1
|
Chen YJ, Cheng SY, Liu CH, Tsai WC, Wu HH, Huang MD. Exploration of the truncated cytosolic Hsp70 in plants - unveiling the diverse T1 lineage and the conserved T2 lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1279540. [PMID: 38034583 PMCID: PMC10687569 DOI: 10.3389/fpls.2023.1279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are chaperone proteins involved in protein folding processes. Truncated Hsp70 (Hsp70T) refers to the variant lacking a conserved C-terminal motif, which is crucial for co-chaperone interactions or protein retention. Despite their significance, the characteristics of Hsp70Ts in plants remain largely unexplored. In this study, we performed a comprehensive genome-wide analysis of 192 sequenced plant and green algae genomes to investigate the distribution and features of Hsp70Ts. Our findings unveil the widespread occurrence of Hsp70Ts across all four Hsp70 forms, including cytosolic, endoplasmic reticulum, mitochondrial, and chloroplast Hsp70s, with cytosolic Hsp70T being the most prevalent and abundant subtype. Cytosolic Hsp70T is characterized by two distinct lineages, referred to as T1 and T2. Among the investigated plant and green algae species, T1 genes were identified in approximately 60% of cases, showcasing a variable gene count ranging from one to several dozens. In contrast, T2 genes were prevalent across the majority of plant genomes, usually occurring in fewer than five gene copies per species. Sequence analysis highlights that the putative T1 proteins exhibit higher similarity to full-length cytosolic Hsp70s in comparison to T2 proteins. Intriguingly, the T2 lineage demonstrates a higher level of conservation within their protein sequences, whereas the T1 lineage presents a diverse range in the C-terminal and SBDα region, leading to categorization into four distinct subtypes. Furthermore, we have observed that T1-rich species characterized by the possession of 15 or more T1 genes exhibit an expansion of T1 genes into tandem gene clusters. The T1 gene clusters identified within the Laurales order display synteny with clusters found in a species of the Chloranthales order and another species within basal angiosperms, suggesting a conserved evolutionary relationship of T1 gene clusters among these plants. Additionally, T2 genes demonstrate distinct expression patterns in seeds and under heat stress, implying their potential roles in seed development and stress response.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Han Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hsin Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Paguem A, Abanda B, Achukwi MD, Baskaran P, Czemmel S, Renz A, Eisenbarth A. Whole genome characterization of autochthonous Bos taurus brachyceros and introduced Bos indicus indicus cattle breeds in Cameroon regarding their adaptive phenotypic traits and pathogen resistance. BMC Genet 2020; 21:64. [PMID: 32571206 PMCID: PMC7309992 DOI: 10.1186/s12863-020-00869-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background African indigenous taurine cattle display unique adaptive traits shaped by husbandry management, regional climate and exposure to endemic pathogens. They are less productive with respect to milk and meat production which has been associated with amongst others, small size, traditional beliefs, husbandry practices, limited feed resources, disease burden and lack of sustained breeding for trait improvement. This resulted in the severe dwindling of their population size rendering them vulnerable to extinction. The Namchi taurine cattle breed is referred to as [Namchi (Doayo)] and shows resistance traits against trypanosome infection and exposure to tick infestation. Nonetheless, the historically later introduced Zebu cattle are the main cattle breeds in Africa today, even though they suffer more from locally prevailing pathogens. By using a whole genome sequencing approach, we sequenced with high depth for the first time the genomes of five cattle breeds from Cameroon in order to provide a valuable genetic resource for future African cattle breeding: the Namchi, an endangered trypano-tolerant taurine breed, the Kapsiki, an indigenous trypano-susceptible taurine breed, and three Zebu (Bos indicus indicus) breeds: Ngaoundere Gudali, White Fulani and Red Fulani. Results Approximately 167 Gigabases of raw sequencing data were generated for each breed and mapped to the cattle reference genomes ARS-UCD1.2 and UMD3.1.The coverage was 103 to 140-fold when aligning the reads to ARS-UCD1.2 with an average mapping rate of ~ 99%, and 22 to 30-fold when aligning the reads to UMD3.1 with an average mapping rate of ~ 64%. The single nucleotide polymorphisms (SNPs) obtained from analysis using the genome ARS-UCD1.2 were compared with reference genomes of European Bos taurus Holstein, the Asian Bos indicus Brahman, and the African trypanotolerant N’Dama breeds. A total of ~ 100 million (M) SNPs were identified and 7.7 M of those were breed-specific. An approximately 11.1 M constituted of small insertions and deletions. By using only breed-specific non-synonymous variants we identified genes as genetic signatures and associated Gene Ontology (GO) terms that could explain certain cattle-breed specific phenotypes such as increased tolerance against trypanosome parasites in the Namchi breed and heat tolerance in the Kapsiki breed. Phylogenetic analysis grouped, except for Namchi, the Bos taurus breeds Kapsiki, N’Dama and Holstein together while the B. indicus breeds White and Red Fulani, Gudali and Brahman clustered separately. The deviating result for Namchi indicates a hybrid status of the selected animal with a recent introgression of Zebu genes into its genome. Conclusions The findings provide the first comprehensive set of genome-wide variant data of the most important Cameroonian cattle breeds. The genomic data shall constitute a foundation for breed amelioration whilst exploiting the heritable traits and support conservation efforts for the endangered local cattle breeds.
