, among which cadherins could play an important role. In addition to cell-type specific expression, other factors contribute to the specificity of function of Ets-genes. These genes have a broad specificity of recognition of target sequences in gene promoters, insufficient for accurate control of gene expression. A fine tuning could arise from combinatorial interactions with other Ets- or accessory proteins.
Collapse
Affiliation(s)
- P Remy
- FRE 2168 du CNRS, IPCB, 21 rue René Descartes, 67084 Strasbourg cedex, France
| | | |
Collapse
|
20
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
21
|
Maroulakou IG, Bowe DB. Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene 2000; 19:6432-42. [PMID: 11175359 DOI: 10.1038/sj.onc.1204039] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ets transcription factor family is involved in a variety of mammalian developmental processes at the cellular, tissue and organ levels. They are implicated in cellular proliferation, differentiation, migration, apoptosis and cell - cell interactions. This article reviews recent studies that demonstrate the integral importance of Ets in the dosage dependent regulation of development. The expression of many Ets genes is associated with mesenchymal - epithelial interactions and changes in extracellular matrix proteins. These inductive processes contribute to tissue remodeling and integrity, particularly during embryonic development. Overlapping as well as unique patterns of Ets expression are evident in developing tissues, including development of the lymphoid and myeloid lineages, brain and central nervous system, bone and mammary gland. Integration of these data will allow the development of predictive models for the regulation of complex developmental processes.
Collapse
Affiliation(s)
- I G Maroulakou
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
22
|
Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, Walker-Daniels J, Crawford HC, Hulboy DL, Kinch MS, Matrisian LM, Hiebert SW. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol 2000; 20:5828-39. [PMID: 10913166 PMCID: PMC86060 DOI: 10.1128/mcb.20.16.5828-5839.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 05/12/2000] [Indexed: 11/20/2022] Open
Abstract
TEL is a member of the ETS family of transcription factors that interacts with the mSin3 and SMRT corepressors to regulate transcription. TEL is biallelically disrupted in acute leukemia, and loss of heterozygosity at the TEL locus has been observed in various cancers. Here we show that expression of TEL in Ras-transformed NIH 3T3 cells inhibits cell growth in soft agar and in normal cultures. Unexpectedly, cells expressing both Ras and TEL grew as aggregates. To begin to explain the morphology of Ras-plus TEL-expressing cells, we demonstrated that the endogenous matrix metalloproteinase stromelysin-1 was repressed by TEL. TEL bound sequences in the stromelysin-1 promoter and repressed the promoter in transient-expression assays, suggesting that it is a direct target for TEL-mediated regulation. Mutants of TEL that removed a binding site for the mSin3A corepressor but retained the ETS domain failed to repress stromelysin-1. When BB-94, a matrix metalloproteinase inhibitor, was added to the culture medium of Ras-expressing cells, it caused a cell aggregation phenotype similar to that caused by TEL expression. In addition, TEL inhibited the invasiveness of Ras-transformed cells in vitro and in vivo. Our results suggest that TEL acts as a tumor suppressor, in part, by transcriptional repression of stromelysin-1.
Collapse
Affiliation(s)
- R Fenrick
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS. Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 2000; 19:1123-31. [PMID: 10713699 DOI: 10.1038/sj.onc.1203412] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the NF-kappa B/Rel transcription factor family have been shown recently to be required for cellular transformation by oncogenic Ras and by other oncoproteins and to suppress transformation-associated apoptosis. Furthermore, NF-kappa B has been shown to be activated by several oncoproteins including HER2/Neu, a receptor tyrosine kinase often expressed in human breast cancer. Human breast cancer cell lines, human breast tumors and normal adjacent tissue were analysed by gel mobility shift assay, immunoblotting of nuclear extracts and immunohistochemistry for activation of NF-kappa B. Furthermore, RNA levels for NF-kappa B-activated genes were analysed in order to determine if NF-kappa B is functionally active in human breast cancer. Our data indicate that the p65/RelA subunit of NF-kappa B is activated (i.e., nuclear) in breast cancer cell lines. However, breast tumors exhibit an absence or low level of nuclear p65/RelA but show activated c-Rel, p50 and p52 as compared to nontumorigenic adjacent tissue. Additionally, the I kappa B homolog Bcl-3, which functions to stimulate transcription with p50 or p52, was also activated in breast tumors. There was no apparent correlation between estrogen receptor status and levels of nuclear NF-kappa B complexes. Transcripts of NF-kappa B-regulated genes were found elevated in breast tumors, as compared to adjacent normal tissue, indicating functional NF-kappa B activity. These data suggest a potential role for a subset of NF-kappa B and I kappa B family proteins, particularly NF-kappa B/p52 and Bcl-3, in human breast cancer. Additionally, the activation of functional NF-kappa B in these tumors likely involves a signal transduction pathway distinct from that utilized by cytokines.
Collapse
Affiliation(s)
- P C Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, NC 27599-7295, USA
| | | | | | | |
Collapse
|
24
|
Jo H, Zhang R, Zhang H, McKinsey TA, Shao J, Beauchamp RD, Ballard DW, Liang P. NF-kappa B is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene 2000; 19:841-9. [PMID: 10702792 DOI: 10.1038/sj.onc.1203392] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogenic mutations in ras lead to constitutive activation of downstream signaling pathways that modulate the activities of transcription factors. In turn, these factors control the expression of a subset of genes responsible for neoplastic cell transformation. Recent studies suggest that transcription factor NF-kappa B contributes to cell transformation by inhibiting the cell death signal activated by oncogenic Ras. In this study, inhibition of NF-kappa B activity by forced expression of a super-repressor form of I kappa B alpha, the major inhibitor of NF-kappa B, markedly decreased the growth rate, saturation density and tumorigenicity of oncogenic H-Ras transformed rat embryo fibroblasts. Such clonally isolated cells overexpressing I kappa B alpha super-repressor not only were viable but also exhibited no sign of spontaneous apoptosis. Inhibition of NF-kappa B in these cells was functionally demonstrated by both the loss of cytokine induced DNA binding activity and a profoundly increased sensitivity to cell death in response to TNF-alpha treatment. In contrast, inhibition of NF-kappa B activity in non-transformed fibroblasts had minimal effect on growth, but rendered the cells resistant to a subsequent transformation by H-ras oncogene. Similar results were also obtained with rat intestinal epithelial cells harboring an inducible ras oncogene. Taken together, these findings suggest that NF-kappa B activity is essential for abnormal cell proliferation and tumorigenicity activated by the ras oncogene and highlight an alternative functional role for NF-kappa B in oncogenic Ras-mediated cell transformation that is distinct from its anti-apoptotic activity. Oncogene (2000) 19, 841 - 849.
