1
|
Jian H, Wei F, Chen P, Hu T, Lv X, Wang B, Wang H, Guo X, Ma L, Lu J, Fu X, Wei H, Yu S. Genome-wide analysis of SET domain genes and the function of GhSDG51 during salt stress in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:653. [PMID: 38110862 PMCID: PMC10729455 DOI: 10.1186/s12870-023-04657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.
Collapse
Affiliation(s)
- Hongliang Jian
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Fei Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pengyun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Tingli Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaolan Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Bingqin Wang
- Zhucheng Agricultural Technology Promotion Center, Zhucheng, Shandong, 262200, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaohao Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Shuxun Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
2
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
3
|
Courtney AJ, Kamei M, Ferraro AR, Gai K, He Q, Honda S, Lewis ZA. Normal Patterns of Histone H3K27 Methylation Require the Histone Variant H2A.Z in Neurospora crassa. Genetics 2020; 216:51-66. [PMID: 32651262 PMCID: PMC7463285 DOI: 10.1534/genetics.120.303442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neurospora crassa contains a minimal Polycomb repression system, which provides rich opportunities to explore Polycomb-mediated repression across eukaryotes and enables genetic studies that can be difficult in plant and animal systems. Polycomb Repressive Complex 2 is a multi-subunit complex that deposits mono-, di-, and trimethyl groups on lysine 27 of histone H3, and trimethyl H3K27 is a molecular marker of transcriptionally repressed facultative heterochromatin. In mouse embryonic stem cells and multiple plant species, H2A.Z has been found to be colocalized with H3K27 methylation. H2A.Z is required for normal H3K27 methylation in these experimental systems, though the regulatory mechanisms are not well understood. We report here that Neurospora crassa mutants lacking H2A.Z or SWR-1, the ATP-dependent histone variant exchanger, exhibit a striking reduction in levels of H3K27 methylation. RNA-sequencing revealed downregulation of eed, encoding a subunit of PRC2, in an hH2Az mutant compared to wild type, and overexpression of EED in a ΔhH2Az;Δeed background restored most H3K27 methylation. Reduced eed expression leads to region-specific losses of H3K27 methylation, suggesting that differential dependence on EED concentration is critical for normal H3K27 methylation at certain regions in the genome.
Collapse
Affiliation(s)
- Abigail J Courtney
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Aileen R Ferraro
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shinji Honda
- Division of Chromosome Biology, Faculty of Medical Sciences, University of Fukui, 910-1193, Japan
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
4
|
Janna A, Davarinejad H, Joshi M, Couture JF. Structural Paradigms in the Recognition of the Nucleosome Core Particle by Histone Lysine Methyltransferases. Front Cell Dev Biol 2020; 8:600. [PMID: 32850785 PMCID: PMC7412744 DOI: 10.3389/fcell.2020.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications (PTMs) of histone proteins play essential functions in shaping chromatin environment. Alone or in combination, these PTMs create templates recognized by dedicated proteins or change the chemistry of chromatin, enabling a myriad of nuclear processes to occur. Referred to as cross-talk, the positive or negative impact of a PTM on another PTM has rapidly emerged as a mechanism controlling nuclear transactions. One of those includes the stimulatory functions of histone H2B ubiquitylation on the methylation of histone H3 on K79 and K4 by Dot1L and COMPASS, respectively. While these findings were established early on, the structural determinants underlying the positive impact of H2B ubiquitylation on H3K79 and H3K4 methylation were resolved only recently. We will also review the molecular features controlling these cross-talks and the impact of H3K27 tri-methylation on EZH2 activity when embedded in the PRC2 complex.
Collapse
Affiliation(s)
- Ashley Janna
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hossein Davarinejad
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Monika Joshi
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
6
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Hoshii T, Cifani P, Feng Z, Huang CH, Koche R, Chen CW, Delaney CD, Lowe SW, Kentsis A, Armstrong SA. A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 2019; 172:1007-1021.e17. [PMID: 29474905 DOI: 10.1016/j.cell.2018.01.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
MLL/SET methyltransferases catalyze methylation of histone 3 lysine 4 and play critical roles in development and cancer. We assessed MLL/SET proteins and found that SETD1A is required for survival of acute myeloid leukemia (AML) cells. Mutagenesis studies and CRISPR-Cas9 domain screening show the enzymatic SET domain is not necessary for AML cell survival but that a newly identified region termed the "FLOS" (functional location on SETD1A) domain is indispensable. FLOS disruption suppresses DNA damage response genes and induces p53-dependent apoptosis. The FLOS domain acts as a cyclin-K-binding site that is required for chromosomal recruitment of cyclin K and for DNA-repair-associated gene expression in S phase. These data identify a connection between the chromatin regulator SETD1A and the DNA damage response that is independent of histone methylation and suggests that targeting SETD1A and cyclin K complexes may represent a therapeutic opportunity for AML and, potentially, for other cancers.
Collapse
Affiliation(s)
- Takayuki Hoshii
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Zhaohui Feng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Richard Koche
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA
| | - Chun-Wei Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Delaney
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Phenotypic characterization of SETD3 knockout Drosophila. PLoS One 2018; 13:e0201609. [PMID: 30067821 PMCID: PMC6070285 DOI: 10.1371/journal.pone.0201609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023] Open
Abstract
Lysine methylation is a reversible post-translational modification that affects protein function. Lysine methylation is involved in regulating the function of both histone and non-histone proteins, thereby influencing both cellular transcription and the activation of signaling pathways. To date, only a few lysine methyltransferases have been studied in depth. Here, we study the Drosophila homolog of the human lysine methyltransferase SETD3, CG32732/dSETD3. Since mammalian SETD3 is involved in cell proliferation, we tested the effect of dSETD3 on proliferation and growth of Drosophila S2 cells and whole flies. Knockdown of dSETD3 did not alter mTORC1 activity nor proliferation rate of S2 cells. Complete knock-out of dSETD3 in Drosophila flies did not affect their weight, growth rate or fertility. dSETD3 KO flies showed normal responses to starvation and hypoxia. In sum, we could not identify any clear phenotypes for SETD3 knockout animals, indicating that additional work will be required to elucidate the molecular and physiological function of this highly conserved enzyme.
