1
|
Sáez Moreno D, Udi Q, Azeredo J, Domingues L. Towards T7 RNA polymerase (T7RNAP)-based expression system in yeast: challenges and opportunities. Bioengineered 2022; 13:14947-14959. [PMID: 37105766 DOI: 10.1080/21655979.2023.2180579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.
Collapse
Affiliation(s)
- David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Qimron Udi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| |
Collapse
|
2
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
3
|
Kisly I, Kattel C, Remme J, Tamm T. Luciferase-based reporter system for in vitro evaluation of elongation rate and processivity of ribosomes. Nucleic Acids Res 2021; 49:e59. [PMID: 33684199 PMCID: PMC8191769 DOI: 10.1093/nar/gkab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The elongation step of translation is a key contributor to the abundance, folding and quality of proteins and to the stability of mRNA. However, control over translation elongation has not been thoroughly investigated. In this study, a Renilla-firefly luciferase fusion reporter system was further developed to investigate the in vitro elongation rate and processivity of ribosomes independent of the initiation and termination steps. The reporter mRNA was constructed to contain a single ORF encoding in-frame Renilla luciferase, a specific domain moiety and firefly luciferase. Such a reporter structure enables the quantitative and individual evaluation of the synthesis of a specific domain. As a proof of principle, the synthesis of three protein domains of different lengths and structures was analyzed. Using a cell-free translation assay, both the elongation rate and processivity of ribosomes were shown to vary depending on the domain synthesized. Additionally, a stalling sequence consisting of ten rare arginine codons notably reduced the elongation rate and the processivity of the ribosomes. All these results are consistent with the previously known dynamics of elongation in vivo. Overall, the methodology presented in this report provides a framework for studying aspects that contribute to the elongation step of translation.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Carolin Kattel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
4
|
Gaba A, Wang H, Qu X. An In Vitro Single-Molecule Imaging Assay for the Analysis of Cap-Dependent Translation Kinetics. J Vis Exp 2020. [PMID: 33016943 DOI: 10.3791/61648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cap-dependent protein synthesis is the predominant translation pathway in eukaryotic cells. While various biochemical and genetic approaches have allowed extensive studies of cap-dependent translation and its regulation, high resolution kinetic characterization of this translation pathway is still lacking. Recently, we developed an in vitro assay to measure cap-dependent translation kinetics with single-molecule resolution. The assay is based on fluorescently labeled antibody binding to nascent epitope-tagged polypeptide. By imaging the binding and dissociation of antibodies to and from nascent peptide-ribosome-mRNA complexes, the translation progression on individual mRNAs can be tracked. Here, we present a protocol for establishing this assay, including mRNA and PEGylated slide preparations, real-time imaging of translation, and analysis of single molecule trajectories. This assay enables tracking of individual cap-dependent translation events and resolves key translation kinetics, such as initiation and elongation rates. The assay can be widely applied to distinct translation systems and should broadly benefit in vitro studies of cap-dependent translation kinetics and translational control mechanisms.
Collapse
Affiliation(s)
- Anthony Gaba
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center
| | - Hongyun Wang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center
| | - Xiaohui Qu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center;
| |
Collapse
|
5
|
Alekhina OM, Terenin IM, Dmitriev SE, Vassilenko KS. Functional Cyclization of Eukaryotic mRNAs. Int J Mol Sci 2020; 21:ijms21051677. [PMID: 32121426 PMCID: PMC7084953 DOI: 10.3390/ijms21051677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
The closed-loop model of eukaryotic translation states that mRNA is circularized by a chain of the cap-eIF4E-eIF4G-poly(A)-binding protein (PABP)-poly(A) interactions that brings 5' and 3' ends together. This circularization is thought to promote the engagement of terminating ribosomes to a new round of translation at the same mRNA molecule, thus enhancing protein synthesis. Despite the general acceptance and the elegance of the hypothesis, it has never been proved experimentally. Using continuous in situ monitoring of luciferase synthesis in a mammalian in vitro system, we show here that the rate of translation initiation at capped and polyadenylated reporter mRNAs increases after the time required for the first ribosomes to complete mRNA translation. Such acceleration strictly requires the presence of a poly(A)-tail and is abrogated by the addition of poly(A) RNA fragments or m7GpppG cap analog to the translation reaction. The optimal functional interaction of mRNA termini requires 5' untranslated region (UTR) and 3' UTR of moderate lengths and provides stronger acceleration, thus a longer poly(A)-tail. Besides, we revealed that the inhibitory effect of the dominant negative R362Q mutant of initiation factor eIF4A diminishes in the course of translation reaction, suggesting a relaxed requirement for ATP. Taken together, our results imply that, upon the functional looping of an mRNA, the recycled ribosomes can be recruited to the start codon of the same mRNA molecule in an eIF4A-independent fashion. This non-canonical closed-loop assisted reinitiation (CLAR) mode provides efficient translation of the functionally circularized mRNAs.
Collapse
Affiliation(s)
- Olga M. Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ilya M. Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (S.E.D.); (K.S.V.); Tel.: +7-903-2220066 (S.E.D.); +7-496-7318232 (K.S.V.)
| | - Konstantin S. Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
- Correspondence: (S.E.D.); (K.S.V.); Tel.: +7-903-2220066 (S.E.D.); +7-496-7318232 (K.S.V.)