Collapse
Affiliation(s)
- H Jo
- The Vanderbilt-Ingram Cancer Center, Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BR, Stark GR. Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. EMBO J 2000; 19:263-72. [PMID: 10637230 PMCID: PMC305560 DOI: 10.1093/emboj/19.2.263] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c-myc expression. IFN-gamma suppresses c-myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c-myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c-myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c-myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c-myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c-myc mRNA is induced, not suppressed, in response to IFN-gamma. A role for Raf-1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50(cdc37) that is unable to recruit HSP90 to the Raf-1 complex. Both agents abrogated the IFN-gamma-dependent induction of c-myc expression in Stat1-null cells.
Collapse
Affiliation(s)
- C V Ramana
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Thompson AD, Teitell MA, Arvand A, Denny CT. Divergent Ewing's sarcoma EWS/ETS fusions confer a common tumorigenic phenotype on NIH3T3 cells. Oncogene 1999; 18:5506-13. [PMID: 10523827 DOI: 10.1038/sj.onc.1202928] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ewing's sarcomas express chimeric transcription factors resulting from a fusion of the amino terminus of the EWS gene to the carboxyl terminus of one of five ETS proteins. While the majority of tumors express EWS/FLI1 fusions, some Ewing's tumors contain variant chimeras such as EWS/ETV1 that have divergent ETS DNA-binding domains. In spite of their structural differences, both EWS/ETS fusions up regulate EAT-2, a previously described EWS/FLI1 target gene. In contrast to EWS/FLI1, NIH3T3 cells expressing EWS/ETV1 cannot form colonies in soft agar though coexpression of a dominant negative truncated ETV1 construct attenuates EWS/FLI1 mediated anchorage independent growth. When EWS/ETV1 or EWS/FLI1 expressing NIH3T3 cells are injected into SCID mice, tumors form more often and faster than with NIH-3T3 cells with empty vector controls. The tumorigenic potency of each EWS/ETS fusion is linked to its C-terminal structure, with the FLI1 C-terminus confering a greater tumorigenic potential than the corresponding ETV1 domain. The resulting EWS/ETV1 and EWS/FLI1 tumors closely resemble each other at both a macroscopic and a microscopic level. These tumors differ greatly from tumors formed by NIH3T3 cells expressing activated RAS. These data indicate that in spite of their structural differences, EWS/ETV1 and EWS/FLI1 promote oncogenesis via similar biologic pathways.
Collapse
Affiliation(s)
- A D Thompson
- Molecular Biology Institute, Gwynne Hazen Cherry Memorial Labs, University of California at Los Angeles, USA
| | | | | | | |
Collapse
|
27
|
Cirillo G, Casalino L, Vallone D, Caracciolo A, De Cesare D, Verde P. Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate. Mol Cell Biol 1999; 19:6240-52. [PMID: 10454570 PMCID: PMC84576 DOI: 10.1128/mcb.19.9.6240] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the in vivo and in vitro regulation of the human urokinase-type plasminogen activator (uPA) gene by interleukin-1 (IL-1) and analyzed the transcription factors and signalling pathways involved in the response of the -2.0-kb uPA enhancer to IL-1 induction and to tetradecanoyl phorbol acetate (TPA) induction. Mutational analysis showed the cooperative activity of the Ets-binding site (EBS) and the two AP-1 elements of the enhancer. The results reveal that the EBS is required for the response to both inducers mediated by Ets-2, which is regulated at a level subsequent to DNA binding, by an IL-1- and phorbol ester-inducible transactivation domain. Both the IL-1 and the TPA-mediated induction result in a drastic increase of AP-1 binding to the downstream site of the enhancer (uPA 3' TPA-responsive element), while a mostly qualitative change, resulting from the interplay between ATF-2 homodimers and c-Jun-ATF-2 heterodimers, takes place at the upstream AP-1 element. The analysis of two distinct mitogen-activated protein kinase pathways shows that stress-activated protein kinase-Jun N-terminal kinase activation, resulting in the phosphorylation of ATF-2, c-Jun, and JunD, is required not only for the IL-1- but also for the TPA-dependent induction, while the extracellular signal-related kinase 1 (ERK-1) and ERK-2 activation is involved in the TPA- but not in the IL-1-dependent stimulation of the uPA enhancer.