Collapse
|
9
|
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 2018; 8:172. [PMID: 29556426 PMCID: PMC5845050 DOI: 10.1007/s13205-018-1202-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Meenakshi Raina
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| |
Collapse
|
10
|
Pan MR, Hsu MC, Chen LT, Hung WC. Orchestration of H3K27 methylation: mechanisms and therapeutic implication. Cell Mol Life Sci 2018; 75:209-223. [PMID: 28717873 PMCID: PMC5756243 DOI: 10.1007/s00018-017-2596-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Histone proteins constitute the core component of the nucleosome, the basic unit of chromatin. Chemical modifications of histone proteins affect their interaction with genomic DNA, the accessibility of recognized proteins, and the recruitment of enzymatic complexes to activate or diminish specific transcriptional programs to modulate cellular response to extracellular stimuli or insults. Methylation of histone proteins was demonstrated 50 years ago; however, the biological significance of each methylated residue and the integration between these histone markers are still under intensive investigation. Methylation of histone H3 on lysine 27 (H3K27) is frequently found in the heterochromatin and conceives a repressive marker that is linked with gene silencing. The identification of enzymes that add or erase the methyl group of H3K27 provides novel insights as to how this histone marker is dynamically controlled under different circumstances. Here we summarize the methyltransferases and demethylases involved in the methylation of H3K27 and show the new evidence by which the H3K27 methylation can be established via an alternative mechanism. Finally, the progress of drug development targeting H3K27 methylation-modifying enzymes and their potential application in cancer therapy are discussed.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 704, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
11
|
Sarma S, Lodha M. Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida. BMC PLANT BIOLOGY 2017; 17:238. [PMID: 29228906 PMCID: PMC5725981 DOI: 10.1186/s12870-017-1177-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND SET is a conserved protein domain with methyltransferase activity. Several genome and transcriptome data in plant lineage (Archaeplastida) are available but status of SET domain proteins in most of the plant lineage is not comprehensively analysed. RESULTS In this study phylogeny and domain organisation of 506 computationally identified SET domain proteins from 16 members of plant lineage (Archaeplastida) are presented. SET domain proteins of rice and Arabidopsis are used as references. This analysis revealed conserved as well as unique features of SET domain proteins in Archaeplastida. SET domain proteins of plant lineage can be categorised into five classes- E(z), Ash, Trx, Su(var) and Orphan. Orphan class of SET proteins contain unique domains predominantly in early Archaeplastida. Contrary to previous study, this study shows first appearance of several domains like SRA on SET domain proteins in chlorophyta instead of bryophyta. CONCLUSION The present study is a framework to experimentally characterize SET domain proteins in plant lineage.
Collapse
Affiliation(s)
- Supriya Sarma
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | - Mukesh Lodha
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Habsiguda, Hyderabad, 500007, India.
| |
Collapse
|
12
|
Satish M, Nivya MA, Abhishek S, Nakarakanti NK, Shivani D, Vani MV, Rajakumara E. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Proteins 2017; 86:21-34. [PMID: 29024026 DOI: 10.1002/prot.25399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax-like protein (ATX), Su(var)3-9 homologs protein (SUVH), Su(var)3-9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S-adenosylmethionine (SAM) binding pocket and a post-SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein-protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre-SET and post-SET domains in HKMTs of the aforementioned plant species lead to variations in class-specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.
Collapse
Affiliation(s)
- Mutyala Satish
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - M Angel Nivya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Naveen Kumar Nakarakanti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Dixit Shivani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Madishetti Vinuthna Vani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
13
|
Borbolla-Vázquez J, Orozco E, Medina-Gómez C, Martínez-Higuera A, Javier-Reyna R, Chávez B, Betanzos A, Rodríguez MA. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica. Mol Microbiol 2016; 101:351-65. [PMID: 27062489 DOI: 10.1111/mmi.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis.
Collapse
Affiliation(s)
- Jessica Borbolla-Vázquez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Bibiana Chávez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| |
Collapse
|
14
|
Bergamin E, Couture JF. Preparation, Biochemical Analysis, and Structure Determination of SET Domain Histone Methyltransferases. Methods Enzymol 2016; 573:209-40. [PMID: 27372755 DOI: 10.1016/bs.mie.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotes, several lysine residues on histone proteins are methylated. This posttranslational modification is linked to a myriad of nuclear-based transactions such as epigenetic inheritance of heterochromatin, regulation of gene expression, DNA damage repair, and DNA replication. The majority of the enzymes responsible for writing these marks onto chromatin belong to the SET domain family of histone lysine methyltransferases. Although they often share important structural features, including a conserved catalytic domain, SET domain enzymes use different mechanisms to achieve substrate recognition, mono-, di-, or trimethylate lysine residues and some require other proteins to achieve maximal methyltransferase activity. In this chapter, we summarize our efforts to purify, crystallize, and enzymatically characterize SET domain enzymes with a specific focus on the histone H3K27 monomethyltransferase ATXR5.
Collapse
Affiliation(s)
- E Bergamin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - J F Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Shinsky SA, Cosgrove MS. Unique Role of the WD-40 Repeat Protein 5 (WDR5) Subunit within the Mixed Lineage Leukemia 3 (MLL3) Histone Methyltransferase Complex. J Biol Chem 2015; 290:25819-33. [PMID: 26324722 PMCID: PMC4646236 DOI: 10.1074/jbc.m115.684142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/29/2022] Open
Abstract
The MLL3 (mixed lineage leukemia 3) protein is a member of the human SET1 family of histone H3 lysine 4 methyltransferases and contains the conserved WDR5 interaction (Win) motif and the catalytic suppressor of variegation, enhancer of zeste, trithorax (SET) domain. The human SET1 family includes MLL1-4 and SETd1A/B, which all interact with a conserved subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD) to form the minimal core complex required for full methyltransferase activity. However, recent evidence suggests that the WDR5 subunit may not be utilized in an identical manner within all SET1 family core complexes. Although the roles of WDR5 within the MLL1 core complex have been extensively studied, not much is known about the roles of WDR5 in other SET1 family core complexes. In this investigation, we set out to characterize the roles of the WDR5 subunit in the MLL3 core complex. We found that unlike MLL1, the MLL3 SET domain assembles with the RbBP5/Ash2L heterodimer independently of the Win motif-WDR5 interaction. Furthermore, we observed that WDR5 inhibits the monomethylation activity of the MLL3 core complex, which is dependent on the Win motif. We also found evidence suggesting that the WRAD subcomplex catalyzes weak H3K4 monomethylation within the context of the MLL3 core complex. Furthermore, solution structures of the MLL3 core complex assembled with and without WDR5 by small angle x-ray scattering show similar overall topologies. Together, this work demonstrates a unique role for WDR5 in modulating the enzymatic activity of the MLL3 core complex.