Collapse
Affiliation(s)
- Archile Paguem
- Department of Biological Science, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon. .,Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany.
| | - Babette Abanda
- Department of Biological Science, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon.,Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | | | - Praveen Baskaran
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Alfons Renz
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Albert Eisenbarth
- Department of Comparative Zoology, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany.,Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| |
Collapse
|
3
|
Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J 2020; 39:e104096. [PMID: 32490574 PMCID: PMC7360973 DOI: 10.15252/embj.2019104096] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine‐zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine‐zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high‐affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Laura Le Breton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
4
|
Bhardwaj M, Paul S, Jakhar R, Khan I, Kang JI, Kim HM, Yun JW, Lee SJ, Cho HJ, Lee HG, Kang SC. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells. Oncotarget 2017; 8:112426-112441. [PMID: 29348836 PMCID: PMC5762521 DOI: 10.18632/oncotarget.20113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Heat shock transcription factor-1 (HSF-1) guards the cancerous cells proteome against the alterations in protein homeostasis generated by their hostile tumor microenvironment. Contrasting with the classical induction of heat shock proteins, the pro-oncogenic activities of HSF-1 remains to be explored. Therefore, cancer's fragile proteostatic pathway governed by HSF-1 could be a potential therapeutic target and novel biomarker by natural compounds. Vitexin, a natural flavonoid has been documented as a potent anti-tumor agent on various cell lines. However, in the present study, when human colorectal carcinoma HCT-116 cells were exposed to vitexin, the induction of HSF-1 downstream target proteins, such as heat shock proteins were suppressed. We identified HSF-1 as a potential molecular target of vitexin that interact with DNA-binding domain of HSF-1, which inhibited HSF-1 oligomerization and activation (in silico). Consequently, HSF-1 hyperphosphorylation mediated by JNK operation causes transcriptional inactivation of HSF-1, and supported ROS-mediated autophagy induction. Interestingly, in HSF-1 immunoprecipitated and silenced HCT-116 cells, co-expression of apolipoprotein 1 (ApoL1) and JNK was observed which promoted the caspase independent autophagic cell death accompanied by p62 downregulation and increased LC3-I to LC3-II conversion. Finally, in vivo findings confirmed that vitexin suppressed tumor growth through activation of autophagic cascade in HCT-116 xenograft model. Taken together, our study insights a probable novel association between HSF-1 and ApoL-1 was established in this study, which supports HSF-1 as a potential target of vitexin to improve treatment outcome in colorectal cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Imran Khan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Ji In Kang
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Ho Min Kim
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| |
Collapse
|
5
|
Abstract
The heat shock response in yeast is regulated by the interaction between a chaperone protein and a heat shock transcription factor, and fine-tuned by phosphorylation.
Collapse
Affiliation(s)
- Laura Le Breton
- Center for Molecular Biology Heidelberg University, DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology Heidelberg University, DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
6
|
Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis 2016; 7:e2455. [PMID: 27809308 PMCID: PMC5260882 DOI: 10.1038/cddis.2016.356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/17/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is one of the most effective antitumor drugs, but its cardiotoxicity has been a major concern for its use in cancer therapy for decades. Although DOX-induced cardiotoxicity has been investigated, the underlying mechanisms responsible for this cardiotoxicity have not been completely elucidated. Here, we found that the insulin-like growth factor receptor II (IGF-IIR) apoptotic signaling pathway was responsible for DOX-induced cardiotoxicity via proteasome-mediated heat shock transcription factor 1 (HSF1) degradation. The carboxyl-terminus of Hsp70 interacting protein (CHIP) mediated HSF1 stability and nuclear translocation through direct interactions via its tetratricopeptide repeat domain to suppress IGF-IIR expression and membrane translocation under physiological conditions. However, DOX attenuated the HSF1 inhibition of IGF-IIR expression by diminishing the CHIP–HSF1 interaction, removing active nuclear HSF1 and triggering HSF1 proteasomal degradation. Overexpression of CHIP redistributed HSF1 into the nucleus, inhibiting IGF-IIR expression and preventing DOX-induced cardiomyocyte apoptosis. Moreover, HSF1A, a small molecular drug that enhances HSF1 activity, stabilized HSF1 expression and minimized DOX-induced cardiac damage in vitro and in vivo. Our results suggest that the cardiotoxic effects of DOX result from the prevention of CHIP-mediated HSF1 nuclear translocation and activation, which leads to an upregulation of the IGF-IIR apoptotic signaling pathway. We believe that the administration of an HSF1 activator or agonist may further protect against the DOX-induced cell death of cardiomyocytes.
Collapse
|
7
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
8
|
Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles. BIOMED RESEARCH INTERNATIONAL 2012; 2013:984523. [PMID: 23509827 PMCID: PMC3591204 DOI: 10.1155/2013/984523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/20/2012] [Indexed: 11/17/2022]
Abstract
The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.
Collapse
|
9
|
Reina CP, Nabet BY, Young PD, Pittman RN. Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperones 2012; 17:729-42. [PMID: 22777893 PMCID: PMC3468683 DOI: 10.1007/s12192-012-0346-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 12/24/2022] Open
Abstract
Regulation of basal and induced levels of hsp70 is critical for cellular homeostasis. Ataxin-3 is a deubiquitinase with several cellular functions including transcriptional regulation and maintenance of protein homeostasis. While investigating potential roles of ataxin-3 in response to cellular stress, it appeared that ataxin-3 regulated hsp70. Basal levels of hsp70 were lower in ataxin-3 knockout (KO) mouse brain from 2 to 63 weeks of age and hsp70 was also lower in fibroblasts from ataxin-3 KO mice. Transfecting KO cells with ataxin-3 rescued basal levels of hsp70 protein. Western blots of representative chaperones including hsp110, hsp90, hsp70, hsc70, hsp60, hsp40/hdj2, and hsp25 indicated that only hsp70 was appreciably altered in KO fibroblasts and KO mouse brain. Turnover of hsp70 protein was similar in wild-type (WT) and KO cells; however, basal hsp70 promoter reporter activity was decreased in ataxin-3 KO cells. Transfecting ataxin-3 restored hsp70 basal promoter activity in KO fibroblasts to levels of promoter activity in WT cells; however, mutations that inactivated deubiquitinase activity or the ubiquitin interacting motifs did not restore full activity to hsp70 basal promoter activity. Hsp70 protein and promoter activity were higher in WT compared to KO cells exposed to heat shock and azetidine-2-carboxylic acid, but WT and KO cells had similar levels in response to cadmium. Heat shock factor-1 had decreased levels and increased turnover in ataxin-3 KO fibroblasts. Data in this study are consistent with ataxin-3 regulating basal level of hsp70 as well as modulating hsp70 in response to a subset of cellular stresses.