Collapse
Affiliation(s)
- G Cirillo
- International Institute of Genetics and Biophysics, CNR, 80125 Naples, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O, Pognonec P, Boulukos KE. The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol 1999; 19:2624-34. [PMID: 10082528 PMCID: PMC84055 DOI: 10.1128/mcb.19.4.2624] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcl-xL, a member of the Bcl-2 family, inhibits apoptosis, and its expression is regulated at the transcriptional level, yet nothing is known about the transcription factors specifically activating this promoter. The bcl-x promoter contains potential Ets binding sites, and we show that the transcription factor, Ets2, first identified by its sequence identity to v-ets of the E26 retrovirus, can transactivate the bcl-x promoter. Transient expression of Ets2 results in the upregulation of Bcl-xL but not of Bcl-xS, an alternatively spliced gene product which induces apoptosis. Ets2 is ubiquitously expressed at low levels in a variety of cell types and tissues but is specifically induced to abundant levels during macrophage differentiation. Since Bcl-xL is also upregulated during macrophage differentiation, we asked whether the bcl-x could be a direct downstream target gene of Ets2 in macrophages. BAC1.2F5 macrophages, which are dependent on macrophage colony-stimulating factor 1 (CSF-1) for their growth and survival, were used in these studies. We show that CSF-1 stimulation of BAC1.2F5 macrophages results in the upregulation of expression of ets2 and bcl-xL with similar kinetics of induction. In the absence of CSF-1, these macrophages undergo cell death by apoptosis, whereas constitutive expression of Ets2 rescues these cells from cell death, and bcl-xL is upregulated. These results strongly suggest a novel role of Ets2 in affecting apoptosis through its regulation of Bcl-xL transcription.
Collapse
Affiliation(s)
- L Sevilla
- Centre de Biochimie, Université de Nice, Faculté des Sciences, 06108 Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 1999; 19:1101-15. [PMID: 9891045 PMCID: PMC116040 DOI: 10.1128/mcb.19.2.1101] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras-activated signal transduction pathways are implicated in the control of cell proliferation, differentiation, apoptosis, and tumorigenesis, but the molecular mechanisms mediating these diverse functions have yet to be fully elucidated. Conditionally active forms of Raf, v-Src, and MEK1 were used to identify changes in gene expression that participate in oncogenic transformation, as well as in normal growth control. Activation of Raf, v-Src, and MEK1 led to induced expression of c-Myc and cyclin D1. Induction of c-Myc mRNA by Raf was an immediate-early response, whereas the induction of cyclin D1 mRNA was delayed and inhibited by cycloheximide. Raf activation also resulted in the induction of an established c-Myc target gene, ornithine decarboxylase (ODC). ODC induction by Raf was mediated, in part, by tandem E-boxes contained in the first intron of the gene. Activation of the human colony-stimulating factor 1 (CSF-1) receptor in NIH 3T3 cells leads to activation of the mitogen-activated protein (MAP) kinase pathway and induced expression of c-Fos, c-Myc, and cyclin D1, leading to a potent mitogenic response. By contrast, a mutated form of this receptor fails to activate the MAP kinases or induce c-Myc and cyclin D1 expression and fails to elicit a mitogenic response. The biological significance of c-Myc and cyclin D1 induction by Raf and v-Src was confirmed by the demonstration that both of these protein kinases complemented the signaling and mitogenic defects of cells expressing this mutated form of the human CSF-1 receptor. Furthermore, the induction of c-Myc and cyclin D1 by oncogenes and growth factors was inhibited by PD098059, a specific MAP kinase kinase (MEK) inhibitor. These data suggest that the Raf/MEK/MAP kinase pathway plays an important role in the regulation of c-Myc and cyclin D1 expression in NIH 3T3 cells. The ability of oncogenes such as Raf and v-Src to regulate the expression of these proteins reveals new lines of communication between cytosolic signal transducers and the cell cycle machinery.
Collapse
Affiliation(s)
- N Aziz
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| | | | | |
Collapse
|
30
|
Kondoh N, Yamada T, Kihara-Negishi F, Yamamoto M, Oikawa T. Enhanced expression of the urokinase-type plasminogen activator gene and reduced colony formation in soft agar by ectopic expression of PU.1 in HT1080 human fibrosarcoma cells. Br J Cancer 1998; 78:718-23. [PMID: 9743289 PMCID: PMC2062971 DOI: 10.1038/bjc.1998.567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To investigate the cell biological function of PU.1, a member of the Ets family of transcription factors, a vector capable of expressing the protein was transfected into HT1080 human fibrosarcoma cells. Exogenous expression of PU.1 in HT1080 cells reduced colony-forming efficiency but stimulated cell migration in soft agar, although it did not affect cell growth in adherent culture. Expression of the urokinase-type plasminogen activator (uPA) mRNA, which is known to be correlated with cell migration and invasion, was enhanced in PU.1 transfectants compared with mock transfectants. Run-on analysis demonstrated that uPA transcription was unaffected by PU.1, suggesting that this enhancement mainly occurs at a post-transcriptional level. On the other hand, treatment of HT1080 cells with the synthetic glucocorticoid dexamethasone (DEX; 10(-7) M) significantly reduced uPA gene expression at a transcriptional level. Furthermore, DEX inhibited cell migration in soft agar without affecting cell growth. These negative effects of DEX on uPA expression and cell migration were alleviated by the expression of PU.1 in HT1080 cells, whereas expression of the N-ras oncogene, which is responsible for maintenance of the transformed phenotypes in HT1080 cells, was unaffected by PU.1 expression or DEX treatment in the cells. Our results suggest that expression of PU.1 can stimulate uPA gene expression at the post-transcriptional level, which may subsequently lead to activation of cell motility and/or reduced cell-cell adhesion, but reduces anchorage-independent growth of HT1080 cells.