Collapse
Affiliation(s)
- Stephen A Shinsky
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Michael S Cosgrove
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
16
|
Characterization of a Novel Histone H3K36 Methyltransferase setd3 in Zebrafish. Biosci Biotechnol Biochem 2014; 75:289-94. [DOI: 10.1271/bbb.100648] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
McElroy KA, Kang H, Kuroda MI. Are we there yet? Initial targeting of the Male-Specific Lethal and Polycomb group chromatin complexes in Drosophila. Open Biol 2014; 4:140006. [PMID: 24671948 PMCID: PMC3971409 DOI: 10.1098/rsob.140006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila: the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila, and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.
Collapse
Affiliation(s)
- Kyle A McElroy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
18
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
19
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem Biophys Res Commun 2012; 430:547-53. [PMID: 23228662 DOI: 10.1016/j.bbrc.2012.11.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/30/2023]
Abstract
PRC2 is the major H3K27 methyltransferase and is responsible for maintaining repressed gene expression patterns throughout development. It contains four core components: EZH2, EED, SUZ12 and RbAp46/48 and some cell-type specific components. In this study, we focused on characterizing the histone binding domains of PHF1 and PHF19, and found that the Tudor domains of PHF1 and PHF19 selectively bind to histone H3K36me3. Structural analysis of these Tudor domains also shed light on how these Tudor domains selectively bind to histone H3K36me3. The histone H3K36me3 binding by the Tudor domains of PHF1, PHF19 and likely MTF2 provide another recruitment and regulatory mechanism for the PRC2 complex. In addition, we found that the first PHD domains of PHF1 and PHF19 do not exhibit histone H3K4 binding ability, nor do they affect the Tudor domain binding to histones.
Collapse
|
21
|
Zhang L, Ma H. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. THE NEW PHYTOLOGIST 2012; 195:248-63. [PMID: 22510098 DOI: 10.1111/j.1469-8137.2012.04143.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Plants and animals possess very different developmental processes, yet share conserved epigenetic regulatory mechanisms, such as histone modifications. One of the most important forms of histone modification is methylation on lysine residues of the tails, carried out by members of the SET protein family, which are widespread in eukaryotes. • We analyzed molecular evolution by comparative genomics and phylogenetics of the SET genes from plant and animal genomes, grouping SET genes into several subfamilies and uncovering numerous gene duplications, particularly in the Suv, Ash, Trx and E(z) subfamilies. • Domain organizations differ between different subfamilies and between plant and animal SET proteins in some subfamilies, and support the grouping of SET genes into seven main subfamilies, suggesting that SET proteins have acquired distinctive regulatory interactions during evolution. We detected evidence for independent evolution of domain organization in different lineages, including recruitment of new domains following some duplications. • More recent duplications in both vertebrates and land plants are probably the result of whole-genome or segmental duplications. The evolution of the SET gene family shows that gene duplications caused by segmental duplications and other mechanisms have probably contributed to the complexity of epigenetic regulation, providing insights into the evolution of the regulation of chromatin structure.
Collapse
Affiliation(s)
- Liangsheng Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
22
|
Diallo AO, Ali-Benali MA, Badawi M, Houde M, Sarhan F. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol Genet Genomics 2012; 287:575-90. [PMID: 22684814 DOI: 10.1007/s00438-012-0701-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/29/2012] [Indexed: 01/17/2023]
Abstract
The transition to flowering in winter wheat requires prolonged exposure to low temperature, a process called vernalization. This process is regulated by a genetic pathway that involves at least three genes, Triticum aestivum VERNALIZATION 1 (TaVRN1), Triticum aestivum VERNALIZATION 2 (TaVRN2) and Triticum aestivum FLOWERING LOCUS T-like 1 (TaFT1). These genes regulate flowering by integrating environmental and developmental cues. To determine whether the expression of these genes is associated with the chromatin methylation state during vernalization in wheat, the level of two markers of histone modifications, the activator histone H3 trimethylation of lysine 4 (H3K4me3) and the repressor histone H3 trimethylation of lysine 27 (H3K27me3) were measured at the promoter regions of these three genes. Bioinformatics analysis of these promoters demonstrates the presence of conserved cis-acting elements in the promoters of the three vernalization genes, TaVRN1, TaVRN2 and TaFT1. These elements are targeted by common transcription factors in the vernalization responsive cereals. These promoters also contain the functional "units" PRE/TRE targeted by Polycomb and Trithorax proteins that maintain repressed or active transcription states of developmentally regulated genes. These proteins are known to be associated with the regulation of H3K4me3 and H3K27me3. Expression studies indicate that TaVRN1 and TaFT1 are up-regulated by vernalization in winter wheat. This up-regulation is associated with increased level of the activator H3K4me3 with no change in the level of the repressor H3K27me3 at the promoter region. This study shows that the flowering transition induced by vernalization in winter wheat is associated with histone methylation at the promoter level of TaVRN1 and TaFT1 while the role of these markers is less evident in TaVRN2 repression. This may represent part of the cellular memory of vernalization in wheat.
Collapse
Affiliation(s)
- Amadou Oury Diallo
- Département des Sciences biologiques, Université du Québec à Montréal (UQAM), Succ. Centre-ville, C.P. 8888, Montreal, QC, H3C 3P8, Canada.