| |
Collapse
|
6
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
7
|
Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, Du WW, Yang BB. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019; 26:2758-2773. [PMID: 31092884 PMCID: PMC7224378 DOI: 10.1038/s41418-019-0337-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/17/2019] [Accepted: 04/12/2019] [Indexed: 01/04/2023] Open
Abstract
Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5′-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Zhidong Yuan
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kevin Y Du
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ling Fang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,China-Japan Union Hospital of Jilin University, Jilin, China
| | - Juanjuan Lyu
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chao Zhang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Alina He
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Esra Eshaghi
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kaixuan Zeng
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jian Ma
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - William W Du
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, S-Wing Research Building, 2075 Bayview Ave, Toronto, M4N 3M5, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK, Xu X, Altmann M, Cochrane A, Woolley GA. A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation. ACS Synth Biol 2019; 8:744-757. [PMID: 30901519 DOI: 10.1021/acssynbio.8b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mostafizur Mazumder
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anil Kumar
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric K. Leis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstr. 28, CH-3012 Bern, Switzerland
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Kraft JJ, Peterson MS, Cho SK, Wang Z, Hui A, Rakotondrafara AM, Treder K, Miller CL, Miller WA. The 3' Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens 2019; 8:E28. [PMID: 30823456 PMCID: PMC6471432 DOI: 10.3390/pathogens8010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
Many plant viral RNA genomes lack a 5' cap, and instead are translated via a cap-independent translation element (CITE) in the 3' untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host's translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Mariko S Peterson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sung Ki Cho
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA.
| | - Zhaohui Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Alice Hui
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute⁻National Research Institute, 76-009 Bonin, Poland.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Keiper BD. Cap-Independent mRNA Translation in Germ Cells. Int J Mol Sci 2019; 20:ijms20010173. [PMID: 30621249 PMCID: PMC6337596 DOI: 10.3390/ijms20010173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular mRNAs in plants and animals have a 5'-cap structure that is accepted as the recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when cells are in great distress. However, situations where CI translation coexists with CD translation are now known. In such cases, CI translation is still a minor mechanism in the major background of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a robust partner to CD translation to carry out the translational control that is so prevalent in germ cell development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis, while CD translation governs the regulated protein synthesis that ushers these meiotic cells through the remarkable steps in sperm/oocyte differentiation.
Collapse
Affiliation(s)
- Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
11
|
Abstract
In contrast to well-established internal ribosomal entry site (IRES)-mediated translational initiation in animals and plants, no IRESs were established in fungal viral or cellular RNAs. To identify IRES elements in mycoviruses, we developed a luciferase-based dual-reporter detection system in Cryphonectria parasitica, a model filamentous fungus for virus-host interactions. A bicistronic construct entails a codon-optimized Renilla and firefly luciferase (ORluc and OFluc, respectively) gene, between which potential IRES sequences can be inserted. In this system, ORluc serves as an internal control, while OFluc represents IRES activity. Virus sequences in the 5′ untranslated regions (UTRs) of the genomes of diverse positive-sense single-stranded RNA and double-stranded RNA (dsRNA) viruses were analyzed. The results show relatively high IRES activities for Cryphonectria hypovirus 1 (CHV1) and CHV2 and faint but measurable activity for CHV3. The weak IRES signal of CHV3 may be explained by its monocistronic nature, differing from the bicistronic nature of CHV1 and CHV2. This would allow these three hypoviruses to have similar rates of translation of replication-associated protein per viral mRNA molecule. The importance of 24 5′-proximal codons of CHV1 as well as the 5′ UTR for IRES function was confirmed. Furthermore, victoriviruses and chrysoviruses tested IRES positive, whereas mycoreoviruses, partitiviruses, and quadriviruses showed similar Fluc activities as the negative controls. Overall, this study represents the first development of an IRES identification system in filamentous fungi based on the codon-optimized dual-luciferase assay and provides evidence for IRESs in filamentous fungi. Cap-independent, internal ribosomal entry site (IRES)-mediated translational initiation is often used by virus mRNAs and infrequently by cellular mRNAs in animals and plants. However, no IRESs have been established in fungal virus RNAs or cellular RNAs in filamentous fungi. Here, we report the development of a dual-luciferase assay system and measurement of the IRES activities of fungal RNA viruses in a model filamentous fungal host, Cryphonectria parasitica. Viruses identified as IRES positive include hypoviruses (positive-sense RNA viruses, members of the expanded Picornavirus supergroup), totiviruses (nonsegmented dsRNA viruses), and chrysoviruses (tetrasegmented dsRNA viruses). No IRES activities were observed in the 5′ untranslated regions of mycoreoviruses (11-segmented dsRNA viruses), quadriviruses (tetrasegmented dsRNA viruses), or partitiviruses (bisegmented dsRNA viruses). This study provides the first evidence for IRES activities in diverse RNA viruses in filamentous fungi and is a first step toward identifying trans-acting host factors and cis-regulatory viral RNA elements.
Collapse
|
12
|
Osuna BA, Howard CJ, KC S, Frost A, Weinberg DE. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. eLife 2017; 6:e27949. [PMID: 28718767 PMCID: PMC5562442 DOI: 10.7554/elife.27949] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.
Collapse
Affiliation(s)
- Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Subheksha KC
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Sandler Faculty Fellows Program, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Guo W, Sheng J, Feng X. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products. Comput Struct Biotechnol J 2017; 15:161-167. [PMID: 28179978 PMCID: PMC5288458 DOI: 10.1016/j.csbj.2017.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 11/23/2022] Open
Abstract
With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| |
Collapse
|
14
|
mRNA length-sensing in eukaryotic translation: reconsidering the "closed loop" and its implications for translational control. Curr Genet 2016; 63:613-620. [PMID: 28028558 DOI: 10.1007/s00294-016-0674-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
Most eukaryotic mRNAs are recruited to the ribosome by recognition of a 5' m7GpppN cap. 30 years of genetic and biochemical evidence point to a role for interaction between the 5' cap-interacting factors and the 3' poly(A)-binding protein in bringing the ends of the mRNA into close proximity and promoting both translation and stability of the mRNA, in a form known as the "closed loop". However, the results of recent RNA-protein interaction studies suggest that not all mRNAs have equal access to the closed loop factors. Furthermore, association with closed loop factors appears to be highly biased towards mRNAs with short open reading frames, echoing the trend for higher translation of short mRNAs that has been observed in many eukaryotes. We recently reported that the ribosomal signaling scaffold protein RACK1 promotes the efficient translation of short mRNAs that strongly associate with the closed loop factors. Here, we discuss the implications of these observations with respect to translational control and suggest avenues through which the universality of the closed loop in eukaryotic translation could be revisited.