Collapse
Affiliation(s)
- N Kondoh
- Department of Cell Genetics, Sasaki Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Fowles LF, Martin ML, Nelsen L, Stacey KJ, Redd D, Clark YM, Nagamine Y, McMahon M, Hume DA, Ostrowski MC. Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fms signaling. Mol Cell Biol 1998; 18:5148-56. [PMID: 9710599 PMCID: PMC109100 DOI: 10.1128/mcb.18.9.5148] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 06/25/1998] [Indexed: 11/20/2022] Open
Abstract
An antibody that specifically recognized phosphothreonine 72 in ets-2 was used to determine the phosphorylation status of endogenous ets-2 in response to colony-stimulating factor 1 (CSF-1)/c-fms signaling. Phosphorylation of ets-2 was detected in primary macrophages, cells that normally express c-fms, and in fibroblasts engineered to express human c-fms. In the former cells, ets-2 was a CSF-1 immediate-early response gene, and phosphorylated ets-2 was detected after 2 to 4 h, coincident with expression of ets-2 protein. In fibroblasts, ets-2 was constitutively expressed and rapidly became phosphorylated in response to CSF-1. In both cell systems, ets-2 phosphorylation was persistent, with maximal phosphorylation detected 8 to 24 h after CSF-1 stimulation, and was correlated with activation of the CSF-1 target urokinase plasminogen activator (uPA) gene. Kinase assays that used recombinant ets-2 protein as a substrate demonstrated that mitogen-activated protein (MAP) kinases p42 and p44 were constitutively activated in both cell types in response to CSF-1. Immune depletion experiments and the use of the MAP kinase kinase inhibitor PD98059 indicate that these two MAP kinases are the major ets-2 kinases activated in response to CSF-1/c-fms signaling. In the macrophage cell line RAW264, conditional expression of raf kinase induced ets-2 expression and phosphorylation, as well as uPA mRNA expression. Transient assays mapped ets/AP-1 response elements as critical for basal and CSF-1-stimulated uPA reporter gene activity. These results indicate that persistent activation of the raf/MAP kinase pathway by CSF-1 is necessary for both ets-2 expression and posttranslational activation in macrophages.
Collapse
Affiliation(s)
- L F Fowles
- Departments of Microbiology and Biochemistry and the Centre for Molecular and Cellular Biology, University of Queensland, Queensland Q4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Davis JN, Rock CO, Cheng M, Watson JB, Ashmun RA, Kirk H, Kay RJ, Roussel MF. Complementation of growth factor receptor-dependent mitogenic signaling by a truncated type I phosphatidylinositol 4-phosphate 5-kinase. Mol Cell Biol 1997; 17:7398-406. [PMID: 9372970 PMCID: PMC232595 DOI: 10.1128/mcb.17.12.7398] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Substitution of phenylalanine for tyrosine at codon 809 (Y809F) of the human colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) impairs ligand-stimulated tyrosine kinase activity, prevents induction of c-MYC and cyclin D1 genes, and blocks CSF-1-dependent progression through the G1 phase of the cell cycle. We devised an unbiased genetic screen to isolate genes that restore the ability of CSF-1 to stimulate growth in cells that express mutant CSF-1R (Y809F). This screen led us to identify a truncated form of the murine type Ibeta phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta). This truncated protein lacks residues 1 to 238 of mPIP5K-Ibeta and is catalytically inactive. When we transfected cells expressing CSF-1R (Y809F) with mPIP5K-Ibeta (delta1-238), CSF-1-dependent induction of c-MYC and cyclin D1 was restored and ligand-dependent cell proliferation was sustained. CSF-1 normally triggers the rapid disappearance of CSF-1R (Y809F) from the cell surface; however, transfection of cells with mPIP5K-Ibeta (delta1-238) stabilized CSF-1R (Y809F) expression on the cell surface, resulting in elevated levels of ligand-activated CSF-1R (Y809F). These results suggest a role for PIP5K-Ibeta in receptor endocytosis and that the truncated enzyme compensated for a mitogenically defective CSF-1R by interfering with this process.
Collapse
Affiliation(s)
- J N Davis
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Iritani BM, Forbush KA, Farrar MA, Perlmutter RM. Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997; 16:7019-31. [PMID: 9384581 PMCID: PMC1170305 DOI: 10.1093/emboj/16.23.7019] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell fate commitment in a variety of lineages requires signals conveyed via p21ras. To examine the role of p21ras in the development of B lymphocytes, we generated transgenic mice expressing a dominant-negative form of Ras in B lymphocyte progenitors, using a novel transcriptional element consisting of the Emu enhancer and the lck proximal promoter. Expression of dominant-negative Ras arrests B cell development at a very early stage, prior to formation of the pre-B cell receptor. Furthermore, an activated form of Raf expressed in the same experimental system could both drive the maturation of normal pro-B cells and rescue development of progenitors expressing dominant-negative Ras. Hence p21ras normally regulates early development of B lymphocytes by a mechanism that involves activation of the serine/threonine kinase Raf.
Collapse
Affiliation(s)
- B M Iritani
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
34
|
Giovane A, Sobieszczuk P, Ayadi A, Maira SM, Wasylyk B. Net-b, a Ras-insensitive factor that forms ternary complexes with serum response factor on the serum response element of the fos promoter. Mol Cell Biol 1997; 17:5667-78. [PMID: 9315625 PMCID: PMC232415 DOI: 10.1128/mcb.17.10.5667] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ras signalling pathway targets transcription factors such as the ternary complex factors that are recruited by the serum response factor to form complexes on the serum response element (SRE) of the fos promoter. We have identified a new ternary complex factor, Net-b. We report the features of the net gene and show that it produces several splice variants, net-b and net-c. net-b RNA and protein are expressed in a variety of tissues and cell lines. net-c RNA is expressed at low levels, and the protein was not detected, raising the possibility that it is a cryptic splice variant. We have studied the composition of ternary complexes that form on the SRE of the fos promoter with extracts from fibroblasts (NIH 3T3) cultured under various conditions and pre-B cells (70Z/3) before and after differentiation with lipopolysaccharide (LPS). The fibroblast complexes contain mainly Net-b followed by Sap1 and Elk1. Net-b complexes, as well as Sap1 and Elk1, are induced by epidermal growth factor (EGF) stimulation of cells cultured in low serum. Pre-B-cell complexes contain mainly Sap1, with less of Net-b and little of Elk1. There is little change upon LPS-induced differentiation compared to the increase with EGF in fibroblasts. We have also found that Net-b is a nuclear protein that constitutively represses transcription. Net-b is not activated by Ras signalling, in contrast to Net, Sap1a, and Elk1. We have previously reported that down-regulation of Net proteins with antisense RNA increases SRE activity. The increase in SRE activity is observed at low serum levels and is even greater after serum stimulation, showing that the SRE is under negative regulation by Net proteins and the level of repression increases during induction. Net-b, the predominant factor in ternary complexes in fibroblasts, may both keep the activity of the SRE low in the absence of strong inducing conditions and rapidly shut the activity off after stimulation.