| | | | | | | | | |
Collapse
|
23
|
Stepanik VA, Harte PJ. A mutation in the E(Z) methyltransferase that increases trimethylation of histone H3 lysine 27 and causes inappropriate silencing of active Polycomb target genes. Dev Biol 2011; 364:249-58. [PMID: 22182520 DOI: 10.1016/j.ydbio.2011.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/12/2011] [Accepted: 12/01/2011] [Indexed: 01/08/2023]
Abstract
Drosophila Polycomb Repressive Complex 2 (PRC2) is a lysine methyltransferase that trimethylates histone H3 lysine 27 (H3K27me3), a modification essential for Polycomb silencing. Mutations in its catalytic subunit, E(Z), that abolish its methyltransferase activity disrupt Polycomb silencing, causing derepression of Polycomb target genes in cells where they are normally silenced. In contrast, the unusual E(z) mutant allele Trithorax mimic (E(z)(Trm)) causes dominant homeotic phenotypes similar to those caused by mutations in trithorax (trx), an antagonist of Polycomb silencing. This suggests that E(z)(Trm) causes inappropriate silencing of Polycomb target genes in cells where they are normally active. Here we show that E(z)(Trm) mutants have an elevated level of H3K27me3 and reduced levels of H3K27me1 and H3K27me2, modifications also carried out by E(Z). This suggests that the E(z)(Trm) mutation increases the H3K27 trimethylation efficiency of E(Z). Acetylated H3K27 (H3K27ac), a mark of transcriptionally active genes that directly antagonizes H3K27 methylation by E(Z), is also reduced in E(z)(Trm) mutants, consistent with their elevated H3K27me3 level causing inappropriate silencing. In 0-4h E(z)(Trm) embryos, H3K27me3 accumulates prematurely and to high levels and does so at the expense of H3K27ac, which is normally present at high levels in early embryos. Despite their high level of H3K27me3, expression of Abd-B initiates normally in homozygous E(z)(Trm) embryos, but is substantially lower than in wild type embryos by completion of germ band retraction. These results suggest that increased H3K27 trimethylation activity of E(Z)(Trm) causes the premature accumulation of H3K27me3 in early embryogenesis, "predestining" initially active Polycomb target genes to silencing once Polycomb silencing is initiated.
Collapse
Affiliation(s)
- Vincent A Stepanik
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
24
|
Zhu X, Ma H, Chen Z. Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function. BMC Evol Biol 2011; 11:63. [PMID: 21388541 PMCID: PMC3063831 DOI: 10.1186/1471-2148-11-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 03/09/2011] [Indexed: 11/16/2022] Open
Abstract
Background Plants contain numerous Su(var)3-9 homologues (SUVH) and related (SUVR) genes, some of which await functional characterization. Although there have been studies on the evolution of plant Su(var)3-9 SET genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation. Results Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core Su(var)3-9 homologues and related (cSUVHR) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant Su(var)3-9 SET genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade. Conclusions A detailed phylogenetic analysis of the plant Su(var)3-9 SET genes was performed. A novel deep phylogenetic relationship including most plant Su(var)3-9 SET genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of Physcomitrella patens (moss) from other land plants. One or multiple retroposition events might have occurred among SUVH genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant Su(var)3-9 SET genes with different functions were described, contributing to the design of further experimental studies.
Collapse
Affiliation(s)
- Xinyu Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
25
|
Abstract
Epigenetic modifications regulate critical functions that underlie chromosome metabolism. Understanding the molecular changes to chromatin structure and the functional relationship with altered signaling pathways is now considered to represent an important conceptual challenge to explain diabetes and the phenomenon of metabolic or hyperglycemic memory. Although it remains unknown as to the specific molecular mechanisms whereby hyperglycemic memory leads to the development of diabetic vascular complications, emerging evidence now indicates that critical gene-activating epigenetic changes may confer future cell memories. Chemical modification of the H3 histone tail of lysine 4 and 9 has recently been identified with gene expression conferred by hyperglycemia. The persistence of these key epigenetic determinants in models of glycemic variability and the development of diabetic complications has been associated with these primary findings. Transient hyperglycemia promotes gene-activating epigenetic changes and signaling events critical in the development and progression of vascular complications. As for the role of specific epigenomic changes, it is postulated that further understanding enzymes involved in writing and erasing chemical changes could transform our understanding of the pathways implicated in diabetic vascular injury providing new therapeutic strategies.
Collapse
Affiliation(s)
- Mark E Cooper
- Baker IDI Heart and Diabetes Institute, Monash University, Victoria, Australia
| | | |
Collapse
|
26
|
Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 2010; 12:321-327. [PMID: 20889125 PMCID: PMC3642811 DOI: 10.1016/j.cmet.2010.09.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heritable changes to the transcriptome that are independent to changes in the genome are defined as epigenetics. DNA methylation and posttranslational modifications of histones, such as acetylation/deacetylation and methylation/demethylation of lysine residues, underlie these epigenetic phenomena, which impact on many physiological processes. This perspective focuses on the emerging biology of histone methylation and demethylation, highlighting how these reactions depend on metabolic coenzymes like S-adenosylmethionine, flavin adenine dinucleotide, and α-ketoglutarate. Furthermore, we illustrate that methyltranferases and demethylases affect many metabolic pathways. Despite the preliminary evidence that methyltranferases and demethylases could link metabolic signals to chromatin and alter transcription, further research is indispensable to consolidate these enticing observations.
Collapse
Affiliation(s)
- Raffaele Teperino
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative and Systems Physiology, Station 15, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
PONTVIANNE FRÉDÉRIC, BLEVINS TODD, PIKAARD CRAIGS. Arabidopsis Histone Lysine Methyltransferases. ADVANCES IN BOTANICAL RESEARCH 2010; 53:1-22. [PMID: 20703330 PMCID: PMC2918895 DOI: 10.1016/s0065-2296(10)53001-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In eukaryotes, changes in chromatin structure regulate the access of gene regulatory sequences to the transcriptional machinery and play important roles in the repression of transposable elements, thereby protecting genome integrity. Chromatin dynamics and gene expression states are highly correlated, with DNA methylation and histone post-translational modifications playing important roles in the establishment or maintenance of chromatin states in plants. Histones can be covalently modified in a variety of ways, thereby affecting nucleosome spacing and/or higher-order nucleosome interactions directly or via the recruitment of histone-binding proteins. An extremely important group of chromatin modifying enzymes are the histone lysine methyltransferases (HKMTs). These enzymes are involved in the establishment and/or maintenance of euchromatic or heterochromatic states of active or transcriptionally repressed sequences, respectively. The vast majority of HKMTs possess a SET domain named for the three Drosophila proteins that are the founding members of the family: Suppressor of variegation, Enhancer of zeste and Trithorax. It is the SET domain that is responsible for HKMT enzymatic activity. Mutation of Arabidopsis HKMT genes can result in phenotypic abnormalities due to the improper regulation of important developmental genes. Here, we review the different classes of HKMTs present in the model plant Arabidopsis thaliana and discuss what is known about their biochemical and biological functions.