Collapse
Affiliation(s)
- Christopher P. Reina
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Barzin Y. Nabet
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Peter D. Young
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Randall N. Pittman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
11
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
12
|
Leach MD, Tyc KM, Brown AJP, Klipp E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS One 2012; 7:e32467. [PMID: 22448221 PMCID: PMC3308945 DOI: 10.1371/journal.pone.0032467] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
Collapse
Affiliation(s)
- Michelle D. Leach
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (AJPB); (EK)
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität, Berlin, Germany
- * E-mail: (AJPB); (EK)
| |
Collapse
|
13
|
Tamaru T, Hattori M, Honda K, Benjamin I, Ozawa T, Takamatsu K. Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLoS One 2011; 6:e24521. [PMID: 21915348 PMCID: PMC3168500 DOI: 10.1371/journal.pone.0024521] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/12/2011] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor. Mol Cell Biol 2011; 31:4232-43. [PMID: 21859888 DOI: 10.1128/mcb.05930-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) occurs on thousands of genes in animal cells. This pausing often correlates with the rapid induction of genes, but direct tests of the relationship between pausing and induction rates are lacking. hsp70 and hsp26 in Drosophila are rapidly induced by heat shock. Contrary to current expectations, depletion of negative elongation factor (NELF), a key factor in setting up paused Pol II, reduced pausing but did not interfere with rapid induction. Instead, depletion of NELF delayed the time taken for these genes to shut off during recovery from heat shock. NELF depletion also delayed the dissociation of HSF from hsp70 and hsp26, and a similar delay was observed when cells were depleted of the histone acetyltransferase CBP. CBP has been reported to associate with Pol II, and acetylation of HSF by CBP has been implicated in inhibiting the DNA-binding activity of HSF. We propose that NELF-mediated pausing allows Pol II to direct CBP-mediated acetylation of HSF, thus causing HSF to dissociate from the gene. Activators are typically viewed as controlling Pol II. Our results reveal a possible reciprocal relationship in which paused Pol II influences the activator.
Collapse
|
15
|
Ting YK, Morikawa K, Kurata Y, Li P, Bahrudin U, Mizuta E, Kato M, Miake J, Yamamoto Y, Yoshida A, Murata M, Inoue T, Nakai A, Shiota G, Higaki K, Nanba E, Ninomiya H, Shirayoshi Y, Hisatome I. Transcriptional activation of the anchoring protein SAP97 by heat shock factor (HSF)-1 stabilizes K(v) 1.5 channels in HL-1 cells. Br J Pharmacol 2011; 162:1832-42. [PMID: 21232033 PMCID: PMC3081125 DOI: 10.1111/j.1476-5381.2011.01204.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression of voltage-dependent K+ channels (Kv) 1.5 is regulated by members of the heat shock protein (Hsp) family. We examined whether the heat shock transcription factor 1 (HSF-1) and its inducer geranylgeranylacetone (GGA) could affect the expression of Kv1.5 channels and its anchoring protein, synapse associated protein 97 (SAP97). EXPERIMENTAL APPROACH Transfected mouse atrial cardiomyocytes (HL-1 cells) and COS7 cells were subjected to luciferase reporter gene assay and whole-cell patch clamp. Protein and mRNA extracts were subjected to Western blot and quantitative real-time polymerase chain reaction. KEY RESULTS Heat shock of HL-1 cells induced expression of Hsp70, HSF-1, SAP97 and Kv1.5 proteins. These effects were reproduced by wild-type HSF-1. Both heat shock and expression of HSF-1, but not the R71G mutant, increased the SAP97 mRNA level. Small interfering RNA (siRNA) against SAP97 abolished HSF-1-induced increase of Kv1.5 and SAP97 proteins. A luciferase reporter gene assay revealed that the SAP97 promoter region (from −919 to −740) that contains heat shock elements (HSEs) was required for this induction. Suppression of SIRT1 function either by nicotinamide or siRNA decreased the level of SAP97 mRNA. SIRT1 activation by resveratrol had opposing effects. A treatment of the cells with GGA increased the level of SAP97 mRNA, Kv1.5 proteins and IKur current, which could be modified with either resveratrol or nicotinamide. CONCLUSIONS AND IMPLICATIONS HSF-1 induced transcription of SAP97 through SIRT1-dependent interaction with HSEs; the increase in SAP97 resulted in stabilization of Kv1.5 channels. These effects were mimicked by GGA.
Collapse
Affiliation(s)
- Y K Ting
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
17
|
Sreedharan R, Riordan M, Thullin G, Van Why S, Siegel NJ, Kashgarian M. The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:129-35. [PMID: 20934464 DOI: 10.1016/j.bbamcr.2010.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/12/2010] [Accepted: 08/26/2010] [Indexed: 12/31/2022]
Abstract
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2h and recovered for 4h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.
Collapse
Affiliation(s)
- R Sreedharan
- Medical College of Wisconsin, Wauwatosa, WI, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Westerheide SD, Anckar J, Stevens SM, Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009; 323:1063-6. [PMID: 19229036 DOI: 10.1126/science.1165946] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat shock promoter Hsp70 by maintaining HSF1 in a deacetylated, DNA-binding competent state. Conversely, down-regulation of SIRT1 accelerated the attenuation of the heat shock response (HSR) and release of HSF1 from its cognate promoter elements. These results provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and the HSR.