Collapse
Affiliation(s)
- A Giovane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, ULP, Illkirch, France
| | | | | | | | | |
Collapse
|
35
|
McCarthy SA, Chen D, Yang BS, Garcia Ramirez JJ, Cherwinski H, Chen XR, Klagsbrun M, Hauser CA, Ostrowski MC, McMahon M. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol Cell Biol 1997; 17:2401-12. [PMID: 9111309 PMCID: PMC232089 DOI: 10.1128/mcb.17.5.2401] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heparin-binding epidermal growth factor (HB-EGF) gene transcription is rapidly activated in NIH 3T3 cells transformed by oncogenic Ras and Raf and mediates the autocrine activation of the c-Jun N-terminal kinases (JNKs) observed in these cells. A 1.7-kb fragment of the promoter of the murine HB-EGF gene linked to a luciferase reporter was strongly induced following activation of deltaRaf-1:ER, a conditionally active form of oncogenic human Raf-1. Promoter activation by deltaRaf-1:ER required a composite AP-1/Ets transcription factor binding site located between bp -974 and -988 upstream of the translation initiation site. In vivo genomic footprinting indicated that the basal level of occupancy of this composite AP-1/Ets element increased following deltaRaf-1:ER activation. Cotransfection of Ets-2 and p44 mitogen-activated protein (MAP) kinase expression vectors strongly potentiated HB-EGF promoter activation in response to deltaRaf-1:ER. Potentiated activation required both p44 MAP kinase catalytic activity and threonine 72 in the Pointed domain of Ets-2. Biochemical assays demonstrated the ability of the p42 and p44 MAP kinases to phosphorylate Ets-2 on threonine 72. Importantly, in intact cells, the kinetics of phosphorylation of Ets-2 on this residue closely mirror the activation of the p42 and p44 MAP kinases and the observed onset of HB-EGF gene transcription following deltaRaf-1:ER activation. These data firmly establish Ets-2 as a direct target of the Raf-MEK-MAP kinase signaling pathway and strongly implicate Ets-2 in the regulation of HB-EGF gene expression.
Collapse
Affiliation(s)
- S A McCarthy
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bradford AP, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Interaction of Ets-1 and the POU-homeodomain protein GHF-1/Pit-1 reconstitutes pituitary-specific gene expression. Mol Cell Biol 1997; 17:1065-74. [PMID: 9032233 PMCID: PMC231831 DOI: 10.1128/mcb.17.3.1065] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pituitary-specific, POU-homeodomain factor GHF-1/Pit-1 is necessary, but not sufficient, for cell-specific expression of prolactin (PRL), growth hormone (GH), and thyrotropin. Combinatorial interactions of GHF-1 with other factors are likely to be required; however, such factors and their mechanisms of action remain to be elucidated. Here we identify Ets-1 as a factor that functionally and physically interacts with GHF-1 to fully reconstitute proximal PRL promoter activity. In contrast, Ets-2 has no effect, and the alternatively spliced GHF-2/Pit-1beta variant fails to synergize with Ets-1. The Ets-1-GHF-1 synergy requires a composite Ets-1-GHF-1 cis element and is dependent on an Ets-1-specific protein domain. Furthermore, the ancestrally related and GHF-1-dependent GH promoter, which lacks this composite element, does not exhibit this response. Finally, Ets-1, but not Ets-2, binds directly to GHF-1 and GHF-2. These data show that a functional interaction of GHF-1 and Ets-1, acting via a composite DNA element, is required to establish lactotroph-specific PRL gene expression, thus providing a molecular mechanism by which GHF-1 can discriminate between the GH and PRL genes. These results underscore the importance of transcription factors that are distinct from, but interact with, homeobox proteins to establish lineage-specific gene expression.
Collapse
Affiliation(s)
- A P Bradford
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
37
|
Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 1997; 99:239-47. [PMID: 9005992 PMCID: PMC507791 DOI: 10.1172/jci119152] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The translocation t(11;22) is a common chromosomal abnormality detected both in Ewing's sarcoma and in primitive neuroectodermal tumor cells. The translocation results in an EWS-Fli1 fusion gene, made up of the 5' half of the EWS gene on chromosome 22 fused to the 3' half of the Fli1 gene on chromosome 11. Recent studies have evaluated possible roles of the fusion gene products. However, the biological significance of EWS-Fli1 is still unknown. Using a competitive polymerase chain reaction technique, we show here that there might be a correlation between the expression levels of the EWS-Fli1 fusion gene and the proliferative activities of Ewing's sarcoma and primitive neuroectodermal tumor cells. When the EWS-Fli1 expression is inhibited by antisense oligodeoxynucleotides against the fusion RNA, the growth of the tumor cells is significantly reduced both in vitro and in vivo. The data further indicate the growth inhibition of the cells by the antisense sequence might be mediated by G0/G1 block in the cell cycle progression. These results suggest that EWS-Fli1 may play an important role in the proliferation of the tumor cells, and the EWS-Fli1 fusion RNA could be used as a target to inhibit the growth of Ewing's sarcoma and primitive neuroectodermal tumor with the specific antisense oligonucleotide.