Collapse
|
28
|
Fedorova EV, Pindyurin AV, Baricheva EM. Maintenance of the patterns of expression of homeotic genes in the development of Drosophila melanogaster by proteins of the polycomb, trithorax, and ETP groups. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Jackson J, Shilatifard A. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications. Methods Mol Biol 2009; 548:175-86. [PMID: 19521825 DOI: 10.1007/978-1-59745-540-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The very long DNA of the eukaryotic cells must remain functional when packaged into the cell nucleus. Although we know very little about this process, it is clear at this time that chromatin and its post-translational modifications play a pivotal role. Yeast Saccharomyces cerevisiae provides a powerful genetic and biochemical model system for deciphering the molecular machinery involved in chromatin modification and transcriptional regulation. In this chapter, we describe a novel method, the Global Proteomic analysis in S. cerevisiae (GPS), for the global analysis of the molecular machinery required for proper histone modifications. Since many of the molecular machineries involved in chromatin biology are highly conserved from yeast to humans, GPS has proven to be an outstanding method for the identification of the molecular pathways involved in chromatin modifications.
Collapse
Affiliation(s)
- Jessica Jackson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
30
|
Wen H, Schaller MA, Dou Y, Hogaboam CM, Kunkel SL. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leukoc Biol 2007; 83:439-46. [PMID: 17991763 DOI: 10.1189/jlb.0607357] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity. The shaping of adaptive immunity by innate immunity is dependent on DC unique cellular functions and DC-derived effector molecules such as cytokines and chemokines. Thus, it is not surprising that numerous studies have identified alterations in DC number, function, and subset ratios in various diseases, such as infections, cancers, and autoimmune diseases. Recent evidence has also identified that immunosuppression occurring after severe systemic inflammation, such as found in sepsis, is a result of depletion in DC numbers and a later dysfunction in DC activity. This correlation suggests that the sustained DC dysfunction initiated by life-threatening inflammation may contribute to the subsequent immunoparalysis, potentially as a result of the long-term maintenance of an abnormal gene expression pattern. In this review, we summarized the present information regarding altered DC function after a severe, acute inflammatory response and propose a mechanism, whereby epigenetic changes can influence long-term gene expression patterns by DC, thus supporting an immunosuppression phenotype.
Collapse
Affiliation(s)
- Haitao Wen
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
31
|
Fanti L, Perrini B, Piacentini L, Berloco M, Marchetti E, Palumbo G, Pimpinelli S. The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 2007; 117:25-39. [PMID: 17823810 DOI: 10.1007/s00412-007-0123-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 11/27/2022]
Abstract
In Drosophila, the Polycomb group and trithorax group proteins play a critical role in controlling the expression states of homeotic gene complexes during development. The common view is that these two classes of proteins bind to the homeotic complexes and regulate transcription at the level of chromatin. In the present work, we tested the involvement of both groups in mitotic heterochromatin formation in Drosophila. Using specific antibodies, we show that some of the tested Pc-G proteins are present in heterochromatin, while all the tested trx-G proteins localize to specific regions of heterochromatin in both mitotic chromosomes and interphase nuclei. We also observed that mutations in trx-G genes are recessive enhancers of position-effect variegation and are able to repress the transcription of heterochromatic genes. These results strongly suggest that trx-G proteins, along with some Pc-G proteins, play an active role in heterochromatin formation in Drosophila.
Collapse
Affiliation(s)
- Laura Fanti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia molecolare, Università La Sapienza, 00185, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: structure, function and regulation. ACTA ACUST UNITED AC 2007; 1769:316-29. [PMID: 17512990 PMCID: PMC2794661 DOI: 10.1016/j.bbaexp.2007.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/01/2023]
Abstract
Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein-protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread. An exciting and tantalizing question is whether, or how, this alternative splicing affects gene function. For example, it is conceivable that one isoform may debilitate methyltransferase function whereas the other may enhance it, providing an opportunity for differential regulation. The review concludes with the speculation that modulation of SET protein function is mediated by antisense or sense-antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy C. Hall
- Corresponding author. Tel: 1-979-845-7728; fax: 1-979-862-4098,
| |
Collapse
|
33
|
Murata M, Azuma Y, Miura K, Rahman MA, Matsutani M, Aoyama M, Suzuki H, Sugi K, Shirai M. Chlamydial SET domain protein functions as a histone methyltransferase. MICROBIOLOGY-SGM 2007; 153:585-592. [PMID: 17259630 DOI: 10.1099/mic.0.29213-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SET domain genes have been identified in numbers of bacterial genomes based on similarity to SET domains of eukaryotic histone methyltransferases. Herein, a Chlamydophila pneumoniae SET domain gene was clarified to be coincidently expressed with hctA and hctB genes encoding chlamydial histone H1-like proteins, Hc1 and Hc2, respectively. The SET domain protein (cpnSET) is localized in chlamydial cells and interacts with Hc1 and Hc2 through the C-terminal SET domain. As expected from conservation of catalytic sites in cpnSET, it functions as a protein methyltransferase to murine histone H3 and Hc1. However, little is known about protein methylation in the molecular pathogenesis of chlamydial infection. cpnSET may play an important role in chlamydial cell maturation due to modification of chlamydial histone H1-like proteins.
Collapse
Affiliation(s)
- Masayuki Murata
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshinao Azuma
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koshiro Miura
- Department of Clinical Research, National Sanyo Hospital, 685 Higashi-Kiwa, Ube, Yamaguchi 755-0241, Japan
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mohd Akhlakur Rahman
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Minenosuke Matsutani
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Aoyama
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Harumi Suzuki
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kazuro Sugi
- Department of Clinical Research, National Sanyo Hospital, 685 Higashi-Kiwa, Ube, Yamaguchi 755-0241, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
34
|
Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2007; 75:243-69. [PMID: 16756492 DOI: 10.1146/annurev.biochem.75.103004.142422] [Citation(s) in RCA: 823] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is more evident now than ever that nucleosomes can transmit epigenetic information from one cell generation to the next. It has been demonstrated during the past decade that the posttranslational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, sumoylation, ubiquitination, and methylation. A large body of experimental evidence compiled during the past several years has demonstrated the impact of histone acetylation on transcriptional control. Although histone modification by methylation and ubiquitination was discovered long ago, it was only recently that functional roles for these modifications in transcriptional regulation began to surface. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies.