Collapse
|
15
|
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:4115-4125. [PMID: 27770025 PMCID: PMC5144980 DOI: 10.1534/g3.116.033035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.
Collapse
|
16
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
17
|
Kim JJ, Yu J, Bag J, Bakovic M, Cant JP. Translation attenuation via 3' terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk. RNA Biol 2015; 12:354-67. [PMID: 25826667 DOI: 10.1080/15476286.2015.1017231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5' and 3' UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5' and 3' UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3' terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2.
Collapse
Key Words
- 40S, small ribosomal subunit
- 60S, large ribosomal subunit
- AA, amino acid
- ARE, AU-rich element
- Apaf-1, apoptosis protease activating factor 1
- DLG1, disc large 1 ncosuppressor
- FMR1, fragile X mental retardation 1
- HRP, horseradish eroxidase
- IE, inhibitory element
- IRE, iron-responsive element
- IRES, nternal ribosome entry site
- IRP, iron-regulatory protein
- MACT, bovine mammary epithelial cell
- PABP, poly(A) binding protein
- PAGE, polyacrylamide gel electrophoresis
- PCR, polymerase chain reaction
- PVDF, polyvinylidene fluoride
- RACE, rapid amplification of cDNA ends
- RBP, RNA-binding protein
- RRL, rabbit reticulocyte lysate
- RT, reverse transcription
- SDS, sodium dodecyl sulfate
- SE, standard error
- STR, single-stranded nucleic acid binding protein
- TBS-T, Tris-buffered saline containing 0.5%
- TfR, transferrin receptor
- Tween 20
- UTR, untranslated region
- aa-tRNA, aminoacyl-tRNA
- aaRS, aminoacyl-tRNA synthetase
- bovine casein
- cDNA, complementary DNA
- cell-free translation
- coding region
- codon usage
- eEF, eukaryotic elongation factor
- eIF, eukaryotic initiation factor
- eRF, eukaryotic termination factor
- m7G, 7-methylated uanidine
- mRNA, messenger RNA
- qPCR, real-time polymerase chain reaction
- sAUG, start codon
- tRNA, transfer RNA
- translational efficiency
- uAUG, upstream start codon
- uORF, open reading frame
- untranslated region
- ΔG, free energy
Collapse
Affiliation(s)
- Julie J Kim
- a Animal and Poultry Science; University of Guelph ; Guelph , Ontario , Canada
| | | | | | | | | |
Collapse
|
18
|
Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association. BMC Genomics 2015; 16:1059. [PMID: 26666532 PMCID: PMC4678720 DOI: 10.1186/s12864-015-2266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Background The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5’-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. Results Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. Conclusions We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Liliana Pardo-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
19
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
20
|
Lupberger J, Casanova C, Fischer B, Weiss A, Fofana I, Fontaine N, Fujiwara T, Renaud M, Kopp A, Schuster C, Brino L, Baumert TF, Thoma C. PI4K-beta and MKNK1 are regulators of hepatitis C virus IRES-dependent translation. Sci Rep 2015; 5:13344. [PMID: 26323588 PMCID: PMC4555030 DOI: 10.1038/srep13344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
Cellular translation is down-regulated by host antiviral responses. Picornaviridae and Flaviviridae including hepatitis C virus (HCV) evade this process using internal ribosomal entry sequences (IRESs). Although HCV IRES translation is a prerequisite for HCV replication, only few host factors critical for IRES activity are known and the global regulator network remains largely unknown. Since signal transduction is an import regulator of viral infections and the host antiviral response we combined a functional RNAi screen targeting the human signaling network with a HCV IRES-specific reporter mRNA assay. We demonstrate that the HCV host cell cofactors PI4K and MKNK1 are positive regulators of HCV IRES translation representing a novel pathway with a functional relevance for the HCV life cycle and IRES-mediated translation of viral RNA.
Collapse
Affiliation(s)
- Joachim Lupberger
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Claudia Casanova
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Benoit Fischer
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Amelie Weiss
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Isabel Fofana
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Nelly Fontaine
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Toshinobu Fujiwara
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mickael Renaud
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Arnaud Kopp
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Catherine Schuster
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France
| | - Laurent Brino
- High Throughput Screening platform, IGBMC, UMR7104 CNRS UdS, Inserm, U964, Illkirch, France
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques Strasbourg, France.,Université de Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Christian Thoma
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
The DHX33 RNA Helicase Promotes mRNA Translation Initiation. Mol Cell Biol 2015; 35:2918-31. [PMID: 26100019 DOI: 10.1128/mcb.00315-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.
Collapse
|
22
|
Norred SE, Caveney PM, Retterer ST, Boreyko JB, Fowlkes JD, Collier CP, Simpson ML. Sealable femtoliter chamber arrays for cell-free biology. J Vis Exp 2015:52616. [PMID: 25867144 PMCID: PMC4401254 DOI: 10.3791/52616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g., global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Here we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques used in cellular systems to characterize CFPS gene circuits and their interactions with the cell-free environment.