Collapse
Affiliation(s)
- K Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Keratin 8 (K8) and keratin 18 (K18) are the most common and characteristic members of the large intermediate filament gene family expressed in 'simple' or single layer epithelial tissues of the body. Their persistent expression in tumor cells derived from these epithelia has led to the wide spread use of keratin monoclonal antibodies as aids in the detection and identification of carcinomas. Oncogenes which activate ras signal transduction pathways stimulate expression of the K18 gene through transcription factors including members of the AP-1 (jun and fos) and ETS families. The persistent expression of K8 and K18 may reflect the integrated transcriptional activation of such transcription factors and, in the cases of ectopic expression, an escape from the suppressive epigenetic mechanisms of DNA methylation and chromatin condensation. Comparison of the mechanisms of transcriptional control of K18 expression with expression patterns documented in both normal and pathological conditions leads to the proposal that persistent K8 and K18 expression is a reflection of the action of multiple different oncogenes converging on the nucleus through a limited number of transcription factors to then influence the expression of a large number of genes including these keratins. Furthermore, correlation of various tumor cell characteristics including invasive behavior and drug sensitivity with K8 and K18 expression has stimulated consideration of the possible functions of these proteins in both normal development and in tumorigenesis. Recent developments in the analysis of the functions of these intermediate filament proteins provide new insights into diverse functions influenced by K8 and K18.
Collapse
Affiliation(s)
- R G Oshima
- Burnham Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
39
|
Colman MS, Ostrowski MC. The transactivation potential of a c-Myc N-terminal region (residues 92-143) is regulated by growth factor/Ras signaling. Nucleic Acids Res 1996; 24:1971-8. [PMID: 8657582 PMCID: PMC145862 DOI: 10.1093/nar/24.10.1971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The colony stimulating factor-1 receptor (CSF-1R) affects mitogenic growth and gene expression in NIH 3T3 cells through signaling pathways that require the products of the c-ras and c-myc proto-oncogenes. In this work we tested the hypothesis that there is direct communication between the Ras and Myc pathways. In transient transfection assays Ras increased by 5-fold transcriptional transactivation by chimeric c-Myc-Gal4 proteins. A constitutive active form of the CSF-1R also stimulated this activity and co-expression of a dominant negative ras gene ablated receptor stimulation. Deletion analysis of the c-Myc N-terminal region demonstrated that amino acid residues between positions 92 and 143 are the targets for Ras action. Transactivation by chimeric Myc proteins that were stably expressed could be transiently enhanced by either CSF-1 or serum, with peak activity occurring 2 h after mitogen stimulation. The steady-state levels of the chimeric c-Myc transactivators were increased following stimulation with CSF-1 or serum, but this increase in steady-state protein level did not strictly correlate with the increase in transactivation activity. Thus, Ras signaling may directly affect the activity of the c-Myc N-terminal region.
Collapse
Affiliation(s)
- M S Colman
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Yang BS, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ, Hume DA, Maki RA, Ostrowski MC. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 1996; 16:538-47. [PMID: 8552081 PMCID: PMC231032 DOI: 10.1128/mcb.16.2.538] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors.
Collapse
Affiliation(s)
- B S Yang
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pickett CA, Gutierrez-Hartmann A. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways. Mol Cell Biol 1995; 15:6777-84. [PMID: 8524243 PMCID: PMC230931 DOI: 10.1128/mcb.15.12.6777] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types.
Collapse
Affiliation(s)
- C A Pickett
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
42
|
Perros M, Deleu L, Vanacker JM, Kherrouche Z, Spruyt N, Faisst S, Rommelaere J. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells. J Virol 1995; 69:5506-15. [PMID: 7636996 PMCID: PMC189402 DOI: 10.1128/jvi.69.9.5506-5515.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activity of the P4 promoter of the parvovirus minute virus of mice (prototype strain MVMp) is stimulated in ras-transformed FREJ4 cells compared with the parental FR3T3 line. This activation may participate in the oncolytic effect of parvoviruses, given that P4 drives a transcriptional unit encoding cytotoxic nonstructural proteins. Our results suggest that the higher transcriptional activity of promoter P4 in FREJ4 cells is mediated at least in part by upstream CRE elements. Accordingly, mutations in the CRE motifs impair P4 function more strongly in the FREJ4 derivative than in its FR3T3 parent. Further evidence that these elements contribute to hyperactivity of the P4 promoter in the ras transformant is the fact that they form distinct complexes with proteins from FREJ4 and FR3T3 cell extracts. This difference can be abolished by treating the FREJ4 cell extracts with cyclic AMP-dependent protein kinase (PKA) or treating original cultures with a PKA activator. These findings can be linked with two previously reported features of ras-transformed cells: the activation of a PKA-inhibited protein kinase cascade and the reduction of PKA-induced protein phosphorylation. In keeping with these facts, P4-directed gene expression can be up- or downmodulated in vivo by exposing cells to known inhibitors or activators of PKA, respectively.
Collapse
Affiliation(s)
- M Perros
- Molecular Oncology Unit, Centre National de la Recherche Scientifique URA1160, Institut Pasteur de Lille, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Clark GJ, Der CJ. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat 1995; 35:133-44. [PMID: 7612899 DOI: 10.1007/bf00694753] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although ras mutations are infrequent (approximately 5%) in breast cancers, there is considerable evidence that suggests that the pathways which Ras services may still be deregulated in breast cancer cells. The recent identification of many of the components of the Ras signal transduction pathway has defined a network of proto-oncogene proteins controlling diverse signaling events that regulate cell growth and differentiation. Consequently, mutations that perturb the function of any one component of this signal pathway may trigger the same oncogenic events as mutation of ras itself. Moreover, several Ras-related proteins have recently been demonstrated to possess the ability to trigger malignant transformation via signaling pathways shared with Ras proteins. Thus, it is possible that the aberrant function of Ras-related proteins may contribute to breast cancer development. Consequently, it is important not to dismiss the Ras pathway in the development of breast cancer merely because of the infrequent detection of mutations in ras itself, but rather to consider the influence of aberrations upstream or downstream of Ras and of certain Ras-related proteins in the development of breast cancer. Finally, the critical importance of components upstream and downstream of Ras provides additional targets for rational drug design approaches to block the aberrant function of Ras signaling in human tumors.