Collapse
Affiliation(s)
- Ali Shilatifard
- Saint Louis University School of Medicine and the Saint Louis University Cancer Center, St. Louis, Missouri 63104, USA.
| |
Collapse
|
35
|
Ebert A, Lein S, Schotta G, Reuter G. Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 2006; 14:377-92. [PMID: 16821134 DOI: 10.1007/s10577-006-1066-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covalent modifications of histones index structurally and functionally distinct chromatin domains in eukaryotic nuclei. Drosophila with its polytene chromosomes and developed genetics allows detailed cytological as well as functional analysis of epigenetic histone modifications involved in the control of gene expression pattern during development. All H3K9 mono- and dimethylation together with all H3K27 methylation states and H4K20 trimethylation are predominant marks of pericentric heterochromatin. In euchromatin, bands and interbands are differentially indexed. H3K4 and H3K36 methylation together with H3S10 phosphorylation are predominant marks of interband regions whereas in bands different H3K27 and H4K20 methylation states are combined with acetylation of H3K9 and H3K14. Genetic dissection of heterochromatic gene silencing in position-effect variegation (PEV) by Su(var) and E(var) mutations allowed identification and functional analysis of key factors controlling the formation of heterochromatin. SU(VAR)3-9 association with heterochromatic sequences followed by H3K9 methylation initiates the establishment of repressive SU(VAR)3-9/HP1/SU(VAR)3-7 protein complexes. Differential enzymatic activities of novel point mutants demonstrate that the silencing potential of SU(VAR)3-9 is mainly determined by the kinetic properties of the HMTase reaction. In Su(var)3-9ptn a significantly enhanced enzymatic activity results in H3K9 hypermethylation, enhanced gene silencing and extensive chromatin compaction. Mutations in factors controlling active histone modification marks revealed the dynamic balance between euchromatin and heterochromatin. Further analysis and definition of Su(var) and E(var) genes in Drosophila will increase our understanding of the molecular hierarchy of processes controlling higher-order structures in chromatin.
Collapse
Affiliation(s)
- Anja Ebert
- Institute of Genetics, Biologicum, Martin Luther University Halle, Weinbergweg 10, D-06120, Halle, Germany
| | | | | | | |
Collapse
|
36
|
Qian C, Wang X, Manzur K, Farooq A, Zeng L, Wang R, Zhou MM. Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase. J Mol Biol 2006; 359:86-96. [PMID: 16603186 DOI: 10.1016/j.jmb.2006.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
SET domain lysine methyltransferases are known to catalyze site and state-specific methylation of lysine residues in histones that is fundamental in epigenetic regulation of gene activation and silencing in eukaryotic organisms. Here we report the three-dimensional solution structure of the SET domain histone lysine methyltransferase (vSET) from Paramecium bursaria chlorella virus 1 bound to cofactor S-adenosyl-L-homocysteine and a histone H3 peptide containing mono-methylated lysine 27. The dimeric structure, mimicking an enzyme/cofactor/substrate complex, yields the structural basis of the substrate specificity and methylation multiplicity of the enzyme. Our results from mutagenesis and enzyme kinetics analyses argue that a general base mechanism is less likely for lysine methylation by SET domains; and that the only invariant active site residue tyrosine 105 in vSET facilitates methyl transfer from cofactor to the substrate lysine by aligning intermolecular interactions in the lysine access channel of the enzyme.
Collapse
Affiliation(s)
- Chengmin Qian
- Department of Molecular Physiology and Biophysics, Mount Sinai School of Medicine, New York University, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Fischer A, Hofmann I, Naumann K, Reuter G. Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:358-68. [PMID: 16384625 DOI: 10.1016/j.jplph.2005.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/25/2005] [Indexed: 05/05/2023]
Abstract
The SU(VAR)3-9 protein family was first identified in animals as heterochromatin-associated proteins and found to control establishment of heterochromatic chromatin domains by histone H3 lysine 9 methylation. In Arabidopsis ten SU(VAR)3-9 homologous SUVH genes are found where SUVH1, SUVH2 and SUVH4 represent different subgroups of genes. Also the SUVH1, SUVH2 and SUVH4 proteins represent heterochromatin-associated proteins and display differential effects on control of heterochromatic histone methylation marks. In Arabidopsis the heterochromatin specific histone methylation marks are mono- and dimethyl H3K9, mono- and dimethyl H3K27 and monomethyl H4K20. In contrast to animal systems trimethyl H3K9, trimethyl H3K27 and di- and trimethyl H4K20 do not index chromocenter heterochromatin in Arabidopsis. SUVH2 shows a central role in control of heterochromatin formation and heterochromatic gene silencing in Arabidopsis. Loss-of-function of SUVH2 results in significant reduction of all heterochromatin-specific histone methylation marks and causes DNA hypomethylation at chromocenter heterochromatin. SUVH2 overexpression leads to ectopic heterochromatisation accompanied with significant growth defects. SUVH2 shows strong dosage-dependent effects on transcriptional gene silencing. In Arabidopsis different experimental systems connected with transcriptional gene silencing have been used for genetic dissection of molecular mechanisms controlling epigenetic processes. Molecular analysis of the genes identified by the isolated modifier mutants suggests that transcriptional gene silencing in plants is caused by heterochromatisation. A new efficient experimental system for the analysis of transcriptional gene silencing has been established with the help of LUCIFERASE transgene repeats. The different lines established show either complete or partial silencing of the luciferase transgene repeats. These lines have been successfully used either for mutant isolation or for functional analysis of SUVH proteins in control of heterochromatic gene silencing.
Collapse
Affiliation(s)
- Andreas Fischer
- Institute of Genetics, Biologicum, Martin Luther University Halle, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
38
|
Wood A, Schneider J, Shilatifard A. Cross-talking histones: implications for the regulation of gene expression and DNA repair. Biochem Cell Biol 2005; 83:460-7. [PMID: 16094449 DOI: 10.1139/o05-116] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of chromatin structure is essential to life. In eukaryotic organisms, several classes of protein exist that can modify chromatin structure either through ATP-dependent remodeling or through the post-translational modification of histone proteins. A vast array of processes ranging from transcriptional regulation to DNA repair rely on these histone-modifying enzymes. In the last few years, enzymes involved in the post-translational modification of histone proteins have become a topic of intense interest. Our work and the work of several other laboratories has focused largely on understanding the biological role of the yeast histone methyltransferase COMPASS (complex of proteins associated with Set1) and its human homologue the MLL complex. The Set1-containing complex COMPASS acts as the sole histone H3 lysine 4 methyltransferase in Saccharomyces cerevisiae, and this methyl mark is important for transcriptional regulation and silencing at the telomeres and rDNA loci. Another histone methyltransferase, Dot1, methylates lysine 79 of histone H3 and is also essential for proper silencing of genes near telomeres, the rDNA loci, and the mating type loci. Employing our global biochemical screen GPS (global proteomic analysis of S. cerevisiae) we have been successful in identifying and characterizing several key downstream and upstream regulators of both COMPASS and Dot1 histone methyltransferase activity. This review details efforts made towards understanding the regulatory mechanisms and biological significance of COMPASS and Dot1p-mediated histone methylation.