Collapse
Affiliation(s)
- Sarah Elizabeth Norred
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Patrick M Caveney
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Scott T Retterer
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jonathan B Boreyko
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jason D Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville
| | | | - Michael L Simpson
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville;
| |
Collapse
|
23
|
Costello J, Castelli LM, Rowe W, Kershaw CJ, Talavera D, Mohammad-Qureshi SS, Sims PFG, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Global mRNA selection mechanisms for translation initiation. Genome Biol 2015; 16:10. [PMID: 25650959 PMCID: PMC4302535 DOI: 10.1186/s13059-014-0559-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Background The selection and regulation of individual mRNAs for translation initiation from a competing pool of mRNA are poorly understood processes. The closed loop complex, comprising eIF4E, eIF4G and PABP, and its regulation by 4E-BPs are perceived to be key players. Using RIP-seq, we aimed to evaluate the role in gene regulation of the closed loop complex and 4E-BP regulation across the entire yeast transcriptome. Results We find that there are distinct populations of mRNAs with coherent properties: one mRNA pool contains many ribosomal protein mRNAs and is enriched specifically with all of the closed loop translation initiation components. This class likely represents mRNAs that rely heavily on the closed loop complex for protein synthesis. Other heavily translated mRNAs are apparently under-represented with most closed loop components except Pab1p. Combined with data showing a close correlation between Pab1p interaction and levels of translation, these data suggest that Pab1p is important for the translation of these mRNAs in a closed loop independent manner. We also identify a translational regulatory mechanism for the 4E-BPs; these appear to self-regulate by inhibiting translation initiation of their own mRNAs. Conclusions Overall, we show that mRNA selection for translation initiation is not as uniformly regimented as previously anticipated. Components of the closed loop complex are highly relevant for many mRNAs, but some heavily translated mRNAs interact poorly with this machinery. Therefore, alternative, possibly Pab1p-dependent mechanisms likely exist to load ribosomes effectively onto mRNAs. Finally, these studies identify and characterize a complex self-regulatory circuit for the yeast 4E-BPs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0559-z) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Damon JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2014; 26:270-82. [PMID: 25392298 PMCID: PMC4294674 DOI: 10.1091/mbc.e14-06-1145] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The URM1 pathway functions in a tRNA thiolation reaction that is required for synthesis of the mcm5s2U34 nucleoside found in tRNAs. Growth of Saccharomyces cerevisiae cells at an elevated temperature results in altered levels of modification enzymes, and this leads to decreased levels of tRNA thiolation. tRNA thiolation is tied to cellular stress responses. Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGluUUC, tGlnUUG, and tLysUUU in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.
Collapse
Affiliation(s)
- Jadyn R Damon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
25
|
Gallie DR. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants. ACTA ACUST UNITED AC 2014; 2:e959378. [PMID: 26779409 DOI: 10.4161/2169074x.2014.959378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
Abstract
Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry; University of California ; Riverside, CA USA
| |
Collapse
|
26
|
Kraft JJ, Treder K, Peterson MS, Miller WA. Cation-dependent folding of 3' cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. Nucleic Acids Res 2013; 41:3398-413. [PMID: 23361463 PMCID: PMC3597692 DOI: 10.1093/nar/gkt026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 3′-untranslated regions of many plant viral RNAs contain cap-independent translation elements (CITEs) that drive translation initiation at the 5′-end of the mRNA. The barley yellow dwarf virus-like CITE (BTE) stimulates translation by binding the eIF4G subunit of translation initiation factor eIF4F with high affinity. To understand this interaction, we characterized the dynamic structural properties of the BTE, mapped the eIF4G-binding sites on the BTE and identified a region of eIF4G that is crucial for BTE binding. BTE folding involves cooperative uptake of magnesium ions and is driven primarily by charge neutralization. Footprinting experiments revealed that functional eIF4G fragments protect the highly conserved stem–loop I and a downstream bulge. The BTE forms a functional structure in the absence of protein, and the loop that base pairs the 5′-untranslated region (5′-UTR) remains solvent-accessible at high eIF4G concentrations. The region in eIF4G between the eIF4E-binding site and the MIF4G region is required for BTE binding and translation. The data support the model in which the eIF4F complex binds directly to the BTE which base pairs simultaneously to the 5′-UTR, allowing eIF4F to recruit the 40S ribosomal subunit to the 5′-end.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
27
|
Automated high-throughput RNAi screening in human cells combined with reporter mRNA transfection to identify novel regulators of translation. PLoS One 2012; 7:e45943. [PMID: 23029333 PMCID: PMC3459937 DOI: 10.1371/journal.pone.0045943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 12/21/2022] Open
Abstract
Proteins that promote angiogenesis, such as vascular endothelial growth factor (VEGF), are major targets for cancer therapy. Accordingly, proteins that specifically activate expression of factors like VEGF are potential alternative therapeutic targets and may help to combat evasive resistance to angiogenesis inhibitors. VEGF mRNA contains two internal ribosome entry sites (IRESs) that enable selective activation of VEGF protein synthesis under hypoxic conditions that trigger angiogenesis. To identify novel regulators of VEGF IRES-driven translation in human cells, we have developed a high-throughput screening approach that combines siRNA treatment with transfection of a VEGF-IRES reporter mRNA. We identified the kinase MAPK3 as a novel positive regulator of VEGF IRES-driven translation and have validated its regulatory effect on endogenous VEGF. Our automated method is scalable and readily adapted for use with other mRNA regulatory elements. Consequently, it should be a generally useful approach for high-throughput identification of novel regulators of mRNA translation.
Collapse
|
28
|
Culver BP, Savas JN, Park SK, Choi JH, Zheng S, Zeitlin SO, Yates JR, Tanese N. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 2012; 287:21599-614. [PMID: 22556411 DOI: 10.1074/jbc.m112.359307] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.
Collapse
Affiliation(s)
- Brady P Culver
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Geissler R, Golbik RP, Behrens SE. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic Acids Res 2012; 40:4998-5011. [PMID: 22323517 PMCID: PMC3367175 DOI: 10.1093/nar/gks070] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.
Collapse
Affiliation(s)
- Rene Geissler
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | | | | |
Collapse
|
30
|
Cell-free protein synthesis: applications come of age. Biotechnol Adv 2011; 30:1185-94. [PMID: 22008973 DOI: 10.1016/j.biotechadv.2011.09.016] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 12/17/2022]
Abstract
Cell-free protein synthesis has emerged as a powerful technology platform to help satisfy the growing demand for simple and efficient protein production. While used for decades as a foundational research tool for understanding transcription and translation, recent advances have made possible cost-effective microscale to manufacturing scale synthesis of complex proteins. Protein yields exceed grams protein produced per liter reaction volume, batch reactions last for multiple hours, costs have been reduced orders of magnitude, and reaction scale has reached the 100-liter milestone. These advances have inspired new applications in the synthesis of protein libraries for functional genomics and structural biology, the production of personalized medicines, and the expression of virus-like particles, among others. In the coming years, cell-free protein synthesis promises new industrial processes where short protein production timelines are crucial as well as innovative approaches to a wide range of applications.