Collapse
Affiliation(s)
- Sandy D Westerheide
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, 60208, USA
| | | | | | | | | |
Collapse
|
19
|
Yang J, Bridges K, Chen KY, Liu AYC. Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 2008; 3:e2864. [PMID: 18682744 PMCID: PMC2481402 DOI: 10.1371/journal.pone.0002864] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/04/2008] [Indexed: 11/19/2022] Open
Abstract
Background Induction of the heat shock response (HSR) and increased expression of the heat shock proteins (HSPs) provide mechanisms to ensure proper protein folding, trafficking, and disposition. The importance of HSPs is underscored by the understanding that protein mis-folding and aggregation contribute centrally to the pathogenesis of neurodegenerative diseases. Methodology/Principal Findings We used a cell-based hsp70-luciferease reporter gene assay system to identify agents that modulate the HSR and show here that clinically relevant concentrations of the FDA-approved ALS drug riluzole significantly increased the heat shock induction of hsp70-luciferse reporter gene. Immuno-Western and -cytochemical analysis of HSF1 show that riluzole increased the amount of cytosolic HSF1 to afford a greater activation of HSF1 upon heat shock. The increased HSF1 contributed centrally to the cytoprotective activity of riluzole as hsf1 gene knockout negated the synergistic activity of riluzole and conditioning heat shock to confer cell survival under oxidative stress. Evidence of a post-transcriptional mechanism for the increase in HSF1 include: quantitation of mRNAhsf1 by RT-PCR showed no effect of either heat shock or riluzole treatment; riluzole also increased the expression of HSF1 from a CMV-promoter; analysis of the turnover of HSF1 by pulse chase and immunoprecipitation show that riluzole slowed the decay of [35S]labeled-HSF1. The effect of riluzole on HSF1 was qualitatively different from that of MG132 and chloroquine, inhibitors of the proteasome and lysosome, respectively, and appeared to involve the chaperone-mediated autophagy pathway as RNAi-mediated knockdown of CMA negated its effect. Conclusion/Significance We show that riluzole increased the amount of HSF1 to amplify the HSR for cytoprotection. Our study provides novel insight into the mechanism that regulates HSF1 turnover, and identifies the degradation of HSF1 as a target for therapeutics intervention.
Collapse
Affiliation(s)
- Jingxian Yang
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kristen Bridges
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alice Y.-C. Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bettencourt BR, Hogan CC, Nimali M, Drohan BW. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol 2008; 6:5. [PMID: 18211703 PMCID: PMC2257928 DOI: 10.1186/1741-7007-6-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/22/2008] [Indexed: 06/12/2024] Open
Abstract
Background The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70. Results Hsp70 copy number in four strains is positively associated with Hsp70 expression and inducible thermotolerance of severe heat shock. When assayed at carefully chosen temperatures, Hsp70 null flies are almost entirely deficient in thermotolerance. In contrast to expectations, increasing Hsp70 expression levels induced by thermal pretreatment are associated with increasing levels of seven other inducible Hsps across strains. In addition, complete Hsp70 loss causes upregulation of the inducible Hsps and six constitutive stress-response genes following severe heat shocks. Conclusion Modification of Hsp70 copy number quantitatively and qualitatively affects the expression of multiple other stress-response genes. A positive association between absolute expression levels of Hsp70 and other Hsps after thermal pretreatment suggests novel regulatory mechanisms. Severe heat shocks induce both novel gene expression patterns and almost total mortality in the Hsp70 null strain: alteration of gene expression in this strain does not compensate for Hsp70 loss but suggests candidates for overexpression studies.
Collapse
Affiliation(s)
- Brian R Bettencourt
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| | | | | | | |
Collapse
|
21
|
Ahn SG, Kim SA, Yoon JH, Vacratsis P. Heat-shock cognate 70 is required for the activation of heat-shock factor 1 in mammalian cells. Biochem J 2006; 392:145-52. [PMID: 16050811 PMCID: PMC1317673 DOI: 10.1042/bj20050412] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HSF1 (heat-shock factor 1) plays an essential role in mediating the appropriate cellular response to diverse forms of physiological stresses. However, it is not clear how HSF1 is regulated by interacting proteins under normal and stressful conditions. In the present study, Hsc70 (heat-shock cognate 70) was identified as a HSF1-interacting protein using the TAP (tandem affinity purification) system and MS. HSF1 can interact with Hsc70 in vivo and directly in vitro. Interestingly, Hsc70 is required for the regulation of HSF1 during heat stress and subsequent target gene expression in mammalian cells. Moreover, cells transfected with siRNAs (small interfering RNAs) targeted to Hsc70 showed greatly decreased HSF1 activation with expression of HSF1 target genes being dramatically reduced. Finally, loss of Hsc70 expression in cells resulted in an increase in stress-induced apoptosis. These results indicate that Hsc70 is a necessary and critical regulator of HSF1 activities.
Collapse
Affiliation(s)
- Sang-Gun Ahn
- Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759, South Korea.
| | | | | | | |
Collapse
|
22
|
Gjøvaag TF, Vikne H, Dahl HA. Effect of concentric or eccentric weight training on the expression of heat shock proteins in m. biceps brachii of very well trained males. Eur J Appl Physiol 2005; 96:355-62. [PMID: 16284787 DOI: 10.1007/s00421-005-0084-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Increased HSP expression in response to acute exercise is well documented in animal studies, and there is growing evidence that similar responses occur in man. In general, many human exercise studies have investigated the HSP response to low force continuous activity, while the knowledge about the HSP response to high force intermittent type of activity, like weight training, is so far sparse. In addition, most studies have used untrained subjects, and a common observation is that acute low force continuous activity in untrained individuals increases the HSP expression in these individuals. The main scope of this study was to investigate the HSP response in very well trained males subjected to longitudinal high intensity exercise, and if this response was dependent on exercise modality [i.e. eccentric (ECC) or concentric (CON) contractions]. Very well trained males performed progressive strength training consisting of either high force ECC or high force CON elbow flexions 2-3 times a week for 12 weeks. Compared with pre-exercise levels, HSP72 expression decreased by 46.1% (P<0.05) after CON contractions. GRP75 expression was unchanged after ECC or CON contractions, while ubiquitin expression decreased by 19.9% (P<0.02) after ECC contractions. These findings imply that chronic, intensive exercise may attenuate the HSP response in well-trained males.
Collapse
Affiliation(s)
- Terje F Gjøvaag
- Oslo University College, St Olavs Plass, PO Box 4, 0130, Oslo, Norway.
| | | | | |
Collapse
|
23
|
Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2004; 22:5446-58. [PMID: 14532117 PMCID: PMC213783 DOI: 10.1093/emboj/cdg529] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induction of molecular chaperones is the characteristic protective response to environmental stress, and is regulated by a transcriptional program that depends on heat shock factor 1 (HSF1), which is normally under negative regulatory control by molecular chaperones Hsp70 and Hsp90. In metazoan species, the chaperone system also provides protection against apoptosis. We demonstrate that the dual function co-chaperone/ubiquitin ligase CHIP (C-terminus of Hsp70-interacting protein) regulates activation of the stress-chaperone response through induced trimerization and transcriptional activation of HSF1, and is required for protection against stress-induced apoptosis in murine fibroblasts. The consequences of this function are demonstrated by the phenotype of mice lacking CHIP, which develop normally but are temperature-sensitive and develop apoptosis in multiple organs after environmental challenge. CHIP exerts a central and unique role in tuning the response to stress at multiple levels by regulation of protein quality control and transcriptional activation of stress response signaling.