Collapse
Affiliation(s)
- Adam Wood
- Department of Biochemistry, Saint Louis School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
39
|
Abstract
Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference.
Collapse
Affiliation(s)
- Anders H Lund
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
Cerna D, Wilson DK. The structure of Sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J Mol Biol 2005; 351:923-35. [PMID: 16051270 DOI: 10.1016/j.jmb.2005.06.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, the SIF2 gene product is an integral component of the Set3 complex (SET3C), an assembly of proteins with some homology to the human SMRT and N-CoR corepressor complexes. SET3C has histone deacetylase activity that is responsible for repressing a set of meiotic genes. We have determined the X-ray crystal structure of a 46 kDa C-terminal domain of a SET3C core protein, Sif2p to 1.55 A resolution and a crystallographic R-factor of 19.0%. This domain contains an unusual eight-bladed beta-propeller structure, which differs from other transcriptional corepressor structures such as yeast Tup1p and human groucho (Gro)/TLE1, which have only seven. We have demonstrated intact Sif2p is a tetramer and the N-terminal LisH (Lis-homology)-containing domain mediates tetramerization and interaction with another component of SET3C, Snt1p. Multiple sequence alignments indicate that a surface on the "top" of the protein is conserved among species, suggesting that it may play a common role in binding partner proteins. Since Sif2p appears to be the yeast homolog of human TBL1 and TBLR1, which function in the N-CoR/SMRT complexes, its structural and oligomeric properties are likely to be very similar.
Collapse
Affiliation(s)
- David Cerna
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Tenney K, Shilatifard A. A COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. J Cell Biochem 2005; 95:429-36. [PMID: 15786493 DOI: 10.1002/jcb.20421] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chromosomal rearrangements and translocations play a major role in the pathogenesis of hematological malignancies. The trithorax-related mixed lineage leukemia (Mll) gene located on chromosome 11 is rearranged in a variety of aggressive human B and T lymphoid tumors as well as acute myeloid leukemia (AML) in both children and adults. It was first demonstrated for the yeast MLL homolog complex, Set1/COMPASS, and now for the MLL complex itself, that these complexes are histone methyltransferases capable of methylating the fourth lysine of histone H3. The post-translational modifications of histones by methylation have emerged as a key regulatory mechanism for both repression and activation of gene expression. Studies from several laboratories during the past few years have brought about a watershed of information defining the molecular machinery and factors involved in the recognition and modification of nucleosomal histones by methylation. In this review, we will discuss the recent findings regarding the molecular mechanism and consequences of histone modification by the MLL related protein containing complex COMPASS.
Collapse
Affiliation(s)
- Kristen Tenney
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Health Sciences Center, Saint Louis, MO 63104, USA
| | | |
Collapse
|
42
|
Köhler C, Grossniklaus U. Seed development and genomic imprinting in plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:237-62. [PMID: 15881898 DOI: 10.1007/3-540-27310-7_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genomic imprinting refers to an epigenetic phenomenon where the activity of an allele depends on its parental origin. Imprinting at individual genes has only been described in mammals and seed plants. We will discuss the role imprinted genes play in seed development and compare the situation in plants with that in mammals. Interestingly, many imprinted genes appear to control cell proliferation and growth in both groups of organisms although imprinting in plants may also be involved in the cellular differentiation of the two pairs of gametes involved in double fertilization. DNA methylation plays some role in the control of parent-of-origin-specific expression in both mammals and plants. Thus, although imprinting evolved independently in mammals and plants, there are striking similarities at the phenotypic and possibly also mechanistic level.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
43
|
Manzur KL, Zhou MM. An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-α. FEBS Lett 2005; 579:3859-65. [PMID: 15978576 DOI: 10.1016/j.febslet.2005.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 01/08/2023]
Abstract
The evolutionarily conserved SET domain proteins in eukaryotes have been shown to function as site-specific histone lysine methyltransferases, and play an important role in regulating chromatin-mediated gene transcriptional activation and silencing. Structure-based sequence analysis has revealed that SET domains are also encoded by viruses and bacteria, as well as Archaea. However, their cellular functions remain elusive. In this study, we have characterized a SET domain protein from Methanosarcina mazei strain Gö1 that we refer to as Gö1-SET. We show that Gö1-SET exists as a homodimer in solution, and functions as a lysine methyltransferase with high substrate specificity that is dependent on the amino acid sequence flanking the lysine methylation site. Particularly, Gö1-SET exhibits selective methyltransferase activity towards one of the major archaeal DNA interacting protein MC1-alpha at lysine 37. Our findings suggest that SET domain proteins such as Gö1-SET may restructure archaeal chromatin that is composed of MC1-DNA complexes, and that modulation of chromatin structure by lysine methylation may have arisen before the divergence of the archaeal and eukaryotic lineages.