Collapse
|
31
|
Hodgman CE, Jewett MC. Cell-free synthetic biology: thinking outside the cell. Metab Eng 2011; 14:261-9. [PMID: 21946161 DOI: 10.1016/j.ymben.2011.09.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/19/2011] [Accepted: 09/09/2011] [Indexed: 01/19/2023]
Abstract
Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
32
|
Lyabin DN, Eliseeva IA, Skabkina OV, Ovchinnikov LP. Interplay between Y-box-binding protein 1 (YB-1) and poly(A) binding protein (PABP) in specific regulation of YB-1 mRNA translation. RNA Biol 2011; 8:883-92. [PMID: 21788731 DOI: 10.4161/rna.8.5.16022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
YB-1 is a DNA- and RNA-binding protein that regulates expression of many important genes. Its deficiency or excess may pose threats, including malignant cellular transformation and metastasis, which explains the necessity of strict control over its amount at every level. As we showed previously, the 3' untranslated region (UTR) of YB-1 mRNA contains a regulatory element specifically binding to YB-1 and PABP (PABPC1). Also, we showed that YB-1 selectively inhibits YB-1 mRNA translation, while PABP stimulates it in a poly(A) tail-independent manner. It was suggested that regulation of YB-1 mRNA translation involves competition between PABP and YB-1 for binding to the regulatory element. Here we offer cogent evidence for this model and add novel details to the mechanism of regulation of YB-1 synthesis. In experiments on regulatory element deletion we showed that it is this element that is responsible for a specific effect of YB-1 and PABP on YB-1 mRNA translation. Mutations eliminating only specific YB-1 affinity for this element suppressed the inhibitory effect of YB-1 and concurrently dramatically decreased the PABP stimulating effect. Mutations reducing only specific PABP affinity for this element, as well as spatial separation of the YB-1- and PABP binding sites, did not affect the YB-1 inhibitory action but completely abolished the positive PABP effect. Together, these results unambiguously prove direct inhibitory action of YB-1 on its mRNA translation, while the positive effect of PABP is realized through displacing YB-1 from the regulatory element.
Collapse
Affiliation(s)
- Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | | | | | | |
Collapse
|
33
|
Abstract
A challenge in cancer therapy is to selectively target activities that are essential for survival of malignant cells while sparing normal cells. Translational control represents a potential anti-neoplastic target because it is exerted by major signaling pathways that are often usurped in cancers. Herein we describe approaches being developed that target eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex that integrates multiple signaling inputs to the translation apparatus.
Collapse
|
34
|
Fussenegger M, Moser S, Bailey JE. Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology 2011; 28:111-26. [PMID: 19003413 PMCID: PMC3449837 DOI: 10.1023/a:1008037916674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contemporary basic research is rapidly revealing increasingly complex molecular regulatory networks which are often interconnected via key signal integrators. These connections among regulatory and catalytic networks often frustrate bioengineers as promising metabolic engineering strategies are bypassed by compensatory metabolic responses or cause unexpected, undesired outcomes such as apoptosis, product protein degradation or inappropriate post- translational modification. Therefore, for metabolic engineering to achieve greater success in mammalian cell culture processes and to become important for future applications such as gene therapy and tissue engineering, this technology must be enhanced to allow simultaneous, in cases conditional, reshaping of metabolic pathways to access difficult-to-attain cell states. Recent advances in this new territory of multigene metabolic engineering are intimately linked to the development of multicistronic expression technology which allows the simultaneous, and in some cases, regulated expression of several genes in mammalian cells. Here we review recent achievements in multicistronic expression technology in view of multigene metabolic engineering.
Collapse
Affiliation(s)
- M Fussenegger
- Swiss Federal Institute of Technology, ETH Zurich, Institute of Biotechnology, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Edwards SR, Wandless TJ. Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae. Yeast 2010; 27:229-36. [PMID: 20017217 PMCID: PMC3210078 DOI: 10.1002/yea.1744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fluorescent proteins are convenient tools for measuring protein expression levels in the budding yeast Saccharomyces cerevisiae. Co-expression of proteins from distinct vectors has been seen by fluorescence microscopy; however, the expression of two fluorescent proteins on the same vector would allow for monitoring of linked events. We engineered constructs to allow dicistronic expression of red and green fluorescent proteins and found that expression levels of the proteins correlated with their order in the DNA sequence, with the protein encoded by the 5'-gene more highly expressed. To increase expression levels of the second gene, we tested four regulatory elements inserted between the two genes: the IRES sequences for the YAP1 and p150 genes, and the promoters for the TEF1 gene from both S. cerevisiae and Ashbya gossypii. We generated constructs encoding the truncated ADH1 promoter driving expression of the red protein, yeast-enhanced Cherry, followed by a regulatory element driving expression of the green protein, yeast-enhanced GFP. Three of the four regulatory elements successfully enhanced expression of the second gene in our dicistronic construct. We have developed a method to express two genes simultaneously from one vector. Both genes are codon-optimized to produce high protein levels in yeast, and the protein products can be visualized by microscopy or flow cytometry. With this method of regulation, the two genes can be driven in a dicistronic manner, with one protein marking cells harbouring the vector and the other protein free to mark any event of interest.
Collapse
Affiliation(s)
- Sarah R. Edwards
- Department of Chemical and Systems Biology 318 Campus Drive / Clark Center W350A Stanford University, Stanford, CA 94305
| | - Thomas J. Wandless
- Department of Chemical and Systems Biology 318 Campus Drive / Clark Center W350A Stanford University, Stanford, CA 94305
| |
Collapse
|
36
|
Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol 2008; 29:1661-9. [PMID: 19114555 DOI: 10.1128/mcb.01187-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic mRNAs possess a 5'-terminal cap structure (cap), m(7)GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.