Collapse
Affiliation(s)
- G J Clark
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
44
|
Roberson MS, Misra-Press A, Laurance ME, Stork PJ, Maurer RA. A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone. Mol Cell Biol 1995; 15:3531-9. [PMID: 7791760 PMCID: PMC230590 DOI: 10.1128/mcb.15.7.3531] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) interacts with a G protein-coupled receptor and increases the transcription of the glycoprotein hormone alpha-subunit gene. We have explored the possibility that mitogen-activated protein kinase (MAPK) plays a role in mediating GnRH effects on transcription. Activation of the MAPK cascade by an expression vector for a constitutively active form of the Raf-1 kinase led to stimulation of the alpha-subunit promoter in a concentration-dependent manner. GnRH treatment was found to increase the phosphorylation of tyrosine residues of MAPK and to increase MAPK activity, as determined by an immune complex kinase assay. A reporter gene assay using the MAPK-responsive, carboxy-terminal domain of the Elk1 transcription factor was also consistent with GnRH-induced activation of MAPK. Interference with the MAPK pathway by expression vectors for kinase-defective MAPKs or vectors encoding MAPK phosphatases reduced the transcription-stimulating effects of GnRH. The DNA sequences which are required for responses to GnRH include an Ets factor-binding site. An expression vector for a dominant negative form of Ets-2 was able to reduce GnRH effects on expression of the alpha-subunit gene. These findings provide evidence that GnRH treatment leads to activation of the MAPK cascade in gonadotropes and that activation of MAPK contributes to stimulation of the alpha-subunit promoter. It is likely that an Ets factor serves as a downstream transcriptional effector of MAPK in this system.
Collapse
Affiliation(s)
- M S Roberson
- Department of Cell Biology and Anatomy, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | |
Collapse
|
45
|
Stacey KJ, Fowles LF, Colman MS, Ostrowski MC, Hume DA. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol Cell Biol 1995; 15:3430-41. [PMID: 7760840 PMCID: PMC230578 DOI: 10.1128/mcb.15.6.3430] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mouse urokinase-type plasminogen activator (uPA) gene was used as a model macrophage colony-stimulating factor 1 (CSF-1)-inducible gene to investigate CSF-1 signalling pathways. Nuclear run-on analysis showed that induction of uPA mRNA by CSF-1 and phorbol myristate acetate (PMA) was at the transcriptional level in bone marrow-derived macrophages. CSF-1 and PMA synergized strongly in the induction of uPA mRNA, showing that at least some components of CSF-1 action are mediated independently of protein kinase C. Promoter targets of CSF-1 signalling were investigated with NIH 3T3 cells expressing the human CSF-1 receptor (c-fms). uPA mRNA was induced in these cells by treatment with CSF-1, and a PEA3/AP-1 element at -2.4 kb in the uPA promoter was involved in this response. Ets transcription factors can act through PEA3 sequences, and the involvement of Ets factors in the induction of uPA was confirmed by use of a dominant negative Ets-2 factor. Expression of the DNA binding domain of Ets-2 fused to the lacZ gene product prevented CSF-1-mediated induction of uPA mRNA in NIH 3T3 cells expressing the CSF-1 receptor. Examination of ets-2 mRNA expression in macrophages showed that it was also induced synergistically by CSF-1 and PMA. In the macrophage cell line RAW264, the uPA PEA3/AP-1 element mediated a response to both PMA and cotransfected Ets-2. uPA promoter constructs were induced 60- to 130-fold by Ets-2 expression, and the recombinant Ets-2 DNA binding domain was able to bind to the uPA PEA3/AP-1 element. This work is consistent with a proposed pathway for CSF-1 signalling involving sequential activation of fms, ras, and Ets factors.
Collapse
Affiliation(s)
- K J Stacey
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
46
|
Suzuki H, Romano-Spica V, Papas TS, Bhat NK. ETS1 suppresses tumorigenicity of human colon cancer cells. Proc Natl Acad Sci U S A 1995; 92:4442-6. [PMID: 7753825 PMCID: PMC41960 DOI: 10.1073/pnas.92.10.4442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have ectopically expressed transcription factor ETS1 in two different highly tumorigenic human colon cancer cell lines, DLD-1 and HCT116, that do not express endogenous ETS1 protein and have obtained several independent clones. The expression of wild-type ETS1 protein in these colon cancer cells reverses the transformed phenotype and tumorigenicity in a dose-dependent manner. By contrast, expression in DLD-1 cells of a variant form of ETS1, lacking transcriptional activity, did not alter the tumorigenic properties of the cells, suggesting that the reduction in tumorigenicity in these clones was specific for the wild-type ETS1 gene products. Since these colon cancer cells have multiple genetic alterations, the system described in this paper could be a good model to study the suppression of tumorigenicity at a transcriptional level, which could lead to the design and development of novel drugs for cancer treatment.