Collapse
Affiliation(s)
- Karishma L Manzur
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, 1425 Madison Avenue, New York, NY 10029, USA
| | | |
Collapse
|
44
|
Wood A, Shilatifard A. Posttranslational modifications of histones by methylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:201-22. [PMID: 14969729 DOI: 10.1016/s0065-3233(04)67008-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adam Wood
- Department of Biochemistry, Saint Louis University School of Medicine, St Louis, Missouri 63104, USA
| | | |
Collapse
|
45
|
Türkmen S, Gillessen-Kaesbach G, Meinecke P, Albrecht B, Neumann LM, Hesse V, Palanduz S, Balg S, Majewski F, Fuchs S, Zschieschang P, Greiwe M, Mennicke K, Kreuz FR, Dehmel HJ, Rodeck B, Kunze J, Tinschert S, Mundlos S, Horn D. Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet 2003; 11:858-65. [PMID: 14571271 DOI: 10.1038/sj.ejhg.5201050] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recently, deletions encompassing the nuclear receptor binding SET-Domain 1 (NSD1) gene have been described as the major cause of Japanese patients with the Sotos syndrome, whereas point mutations have been identified in the majority of European Sotos syndrome patients. In order to investigate a possible phenotype-genotype correlation and to further define the predictive value of NSD1 mutations, we performed mutational analysis of the NSD1 gene in 20 patients and one familial case with Sotos syndrome, five patients with Weaver syndrome, six patients with unclassified overgrowth/mental retardation, and six patients with macrocephaly/mental retardation. We were able to identify mutations within the NSD1 gene in 18 patients and the familial case with Sotos syndrome (90%). The mutations (six nonsense, eight frame shifts, three splice site, one missense, one in-frame deletion) are expected to result in an impairment of NSD1 function. The best correlation between clinical assessment and molecular results was obtained for the Sotos facial gestalt in conjunction with overgrowth, macrocephaly, and developmental delay. In contrast to the high mutation detection rate in Sotos syndrome, none of the patients with Weaver syndrome, unclassified overgrowth/mental retardation and macrocephaly/mental retardation, harbored NSD1 mutations. We tested for large deletions by FISH analysis but were not able to identify any deletion cases. The results indicate that the great majority of patients with Sotos syndrome are caused by mutations in NSD1. Deletions covering the NSD1 locus were not found in the patients analyzed here.
Collapse
Affiliation(s)
- Seval Türkmen
- Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003; 31:567-85. [PMID: 12842702 DOI: 10.1016/s0301-472x(03)00081-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetic modification of chromatin structure underlies the differentiation of pluripotent hemopoietic stem cells (HSCs) into their committed/differentiated progeny. Compelling evidence indicates that Polycomb group (PcG) genes play a key role in normal and leukemic hemopoiesis through epigenetic regulation of HSC self-renewal/proliferation and commitment. The PcG proteins are constituents of evolutionary highly conserved molecular pathways regulating cell fate in several other tissues through diverse mechanisms, including 1) regulation of self-renewal/proliferation, 2) regulation of senescence/immortalization, 3) interaction with the initiation transcription machinery, 4) interaction with chromatin-condensation proteins, 5) modification of histones, 6) inactivation of paternal X chromosome, and 7) regulation of cell death. It is therefore not surprising that PcG genes lead to pleiotropic phenotypes when mutated and have been associated with malignancies in several systems in both mice and humans. Although much remains to be learned regarding the PcG mechanism(s) of action, advances in identifying the functional domains and enzymatic activities of these multimeric protein complexes have provided insights into how PcG proteins accomplish such processes. Some of the new insights into a role for the PcG cellular memory system in regulating normal and leukemic hemopoiesis are reviewed here, with special emphasis on their potential involvement in epigenetic regulation of gene expression through modification of chromatin structure.
Collapse
Affiliation(s)
- Julie Lessard
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Manzur KL, Farooq A, Zeng L, Plotnikova O, Koch AW, Zhou MM. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat Struct Mol Biol 2003; 10:187-96. [PMID: 12567185 DOI: 10.1038/nsb898] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/30/2002] [Indexed: 11/08/2022]
Abstract
Site-specific lysine methylation of histones by SET domains is a hallmark for epigenetic control of gene transcription in eukaryotic organisms. Here we report that a SET domain protein from Paramecium bursaria chlorella virus can specifically di-methylate Lys27 in histone H3, a modification implicated in gene silencing. The solution structure of the viral SET domain reveals a butterfly-shaped head-to-head symmetric dimer different from other known protein methyltransferases. Each subunit consists of a Greek-key antiparallel beta-barrel and a three-stranded open-faced sandwich that mediates the dimer interface. Cofactor S-adenosyl-L-methionine (SAM) binds at the opening of the beta-barrel, and amino acids C-terminal to Lys27 in H3 and in the flexible C-terminal tail of the enzyme confer the specificity of this viral histone methyltransferase.
Collapse
Affiliation(s)
- Karishma L Manzur
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
48
|
Köhler C, Grossniklaus U. Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr Opin Cell Biol 2002; 14:773-9. [PMID: 12473353 DOI: 10.1016/s0955-0674(02)00394-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycomb group (PcG) proteins maintain a repressed state of gene expression over many cell divisions. The recent characterisation of several PcG proteins from plants revealed a remarkable structural and functional conservation of PcG proteins between different kingdoms. In both plants and animals, homeotic genes are among the target genes of PcG complexes, although the structure of these genes is not conserved. However, not all PcG proteins identified in animals are present in plants. Furthermore it becomes clear that PcG-mediated repression in plants is more transient compared with the long-lasting effects in animals. This may be related to the absence of PcG proteins thought to be involved in long-term maintenance of PcG repression, suggesting that the mechanisms underlying PcG-mediated repression differ between plants and animals.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland.
| | | |
Collapse
|
49
|
Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE, Simon JA. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111:197-208. [PMID: 12408864 DOI: 10.1016/s0092-8674(02)00976-5] [Citation(s) in RCA: 1183] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycomb group (PcG) proteins maintain transcriptional repression during development, likely by creating repressive chromatin states. The Extra Sex Combs (ESC) and Enhancer of Zeste [E(Z)] proteins are partners in an essential PcG complex, but its full composition and biochemical activities are not known. A SET domain in E(Z) suggests this complex might methylate histones. We purified an ESC-E(Z) complex from Drosophila embryos and found four major subunits: ESC, E(Z), NURF-55, and the PcG repressor, SU(Z)12. A recombinant complex reconstituted from these four subunits methylates lysine-27 of histone H3. Mutations in the E(Z) SET domain disrupt methyltransferase activity in vitro and HOX gene repression in vivo. These results identify E(Z) as a PcG protein with enzymatic activity and implicate histone methylation in PcG-mediated silencing.
Collapse
Affiliation(s)
- Jürg Müller
- EMBL, Gene Expression Programme, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 2002; 111:105-15. [PMID: 12372304 DOI: 10.1016/s0092-8674(02)00964-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. The evolutionarily conserved SET domain occurs in most proteins known to possess histone lysine methyltransferase activity. We present here the crystal structure of a large fragment of human SET7/9 that contains a N-terminal beta-sheet domain as well as the conserved SET domain. Mutagenesis identifies two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3. Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate.
Collapse
Affiliation(s)
- Jonathan R Wilson
- Structural Biology Group, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|