Collapse
|
37
|
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 2008; 6:e255. [PMID: 18959479 PMCID: PMC2573929 DOI: 10.1371/journal.pbio.0060255] [Citation(s) in RCA: 477] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3′-untranslated regions, others in 5′-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate. Regulation of gene transcription has been extensively studied, but much less is known about how the fates of the resulting mRNA transcripts are regulated. We were intrigued by the fact that while most eukaryotic genomes encode hundreds of RNA-binding proteins (RBPs), the targets and regulatory roles of only a small fraction of these proteins have been characterized. In this study, we systematically identified the RNAs associated with a select sample of 40 of the approximately 600 predicted RBPs in the budding yeast, Saccharomyces cerevisiae. We found that most of these RBPs bound specific sets of mRNAs whose protein products share physiological themes or similar locations within the cell. For 16 of the 40 RBPs, we identified sequence motifs significantly enriched in their RNA targets that presumably mediate recognition of the target by the RBP. The intricate, overlapping patterns of mRNAs associated with RBPs suggest an extensive combinatorial system for post-transcriptional regulation, involving dozens or even hundreds of RBPs. The organization and molecular mechanisms involved in this regulatory system, including how RBP–mRNA interactions are integrated with signal transduction systems and how they affect the fates of their RNA targets, provide abundant opportunities for investigation and discovery. A systematic study of the RNA targets of 40 known or predicted RNA-binding proteins in yeast suggests that an extensive system of dozens or hundreds of specific RNA-binding proteins may act to regulate the post-transcriptional fate of most or all RNAs in the yeast cell.
Collapse
|
38
|
Eldad N, Yosefzon Y, Arava Y. Identification and characterization of extensive intra-molecular associations between 3'-UTRs and their ORFs. Nucleic Acids Res 2008; 36:6728-38. [PMID: 18948291 PMCID: PMC2588509 DOI: 10.1093/nar/gkn754] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
During eukaryotic translation, mRNAs may form intra-molecular interactions between distant domains. The 5′-cap and the polyA tail were shown to interact through their associated proteins, and this can induce physical compaction of the mRNA in vitro. However, the stability of this intra-molecular association in translating mRNAs and whether additional contacts exist in vivo are largely unknown. To explore this, we applied a novel approach in which several endogenous polysomal mRNAs from Saccharomyces cerevisiae were cleaved near their stop codon and the resulting 3′-UTR fragments were tested either for co-sedimentation or co-immunoprecipitation (co-IP) with their ORFs. In all cases a significant fraction of the 3′-UTR fragments sedimented similarly to their ORF-containing fragments, yet the extent of co-sedimentation differed between mRNAs. Similar observations were obtained by a co-IP assay. Interestingly, various treatments that are expected to interfere with the cap to polyA interactions had no effect on the co-sedimentation pattern. Moreover, the 3′-UTR appeared to co-sediment with different regions from within the ORF. Taken together, these results indicate extensive physical associations between 3′-UTRs and their ORFs that vary between genes. This implies that polyribosomal mRNAs are in a compact configuration in vivo.
Collapse
Affiliation(s)
- Naama Eldad
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
39
|
Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 2008; 22:1037-50. [PMID: 18413716 DOI: 10.1101/gad.1611308] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translational repression during mRNA transport is essential for spatial restriction of protein production. In the yeast Saccharomyces cerevisae, silencing of ASH1 mRNA before it is localized to the bud cortex in late anaphase is critical for asymmetric segregation of Ash1p to the daughter cell nucleus. Puf6p, an ASH1 mRNA-binding protein, has been implicated in this process as a translational repressor, but the underlying mechanism is unknown. Here, we used yeast extract-based in vitro translation assays, which recapitulate translation and phosphorylation, to characterize the mechanism of Puf6p-mediated translational regulation. We report that Puf6p interferes with the conversion of the 48S complex to the 80S complex during initiation, and this repression by Puf6p is mediated through the general translation factor eIF5B (Fun12p in S. cerevisiae). Puf6p interacts with Fun12p via the PUF domain, and this interaction is RNA-dependent and essential for translational repression by Puf6p. This repression is relieved by phosphorylation of the N-terminal region of Puf6p mediated by protein kinase CK2 (casein kinase II). Inhibition of phosphorylation at Ser31, Ser34, and Ser35 of Puf6p increases its translational repression and results in ASH1 mRNA delocalization. Our results indicate that Puf6p suppresses the translation initiation of ASH1 mRNA via interaction with Fun12p during its transport, and this repression can be released by CK2 phosphorylation in the N-terminal region of Puf6p when the mRNA reaches the bud tip.
Collapse
|
40
|
Reineke LC, Komar AA, Caprara MG, Merrick WC. A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae. J Biol Chem 2008; 283:19011-25. [PMID: 18460470 DOI: 10.1074/jbc.m803109200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Internal initiation of translation is the process of beginning protein synthesis independent of the m(7)G cap structure at the 5'-end of an mRNA molecule. We have previously shown that the URE2 mRNA in the yeast Saccharomyces cerevisiae contains an internal ribosome entry site (IRES) whose activity is suppressed by eukaryotic initiation factor 2A (eIF2A; YGR054W). In this study, the minimal sequence required to efficiently direct internal initiation was determined using a system that abrogates cap-dependent scanning of the 40 S ribosomal subunit in both wild-type and eIF2A knock-out cells. Subsequently, secondary structural elements within the minimal sequence were determined by probing with RNases T1 and V1 and the small molecule diethylpyrocarbonate. It was found that the URE2 minimal IRES comprises a 104 nucleotide A-rich stem loop element encompassing the internal AUG codon. Interestingly, the internal AUG seems to be involved in base-pairing interactions that would theoretically hamper its ability to interact with incoming initiator tRNA molecules. Furthermore, none of the truncations used to identify the minimal IRES element were capable of abrogating the suppressive effect of eIF2A. Our data provide the first insight into the RNA structural requirements of the yeast translational machinery for cap-independent initiation of protein synthesis.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Biochemistry, Case Western Reserve University, Cleveland, School of Medicine, Ohio 44106, USA
| | | | | | | |
Collapse
|
41
|
Rifo RS, Ricci EP, Décimo D, Moncorgé O, Ohlmann T. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Res 2007; 35:e121. [PMID: 17881372 PMCID: PMC2094066 DOI: 10.1093/nar/gkm682] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/17/2007] [Accepted: 08/18/2007] [Indexed: 12/17/2022] Open
Abstract
Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.