Collapse
Affiliation(s)
- Qian Dai
- Carolina Cardiovascular Biology Center, and Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004; 9:122-33. [PMID: 15497499 PMCID: PMC1065292 DOI: 10.1379/csc-14r.1] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 03/29/2004] [Indexed: 12/31/2022] Open
Abstract
Heat shock factor Hsf in nonvertebrate animals and homologous heat shock factor Hsf1 in vertebrate animals are key transcriptional regulators of the stress protein response. Hsf/Hsf1 is constitutively present in cells but is, typically, only active during periods during which cells are experiencing a physical or chemical proteotoxic stress. It has become increasingly clear that regulation of Hsf/Hsf1 activity occurs at multiple levels: the oligomeric status of Hsf/Hsf1, its DNA-binding ability, posttranslational modification, transcriptional competence, nuclear/ subnuclear localization, as well as its interactions with regulatory cofactors or other transcription factors all appear to be carefully controlled. This review emphasizes work reported over the past several years suggesting that regulation at several of these levels is mediated by repressive interactions of Hsp90-containing multichaperone complexes and/or individual chaperones and Hsf/Hsf1.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Gautier Building, Room 403, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Marchler G, Wu C. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 2001; 20:499-509. [PMID: 11157756 PMCID: PMC133474 DOI: 10.1093/emboj/20.3.499] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock transcription factors (HSFs) play important roles in the cellular response to physiological stress signals. To examine the control of HSF activity, we undertook a yeast two-hybrid screen for proteins interacting with Drosophila HSF. DROJ1, the fly counterpart of the human heat shock protein HSP40/HDJ1, was identified as the dominant interacting protein (15 independent isolates from 58 candidates). Overexpression of DROJ1 in Drosophila SL2 cells delays the onset of the heat shock response. Moreover, RNA interference involving transfection of SL2 cells with double-stranded droj1 RNA depletes the endogenous level of DROJ1 protein, leading to constitutive activation of endogenous heat shock genes. The induction level, modest when DROJ1 was depleted alone, reached maximal levels when DROJ1 and HSP70/HSC70, or DROJ1 and HSP90, were depleted concurrently. Chaperone co-depletion was also correlated with strong induction of the DNA binding activity of HSF. Our findings support a model in which synergistic interactions between DROJ1 and the HSP70/HSC70 and HSP90 chaperones modulate HSF activity by feedback repression.
Collapse
Affiliation(s)
| | - Carl Wu
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 5E-26, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
26
|
Bharadwaj S, Ali A, Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 1999; 19:8033-41. [PMID: 10567529 PMCID: PMC84888 DOI: 10.1128/mcb.19.12.8033] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and transient activation of heat shock genes in response to stress is mediated in eukaryotes by the heat shock transcription factor HSF1. It is well established that cells maintain a dynamic equilibrium between inactive HSF1 monomers and transcriptionally active trimers, but little is known about the mechanism linking HSF1 to reception of various stress stimuli or the factors controlling oligomerization. Recent reports have revealed that HSP90 regulates key steps in the HSF1 activation-deactivation process. Here, we tested the hypothesis that components of the HSP90 chaperone machine, known to function in the folding and maturation of steroid receptors, might also participate in HSF1 regulation. Mobility supershift assays using antibodies against chaperone components demonstrate that active HSF1 trimers exist in a heterocomplex with HSP90, p23, and FKBP52. Functional in vivo experiments in Xenopus oocytes indicate that components of the HSF1 heterocomplex, as well as other components of the HSP90 cochaperone machine, are involved in regulating oligomeric transitions. Elevation of the cellular levels of cochaperones affected the time of HSF1 deactivation during recovery: attenuation was delayed by immunophilins, and accelerated by HSP90, Hsp/c70, Hip, or Hop. In immunotargeting experiments with microinjected antibodies, disruption of HSP90, Hip, Hop, p23, FKBP51, and FKBP52 delayed attenuation. In addition, HSF1 was activated under nonstress conditions after immunotargeting of HSP90 and p23, evidence that these proteins remain associated with HSF1 monomers and function in their repression in vivo. The remarkable similarity of HSF1 complex chaperones identified here (HSP90, p23, and FKBP52) and components in mature steroid receptor complexes suggests that HSF1 oligomerization is regulated by a foldosome-type mechanism similar to steroid receptor pathways. The current evidence leads us to propose a model in which HSF1, HSP90 and p23 comprise a core heterocomplex required for rapid conformational switching through interaction with a dynamic series of HSP90 subcomplexes.
Collapse
Affiliation(s)
- S Bharadwaj
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | |
Collapse
|
27
|
Lin JT, Lis JT. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:3237-45. [PMID: 10207049 PMCID: PMC84118 DOI: 10.1128/mcb.19.5.3237] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1998] [Accepted: 01/12/1999] [Indexed: 12/15/2022] Open
Abstract
Upon heat shock, transcription of many stress-inducible genes is rapidly and dramatically stimulated by heat shock factor (HSF). A central region of the yeast HSF (designated HSFrr for "repression region") was previously identified and proposed to be involved in repressing the activation domain under non-heat-shock conditions. Here, we used the phage display system to isolate proteins that interact with HSFrr. This should identify factors that modulate HSF activity or directly participate in HSF-mediated transcriptional activation. We constructed a randomly sheared yeast genomic library to express yeast proteins on the surface of lambda phage. HSFrr binding phages were selected by cycles of affinity chromatography. DNA sequencing identified an HSFrr-interacting phage that contains the GAC1 gene. The GAC1 gene encodes the regulatory subunit for a type 1 serine/threonine phosphoprotein phosphatase, Glc7. Both gac1 and glc7 mutations had little effect on HSF activation of gene transcription of two heat shock genes, SSA4 and HSP82. In contrast, heat shock induction of CUP1 gene expression was completely abolished in a glc7 mutant and reduced in a gac1 mutant. The results demonstrate that the Glc7 phosphatase and its Gac1 regulatory subunit play positive roles in HSF activation of CUP1 transcription.