Collapse
Affiliation(s)
- H Suzuki
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
47
|
Bradford AP, Conrad KE, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol Cell Biol 1995; 15:2849-57. [PMID: 7739565 PMCID: PMC230516 DOI: 10.1128/mcb.15.5.2849] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism by which activation of common signal transduction pathways can elicit cell-specific responses remains an important question in biology. To elucidate the molecular mechanism by which the Ras signaling pathway activates a cell-type-specific gene, we have used the pituitary-specific rat prolactin (rPRL) promoter as a target of oncogenic Ras and Raf in GH4 rat pituitary cells. Here we show that expression of either c-Ets-1 or the POU homeo-domain transcription factor GHF-1/Pit-1 enhance the Ras/Raf activation of the rPRL promoter and that coexpression of the two transcription factors results in an even greater synergistic Ras response. By contrast, the related GHF-1-dependent rat growth hormone promoter fails to respond to Ras or Raf, indicating that GHF-1 alone is insufficient to mediate the Ras/Raf effect. Using amino-terminal truncations of c-Ets-1, we have mapped the c-Ets-1 region required to mediate the optimal Ras response to a 40-amino-acid segment which contains a putative mitogen-activated protein kinase site. Finally, dominant-negative Ets and GHF constructs block Ras activation of the rPRL promoter, and each blocks the synergistic activation mediated by the other partner protein, further corroborating that a functional interaction between c-Ets-1 and GHF-1 is required for an optimal Ras response. Thus, the functional interaction of a pituitary-specific transcription factor, GHF-1, with a widely expressed nuclear proto-oncogene product, c-Ets-1, provides one important molecular mechanism by which the general Ras signaling cascade can be interpreted in a cell-type-specific manner.
Collapse
Affiliation(s)
- A P Bradford
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
48
|
Jin DI, Jameson SB, Reddy MA, Schenkman D, Ostrowski MC. Alterations in differentiation and behavior of monocytic phagocytes in transgenic mice that express dominant suppressors of ras signaling. Mol Cell Biol 1995; 15:693-703. [PMID: 7823938 PMCID: PMC231933 DOI: 10.1128/mcb.15.2.693] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To address the role of ras signaling in monocytic phagocytes in vivo, the expression of two dominant suppressors of in vitro ras signaling pathways, the carboxyl-terminal region of the GTPase-activating protein (GAP-C) and the DNA binding domain of the transcription factor ets-2, were targeted to this cell compartment. A 5-kb portion of the human c-fms proximal promoter was shown to direct expression of the transgenes to the monocytic lineage. As a result of the GAP-C transgene expression, ras-GTP levels were reduced in mature peritoneal macrophages by 70%. The terminal differentiation of monocytes was altered, as evidence by the accumulation of atypical monocytic cells in the blood. Mature peritoneal macrophages exhibited changes in colony-stimulating factor 1-dependent survival and structure. Further, expression of the colony-stimulating factor 1-stimulated gene urokinase plasminogen activator was inhibited in peritoneal macrophages. The results indicate that ras action is critical in monocytic cells after these cells have lost the capacity to traverse the cell cycle.
Collapse
Affiliation(s)
- D I Jin
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
49
|
Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA. Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases. Proc Natl Acad Sci U S A 1994; 91:6030-4. [PMID: 8016110 PMCID: PMC44131 DOI: 10.1073/pnas.91.13.6030] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
c-Jun transcriptional activity is augmented by expression of oncogenic Ras and Raf proteins. This study demonstrates a direct correlation between Ras transforming activity and c-Jun activation, supporting an important role for c-Jun in transformation by Ras. Since we observed that Ras activated c-Jun transcriptional activity by increasing phosphorylation of the c-Jun activation domain at residues Ser-63/Ser-73 and that oncogenic Ras proteins activated extracellular signal-regulated protein kinases (ERK1 and ERK2) (also known as mitogen-activated protein kinases), we evaluated the possibility that ERKs were directly responsible for c-Jun activation. Coexpression of wild-type ERKs with oncogenic Ras proteins potentiated, while kinase-defective ERKs inhibited, Ras-induced transcriptional activation from the Ras-responsive element (Ets-1/AP-1) present in the NVL-3 enhancer and the serum-response element in the c-fos promoter. In contrast, coexpression of either wild-type or kinase-defective ERKs inhibited Ras and Raf activation of c-Jun transcriptional activity. Thus, although activation of both ERK and c-Jun are downstream consequences of activation of the Ras signal transduction pathway, our results suggest that Ras-induced c-Jun phosphorylation and transcriptional activation are not a direct consequence of ERK1 and ERK2 activation.
Collapse
Affiliation(s)
- J K Westwick
- Department of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | | | |
Collapse
|
50
|
DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 1994. [PMID: 8164678 DOI: 10.1128/mcb.14.5.3230] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 5' half of the EWS gene has recently been described to be fused to the 3' regions of genes encoding the DNA-binding domain of several transcriptional regulators, including ATF1, FLI-1, and ERG, in several human tumors. The most frequent occurrence of this situation results from the t(11;22)(q24;q12) chromosome translocation specific for Ewing sarcoma (ES) and related tumors which joins EWS sequences to the 3' half of FLI-1, which encodes a member of the Ets family of transcriptional regulators. We show here that this chimeric gene encodes an EWS-FLI-1 nuclear protein which binds DNA with the same sequence specificity as the wild-type parental FLI-1 protein. We further show that EWS-FLI-1 is an efficient sequence-specific transcriptional activator of model promoters containing FLI-1 (Ets)-binding sites, a property which is strictly dependent on the presence of its EWS domain. Comparison of the properties of the N-terminal activation domain of FLI-1 to those of the EWS domain of the fusion protein indicates that EWS-FLI-1 has altered transcriptional activation properties compared with FLI-1. These results suggest that EWS-FLI-1 contributes to the transformed phenotype of ES tumor cells by inducing the deregulated and/or unscheduled activation of genes normally responsive to FLI-1 or to other close members of the Ets family. ES and related tumors are characterized by an elevated level of c-myc expression. We show that EWS-FLI-1 is a transactivator of the c-myc promoter, suggesting that upregulation of c-myc expression is under control of EWS-FLI-1.
Collapse
|