Collapse
Affiliation(s)
- Ricardo Soto Rifo
- Inserm U 758, Lyon, F-69364 and Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364, France
| | - Emiliano P. Ricci
- Inserm U 758, Lyon, F-69364 and Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364, France
| | - Didier Décimo
- Inserm U 758, Lyon, F-69364 and Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364, France
| | - Olivier Moncorgé
- Inserm U 758, Lyon, F-69364 and Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364, France
| | - Théophile Ohlmann
- Inserm U 758, Lyon, F-69364 and Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364, France
| |
Collapse
|
42
|
Cvijović M, Dalevi D, Bilsland E, Kemp GJL, Sunnerhagen P. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics 2007; 8:295. [PMID: 17686169 PMCID: PMC1964767 DOI: 10.1186/1471-2105-8-295] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/08/2007] [Indexed: 11/30/2022] Open
Abstract
Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100 million years of separation. The conserved uORFs have certain characteristics with respect to length, distance from each other and from the main start codon, and folding energy of the sequence. These newly found characteristics can be used to facilitate detection of other conserved uORFs.
Collapse
Affiliation(s)
- Marija Cvijović
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Max-Planck Institute for Molecular Genetics, Ihnestraße 63, D-14195 Berlin, Germany
| | - Daniel Dalevi
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Elizabeth Bilsland
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Biochemistry Department, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Graham JL Kemp
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
| |
Collapse
|
43
|
De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J 2007; 4:70. [PMID: 17623069 PMCID: PMC1947962 DOI: 10.1186/1743-422x-4-70] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/10/2007] [Indexed: 11/13/2022] Open
Abstract
Poliomyelitis has afflicted humankind since antiquity, and for nearly a century now, we have known the causative agent, poliovirus. This pathogen is an enterovirus that in recent history has been the source of a great deal of human suffering. Although comparatively small, its genome is packed with sufficient information to make it a formidable pathogen. In the last 20 years the Global Polio Eradication Initiative has proven successful in greatly diminishing the number of cases worldwide but has encountered obstacles in its path which have made halting the transmission of wild polioviruses a practical impossibility. As we begin to realize that a change in strategy may be crucial in achieving success in this venture, it is imperative that we critically evaluate what is known about the molecular biology of this pathogen and the intricacies of its interaction with its host so that in future attempts we may better equipped to more effectively combat this important human pathogen.
Collapse
Affiliation(s)
- Nidia H De Jesus
- Department of Molecular Genetics & Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
44
|
Mihailovich M, Thermann R, Grohovaz F, Hentze MW, Zacchetti D. Complex translational regulation of BACE1 involves upstream AUGs and stimulatory elements within the 5' untranslated region. Nucleic Acids Res 2007; 35:2975-85. [PMID: 17439957 PMCID: PMC1888809 DOI: 10.1093/nar/gkm191] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACE1 is the protease responsible for the production of amyloid-β peptides that accumulate in the brain of Alzheimer's disease (AD) patients. BACE1 expression is regulated at the transcriptional, as well as post-transcriptional level. Very high BACE1 mRNA levels have been observed in pancreas, but the protein and activity were found mainly in brain. An up-regulation of the protein has been described in some AD patients without a change in transcript levels. The features of BACE1 5′ untranslated region (5′ UTR), such as the length, GC content, evolutionary conservation and presence of upstream AUGs (uAUGs), indicate an important regulatory role of this 5′ UTR in translational control. We demonstrate that, in brain and pancreas, almost all of the native BACE1 mRNA contains the full-length 5′ UTR. RNA transfection and in vitro translation show that translation is mainly inhibited by the presence of the uAUGs. We provide a mutational analysis that highlight the second uAUG as the main inhibitory element while mutations of all four uAUGs fully de-repress translation. Furthermore, we have evidence that a sequence within the region 222-323 of the BACE1 5′ UTR has a stimulatory effect on translation that might depend on the presence of trans-acting factors.
Collapse
Affiliation(s)
- Marija Mihailovich
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Rolf Thermann
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Fabio Grohovaz
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Matthias W. Hentze
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Daniele Zacchetti
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
- *To whom correspondence should be addressed. +39-02-2643-4817+39-02-2643-4813
| |
Collapse
|
45
|
Raychaudhuri S, Fontanes V, Banerjee R, Bernavichute Y, Dasgupta A. Zuotin, a DnaJ molecular chaperone, stimulates cap-independent translation in yeast. Biochem Biophys Res Commun 2006; 350:788-95. [PMID: 17027912 PMCID: PMC2680724 DOI: 10.1016/j.bbrc.2006.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 02/05/2023]
Abstract
A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA.
Collapse
Affiliation(s)
| | | | | | | | - Asim Dasgupta
- Corresponding author Tel: (310) 206-8649, Fax: (310) 206-3865,
| |
Collapse
|
46
|
Karim MM, Svitkin YV, Kahvejian A, De Crescenzo G, Costa-Mattioli M, Sonenberg N. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc Natl Acad Sci U S A 2006; 103:9494-9. [PMID: 16772376 PMCID: PMC1480435 DOI: 10.1073/pnas.0603701103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by the cap-binding protein eIF4E, the poly(A) binding protein (PABP), and eIF4G, a scaffolding protein that bridges between eIF4E and PABP to bring about the circularization of the mRNA. The translational repressor, Paip2 (PABP-interacting protein 2), inhibits translation by promoting the dissociation of PABP from poly(A). Here we report on the existence of an alternative mechanism by which Paip2 inhibits translation by competing with eIF4G for binding to PABP. We demonstrate that Paip2 can abrogate the translational activity of PABP, which is tethered to the 3' end of the mRNA. Thus, Paip2 can inhibit translation by a previously unrecognized mechanism, which is independent of its ability to disrupt PABP-poly(A) interaction.