Collapse
Affiliation(s)
- J T Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA.
| | | |
Collapse
|
28
|
Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 1998; 18:4949-60. [PMID: 9710578 PMCID: PMC109079 DOI: 10.1128/mcb.18.9.4949] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of heat shock genes is a reversible and multistep process involving conversion of inactive heat shock factor 1 (HSF1) monomers into heat shock element (HSE)-binding homotrimers, hyperphosphorylation, and further modifications that induce full transcriptional competence. HSF1 is controlled by multiple regulatory mechanisms, including suppression by additional cellular factors, physical interactions with HSP70, and integration into different cellular signaling cascades. However, the signaling mechanisms by which cells respond to stress and control the HSF1 activation-deactivation pathway are not known. Here we demonstrate that HSP90, a cellular chaperone known to regulate several signal transduction molecules and transcription factors, functions in the regulation of HSF1. The existence of HSF1-HSP90 heterocomplexes was shown by coimmunoprecipitation of HSP90 with HSF1 from unshocked and heat-shocked nuclear extracts, recognition of HSF1-HSE complexes in vitro by using HSP90 antibodies (Abs), and recognition of HSF1 in vivo by HSP90 Abs microinjected directly into oocyte nuclei. The functional impact of HSP90-HSF1 interactions was analyzed by using two strategies: direct nuclear injection of HSP90 Abs and treatment of cells with geldanamycin (GA), an agent that specifically blocks the chaperoning activity of HSP90. Both HSP90 Abs and GA delayed the disassembly of HSF1 trimers during recovery from heat shock and specifically inhibited heat-induced transcription from a chloramphenicol acetyltransferase reporter construct under control of the hsp70 promoter. HSP90 Abs activated HSE binding in the absence of heat shock, an effect that could be reversed by subsequent injection of purified HSP90. GA did not activate HSE binding under nonshock conditions but increased the quantity of HSE binding induced by heat shock. On the basis of these findings and the known properties of HSP90, we propose a new regulatory model in which HSP90 participates in modulating HSF1 at different points along the activation-deactivation pathway, influencing the interconversion between monomeric and trimeric conformations as well as transcriptional activation. We also put forth the hypothesis that HSP90 links HSF1 to cellular signaling molecules coordinating the stress response.
Collapse
Affiliation(s)
- A Ali
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
29
|
Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 1998; 12:1962-74. [PMID: 9649501 PMCID: PMC316975 DOI: 10.1101/gad.12.13.1962] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/28/1998] [Indexed: 11/24/2022]
Abstract
In response to stress, heat shock factor 1 (HSF1) acquires rapid DNA binding and transient transcriptional activity while undergoing conformational transition from an inert non-DNA-binding monomer to active functional trimers. Attenuation of the inducible transcriptional response occurs during heat shock or upon recovery at non-stress conditions and involves dissociation of the HSF1 trimer and loss of activity. We have used the hydrophobic repeats of the HSF1 trimerization domain in the yeast two-hybrid protein interaction assay to identify heat shock factor binding protein 1 (HSBP1), a novel, conserved, 76-amino-acid protein that contains two extended arrays of hydrophobic repeats that interact with the HSF1 heptad repeats. HSBP1 is nuclear-localized and interacts in vivo with the active trimeric state of HSF1 that appears during heat shock. During attenuation of HSF1 to the inert monomer, HSBP1 associates with Hsp70. HSBP1 negatively affects HSF1 DNA-binding activity, and overexpression of HSBP1 in mammalian cells represses the transactivation activity of HSF1. To establish a biological role for HSBP1, the homologous Caenorhabditis elegans protein was overexpressed in body wall muscle cells and was shown to block activation of the heat shock response from a heat shock promoter-reporter construct. Alteration in the level of HSBP1 expression in C. elegans has severe effects on survival of the animals after thermal and chemical stress, consistent with a role for HSBP1 as a negative regulator of the heat shock response.
Collapse
Affiliation(s)
- S H Satyal
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208 USA
| | | | | | | | | |
Collapse
|
30
|
Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 1998; 18:2240-51. [PMID: 9528795 PMCID: PMC121470 DOI: 10.1128/mcb.18.4.2240] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 01/12/1998] [Indexed: 02/07/2023] Open
Abstract
In heat-stressed (HS) tomato (Lycopersicon peruvianum) cell cultures, the constitutively expressed HS transcription factor HsfA1 is complemented by two HS-inducible forms, HsfA2 and HsfB1. Because of its stability, HsfA2 accumulates to fairly high levels in the course of a prolonged HS and recovery regimen. Using immunofluorescence and cell fractionation experiments, we identified three states of HsfA2: (i) a soluble, cytoplasmic form in preinduced cultures maintained at 25 degrees C, (ii) a salt-resistant, nuclear form found in HS cells, and (iii) a stored form of HsfA2 in cytoplasmic HS granules. The efficient nuclear transport of HsfA2 evidently requires interaction with HsfA1. When expressed in tobacco protoplasts by use of a transient-expression system, HsfA2 is mainly retained in the cytoplasm unless it is coexpressed with HsfA1. The essential parts for the interaction and nuclear cotransport of the two Hsfs are the homologous oligomerization domain (HR-A/B region of the A-type Hsfs) and functional nuclear localization signal motifs of both partners. Direct physical interaction of the two Hsfs with formation of relatively stabile hetero-oligomers was shown by a two-hybrid test in Saccharomyces cerevisiae as well as by coimmunoprecipitation using tomato and tobacco whole-cell lysates.