Collapse
Affiliation(s)
- Muhammad M. Karim
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Yuri V. Svitkin
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Avak Kahvejian
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Bio-P2 Unit, École Polytechnique de Montréal, Montreal, QC, Canada H3T 1J4
| | - Mauro Costa-Mattioli
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
| | - Nahum Sonenberg
- *Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC, Canada H3G 1Y6; and
- To whom correspondence should be addressed at:
Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6. E-mail:
| |
Collapse
|
47
|
McNabb DS, Pinto I. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 4:1829-39. [PMID: 16278450 PMCID: PMC1287863 DOI: 10.1128/ec.4.11.1829-1839.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CCAAT-binding factor (CBF) is an evolutionarily conserved multimeric transcriptional activator in eukaryotes. In Saccharomyces cerevisiae, the CCAAT-binding factor is composed of four subunits, termed Hap2p, Hap3p, Hap4p, and Hap5p. The Hap2p/Hap3p/Hap5p heterotrimer is the DNA-binding component of the complex that binds to the consensus 5'-CCAAT-3' sequence in the promoter of target genes. The Hap4p subunit contains the transcriptional activation domain necessary for stimulating transcription after interacting with Hap2p/Hap3p/Hap5p. In this report, we demonstrate that Hap2p, Hap3p, and Hap5p assemble via a one-step pathway requiring all three subunits simultaneously, as opposed to the mammalian CCAAT-binding factor which has been shown to assemble via a two-step pathway with CBF-A (Hap3p homolog) and CBF-C (Hap5p homolog) forming a stable dimer before CBF-B (Hap2p homolog) can interact. We have also found that the interaction of Hap4p with Hap2p/Hap3p/Hap5p requires DNA binding as a prerequisite. To further understand the protein-protein and protein-DNA interactions of this transcription factor, we identified the minimal domain of Hap4p necessary for interaction with the Hap2p/Hap3p/Hap5p-DNA complex, and we demonstrate that this domain is sufficient to complement the respiratory deficiency of a hap4Delta mutant and activate transcription when fused with the VP16 activation domain. These studies provide a further understanding of the assembly of the yeast CCAAT-binding factor at target promoters and raise a number of questions concerning the protein-protein and protein-DNA interactions of this multisubunit transcription factor.
Collapse
Affiliation(s)
- David S McNabb
- Department of Biological Sciences, SCEN601, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
48
|
Humphreys DT, Westman BJ, Martin DIK, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 2005; 102:16961-6. [PMID: 16287976 PMCID: PMC1287990 DOI: 10.1073/pnas.0506482102] [Citation(s) in RCA: 439] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by interaction with partially mismatched sequences in their 3' UTR. The mechanism by which they act on translation has remained largely obscure. We examined the translation of mRNAs containing four partially mismatched miRNA-binding sites in the 3' UTR in HeLa cells cotransfected with a cognate miRNA. The mRNAs were prepared by in vitro transcription and were engineered to employ different modes of translation initiation. We find that the 5' cap structure and the 3' poly(A) tail are each necessary but not sufficient for full miRNA-mediated repression of mRNA translation. Replacing the cap structure with an internal ribosome entry site from either the cricket paralysis virus or the encephalomyocarditis virus impairs miRNA-mediated repression. Collectively, these results demonstrate that miRNAs interfere with the initiation step of translation and implicate the cap-binding protein eukaryotic initiation factor 4E as a molecular target.
Collapse
Affiliation(s)
- David T Humphreys
- Molecular Genetics Program, Victor Chang Cardiac Research Institute (VCCRI), 384 Victoria Street, Darlinghurst (Sydney) NSW 2010, Australia
| | | | | | | |
Collapse
|
49
|
Zhang Z, Dietrich FS. Identification and characterization of upstream open reading frames (uORF) in the 5' untranslated regions (UTR) of genes in Saccharomyces cerevisiae. Curr Genet 2005; 48:77-87. [PMID: 16012843 DOI: 10.1007/s00294-005-0001-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/23/2005] [Accepted: 05/30/2005] [Indexed: 01/17/2023]
Abstract
We have taken advantage of recently sequenced hemiascomycete fungal genomes to computationally identify additional genes potentially regulated by upstream open reading frames (uORFs). Our approach is based on the observation that the structure, including the uORFs, of the post-transcriptionally uORF regulated Saccharomyces cerevisiae genes GCN4 and CPA1 is conserved in related species. Thirty-eight candidate genes for which uORFs were found in multiple species were identified and tested. We determined by 5' RACE that 15 of these 38 genes are transcribed. Most of these 15 genes have only a single uORF in their 5' UTR, and the length of these uORFs range from 3 to 24 codons. We cloned seven full-length UTR sequences into a luciferase (LUC) reporter system. Luciferase activity and mRNA level were compared between the wild-type UTR construct and a construct where the uORF start codon was mutated. The translational efficiency index (TEI) of each construct was calculated to test the possible regulatory function on translational level. We hypothesize that uORFs in the UTR of RPC11, TPK1, FOL1, WSC3, and MKK1 may have translational regulatory roles while uORFs in the 5' UTR of ECM7 and IMD4 have little effect on translation under the conditions tested.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
50
|
Rosenfeld AB, Racaniello VR. Hepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein. J Virol 2005; 79:10126-37. [PMID: 16051805 PMCID: PMC1182649 DOI: 10.1128/jvi.79.16.10126-10137.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/20/2005] [Indexed: 01/04/2023] Open
Abstract
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.
Collapse
Affiliation(s)
- Amy B Rosenfeld
- Department of Microbiology, Columbia University College of Physicians & Surgeons, 701 W. 168th St., New York, New York 10032, USA
| | | |
Collapse
|