Collapse
Affiliation(s)
- K D Scharf
- Department of Molecular Cell Biology, Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 1998; 17:1750-8. [PMID: 9501096 PMCID: PMC1170522 DOI: 10.1093/emboj/17.6.1750] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vertebrate genome encodes a family of heat shock factors (HSFs 1-4) of which the DNA-binding and transcriptional activities of HSF1 and HSF3 are activated upon heat shock. HSF1 has the properties of a classical HSF and exhibits rapid activation of DNA-binding and transcriptional activity upon exposure to conditions of heat shock and other stresses, whereas HSF3 typically is activated at higher temperatures and with distinct delayed kinetics. To address the role of HSF3 in the heat shock response, null cells lacking the HSF3 gene were constructed by disruption of the resident gene by somatic recombination in an avian lymphoid cell line. Null cells lacking HSF3, yet expressing normal levels of HSF1, exhibited a severe reduction in the heat shock response, as measured by inducible expression of heat shock genes, and did not exhibit thermotolerance. At intermediate heat shock temperatures, where HSF1 oligomerizes to an active trimer in wild-type cells, HSF1 remained as an inert monomer in the HSF3 null cell line. HSF3 null cells were restored to a nearly normal heat shock-responsive state by reintroduction of an exogenous HSF3 gene. These results reveal that HSF3 has a dominant role in the regulation of the heat shock response and directly influences HSF1 activity.
Collapse
Affiliation(s)
- M Tanabe
- Department of Cell Biology, Chest Disease Research Institute, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The rapid yet transient transcriptional activation of heat shock genes is mediated by the reversible conversion of HSF1 from an inert negatively regulated monomer to a transcriptionally active DNA-binding trimer. During attenuation of the heat shock response, transcription of heat shock genes returns to basal levels and HSF1 reverts to an inert monomer. These events coincide with elevated levels of Hsp70 and other heat shock proteins (molecular chaperones). Here, we show that the molecular chaperone Hsp70 and the cochaperone Hdj1 interact directly with the transactivation domain of HSF1 and repress heat shock gene transcription. Overexpression of either chaperone represses the transcriptional activity of a transfected GAL4-HSF1 activation domain fusion protein and endogenous HSF1. As neither the activation of HSF1 DNA binding nor inducible phosphorylation of HSF1 was affected, the primary autoregulatory role of Hsp70 is to negatively regulate HSF1 transcriptional activity. These results reveal that the repression of heat shock gene transcription, which occurs during attenuation, is due to the association of Hsp70 with the HSF1 transactivation domain, thus providing a plausible explanation for the role of molecular chaperones in at least one key step in the autoregulation of the heat shock response.
Collapse
Affiliation(s)
- Y Shi
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
33
|
Farkas T, Kutskova YA, Zimarino V. Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol 1998; 18:906-18. [PMID: 9447987 PMCID: PMC108802 DOI: 10.1128/mcb.18.2.906] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathway leading to transcriptional activation of heat shock genes involves a step of heat shock factor 1 (HSF1) trimerization required for high-affinity binding of this activator protein to heat shock elements (HSEs) in the promoters. Previous studies have shown that in vivo the trimerization is negatively regulated at physiological temperatures by a mechanism that requires multiple hydrophobic heptad repeats (HRs) which may form a coiled coil in the monomer. To investigate the minimal requirements for negative regulation, in this work we have examined mouse HSF1 translated in rabbit reticulocyte lysate or extracted from Escherichia coli after limited expression. We show that under these conditions HSF1 behaves as a monomer which can be induced by increases in temperature to form active HSE-binding trimers and that mutations of either HR region cause activation in both systems. Furthermore, temperature elevations and acidic buffers activate purified HSF1, and mild proteolysis excises fragments which form HSE-binding oligomers. These results suggest that oligomerization can be repressed in the monomer, as previously proposed, and that repression can be relieved in the apparent absence of regulatory proteins. An intramolecular mechanism may be central for the regulation of this transcription factor in mammalian cells, although not necessarily sufficient.
Collapse
Affiliation(s)
- T Farkas
- Biological and Technological Research Department (DIBIT), San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
34
|
Orosz A, Wisniewski J, Wu C. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Mol Cell Biol 1996; 16:7018-30. [PMID: 8943357 PMCID: PMC231705 DOI: 10.1128/mcb.16.12.7018] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heat shock transcription factor (HSF) is a multidomain protein that exists as a monomer under normal conditions and is reversibly induced upon heat shock to a trimeric state that binds to DNA with high affinity. The maintenance of the monomeric state is dependent on hydrophobic heptad repeats located at the amino- and carboxy-terminal regions which have been proposed to form an intramolecular coiled-coil structure. In a systematic deletion analysis to identify other regions of HSF that may be required to regulate its oligomeric state, we have found that local sequences encompassing the carboxy-terminal end of the DNA binding domain and a broad region of HSF between the heptad repeats also contribute to this regulation. Immunocytochemical analysis of mutant HSF proteins revealed a canonical motif required for nuclear localization. HSF proteins lacking the nuclear localization signal remain in the cytoplasm, but these HSFs nonetheless exhibit reversible heat stress-inducible trimerization. The results indicate that the signals that regulate HSF trimerization operate in both the nuclear and cytoplasmic compartments of the cell.
Collapse
Affiliation(s)
- A Orosz
- Laboratory of Molecular Cell Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
35
|
Nakai A, Kawazoe Y, Tanabe M, Nagata K, Morimoto RI. The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol Cell Biol 1995; 15:5268-78. [PMID: 7565675 PMCID: PMC230774 DOI: 10.1128/mcb.15.10.5268] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythroblast cell line HD6, the lymphoblast cell line MSB, and embryo fibroblasts, and yet its DNA-binding activity is induced only upon exposure of HD6 cells to heat shock. Acquisition of HSF3 DNA-binding activity in HD6 cells is accompanied by oligomerization from a non-DNA-binding dimer to a DNA-binding trimer, whereas the effect of heat shock on HSF1 is oligomerization of an inert monomer to a DNA-binding trimer. Induction of HSF3 DNA-binding activity is delayed compared with that of HSF1. As occurs for HSF1, heat shock leads to the translocation of HSF3 to the nucleus. HSF exhibits the properties of a transcriptional activator, as judged from the stimulatory activity of transiently overexpressed HSF3 measured by using a heat shock element-containing reporter construct and as independently assayed by the activity of a chimeric GAL4-HSF3 protein on a GAL4 reporter construct. These results reveal that HSF3 is negatively regulated in avian cells and acquires DNA-binding activity in certain cells upon heat shock.
Collapse
Affiliation(s)
- A Nakai
- Department of Cell Biology, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
Living cells, both prokaryotic and eukaryotic, employ specific sensory and signalling systems to obtain and transmit information from their environment in order to adjust cellular metabolism, growth, and development to environmental alterations. Among external factors that trigger such molecular communications are nutrients, ions, drugs and other compounds, and physical parameters such as temperature and pressure. One could consider stress imposed on cells as any disturbance of the normal growth condition and even as any deviation from optimal growth circumstances. It may be worthwhile to distinguish specific and general stress circumstances. Reasoning from this angle, the extensively studied response to heat stress on the one hand is a specific response of cells challenged with supra-optimal temperatures. This response makes use of the sophisticated chaperoning mechanisms playing a role during normal protein folding and turnover. The response is aimed primarily at protection and repair of cellular components and partly at acquisition of heat tolerance. In addition, heat stress conditions induce a general response, in common with other metabolically adverse circumstances leading to physiological perturbations, such as oxidative stress or osmostress. Furthermore, it is obvious that limitation of essential nutrients, such as glucose or amino acids for yeasts, leads to such a metabolic response. The purpose of the general response may be to promote rapid recovery from the stressful condition and resumption of normal growth. This review focuses on the changes in gene expression that occur when cells are challenged by stress, with major emphasis on the transcription factors involved, their cognate promoter elements, and the modulation of their activity upon stress signal transduction. With respect to heat shock-induced changes, a wealth of information on both prokaryotic and eukaryotic organisms, including yeasts, is available. As far as the concept of the general (metabolic) stress response is concerned, major attention will be paid to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- W H Mager
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
37
|
Zuo J, Rungger D, Voellmy R. Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 1995; 15:4319-30. [PMID: 7623826 PMCID: PMC230671 DOI: 10.1128/mcb.15.8.4319] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Upon heat stress, monomeric human heat shock transcription factor 1 (hHSF1) is converted to a trimer, acquires DNA-binding ability, is transported to the nucleus, and becomes transcriptionally competent. It was not known previously whether these regulatory changes are caused by a single activation event or whether they occur independently from one another, providing a multilayered control that may prevent inadvertant activation of hHSF1. Comparison of wild-type and mutant hHSF1 expressed in Xenopus oocytes and human HeLa cells suggested that retention of hHSF1 in the monomeric form depends on hydrophobic repeats (LZ1 to LZ3) and a carboxy-terminal sequence element in hHSF1 as well as on the presence of a titratable factor in the cell. Oligomerization of hHSF1 appears to induce DNA-binding activity as well as to uncover an amino-terminally located nuclear localization signal. A mechanism distinct from that controlling oligomerization regulates the transcriptional competence of hHSF1. Components of this mechanism were mapped to a region, including LZ2 and nearby sequences downstream from LZ2, that is clearly separated from the carboxy-terminally located transcription activation domain(s). We propose the existence of a fold-back structure that masks the transcription activation domain in the unstressed cell but is opened up by modification of hHSF1 and/or binding of a factor facilitating hHSF1 unfolding in the stressed cell. Activation of hHSF1 appears to involve at least two independently regulated structural transitions.
Collapse
Affiliation(s)
- J Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
38
|
Abstract
Here we present an in vivo footprinting analysis of the Saccharomyces cerevisiae HSP82 promoter. Consistent with current models, we find that yeast heat shock factor (HSF) binds to strong heat shock elements (HSEs) in non-heat-shocked cells. Upon heat shock, however, additional binding of HSF becomes apparent at weak HSEs of the promoter as well. Recovery from heat shock results in a dramatic reduction in HSF binding at both strong and weak HSEs, consistent with a model in which HSF binding is subject to a negative feedback regulation by heat shock proteins. In vivo KMnO4 footprinting reveals that the interaction of the TATA-binding protein (TBP) with this promoter is also modulated: heat shock slightly increases TBP binding to the promoter and this binding is reduced upon recovery from heat shock. KMnO4 footprinting does not reveal a high density of polymerase at the promoter prior to heat shock, but a large open complex between the transcriptional start site and the TATA box is formed rapidly upon activation, similar to that observed in other yeast genes.
Collapse
Affiliation(s)
- C Giardina
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
39
|
Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95:1446-56. [PMID: 7706448 PMCID: PMC295626 DOI: 10.1172/jci117815] [Citation(s) in RCA: 659] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myocardial protection and changes in gene expression follow whole body heat stress. Circumstantial evidence suggests that an inducible 70-kD heat shock protein (hsp70i), increased markedly by whole body heat stress, contributes to the protection. Transgenic mouse lines were constructed with a cytomegalovirus enhancer and beta-actin promoter driving rat hsp70i expression in heterozygote animals. Unstressed, transgene positive mice expressed higher levels of myocardial hsp70i than transgene negative mice after whole body heat stress. This high level of expression occurred without apparent detrimental effect. The hearts harvested from transgene positive mice and transgene negative littermates were Langendorff perfused and subjected to 20 min of warm (37 degrees C) zero-flow ischemia and up to 120 min of reflow while contractile recovery and creatine kinase efflux were measured. Myocardial infarction was demarcated by triphenyltetrazolium. In transgene positive compared with transgene negative hearts, the zone of infarction was reduced by 40%, contractile function at 30 min of reflow was doubled, and efflux of creatine kinase was reduced by approximately 50%. Our findings suggest for the first time that increased myocardial hsp70i expression results in protection of the heart against ischemic injury and that the antiischemic properties of hsp70i have possible therapeutic relevance.
Collapse
Affiliation(s)
- M S Marber
- Department of Medicine, University of California at San Diego, 92103, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kim D, Ouyang H, Li GC. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1. Proc Natl Acad Sci U S A 1995; 92:2126-30. [PMID: 7892235 PMCID: PMC42436 DOI: 10.1073/pnas.92.6.2126] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells.
Collapse
Affiliation(s)
- D Kim
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | |
Collapse
|