1
|
Verdu-Bou M, Tapia G, Hernandez-Rodriguez A, Navarro JT. Clinical and Therapeutic Implications of Epstein-Barr Virus in HIV-Related Lymphomas. Cancers (Basel) 2021; 13:5534. [PMID: 34771697 PMCID: PMC8583310 DOI: 10.3390/cancers13215534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The incidence of lymphomas is increased in people living with HIV (PLWH). Aggressive B-cell non-Hodgkin lymphomas (NHLs) are the most common and are considered an AIDS-defining cancer (ADC). Although Hodgkin lymphoma (HL) is not considered an ADC, its incidence is also increased in PLWH. Among all HIV-related lymphomas (HRL), the prevalence of Epstein-Barr virus (EBV) is high. It has been shown that EBV is involved in different lymphomagenic mechanisms mediated by some of its proteins, contributing to the development of different lymphoma subtypes. Additionally, cooperation between both HIV and EBV can lead to the proliferation of aberrant B-cells, thereby being an additional lymphomagenic mechanism in EBV-associated HRL. Despite the close relationship between EBV and HRL, the impact of EBV on clinical aspects has not been extensively studied. These lymphomas are treated with the same therapeutic regimens as the general population in combination with cART. Nevertheless, new therapeutic strategies targeting EBV are promising for these lymphomas. In this article, the different types of HRL are extensively reviewed, focusing on the influence of EBV on the epidemiology, pathogenesis, clinical presentation, and pathological characteristics of each lymphoma subtype. Moreover, novel therapies targeting EBV and future strategies to treat HRL harboring EBV are discussed.
Collapse
Affiliation(s)
- Miriam Verdu-Bou
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
| | - Gustavo Tapia
- Department of Pathology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Agueda Hernandez-Rodriguez
- Department of Microbiology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Jose-Tomas Navarro
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Department of Hematology, Institut Català d’Oncologia-Germans Trias i Pujol Hospital, 08916 Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
2
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
3
|
Palrasu M, Zaika E, El-Rifai W, Que J, Zaika AI. Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers (Basel) 2021; 13:1878. [PMID: 33919876 PMCID: PMC8070847 DOI: 10.3390/cancers13081878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. In contrast to many other tumor types, gastric carcinogenesis is tightly linked to infectious events. Infections with Helicobacter pylori (H. pylori) bacterium and Epstein-Barr virus (EBV) are the two most investigated risk factors for GC. These pathogens infect more than half of the world's population. Fortunately, only a small fraction of infected individuals develops GC, suggesting high complexity of tumorigenic processes in the human stomach. Recent studies suggest that the multifaceted interplay between microbial, environmental, and host genetic factors underlies gastric tumorigenesis. Many aspects of these interactions still remain unclear. In this review, we update on recent discoveries, focusing on the roles of various gastric pathogens and gastric microbiome in tumorigenesis.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Elena Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Alexander I. Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
4
|
Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta. J Virol 2020; 94:JVI.01298-20. [PMID: 32847852 DOI: 10.1128/jvi.01298-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate early transactivator Zta plays a key role in regulating the transition from latency to the lytic replication stages of EBV infection. Regulation of Zta is known to be controlled through a number of transcriptional and posttranscriptional events. Here, we show that Zta is targeted for ubiquitin modification and that this can occur in EBV-negative and in EBV-infected cells. Genetic studies show critical roles for both an amino-terminal region of Zta and the basic DNA binding domain of Zta in regulating Zta ubiquitination. Pulse-chase experiments demonstrate that the bulk population of Zta is relatively stable but that at least a subset of ubiquitinated Zta molecules are targeted for degradation in the cell. Mutation of four out of a total of nine lysine residues in Zta largely abrogates its ubiquitination, indicating that these are primary ubiquitination target sites. A Zta mutant carrying mutations at these four lysine residues (lysine 12, lysine 188, lysine 207, and lysine 219) cannot induce latently infected cells to produce and/or release infectious virions. Nevertheless, this mutant can induce early gene expression, suggesting a possible defect at the level of viral replication or later in the lytic cascade. As far as we know, this is the first study that has investigated the targeting of Zta by ubiquitination or its role in Zta function.IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen and associated with various human diseases. EBV undergoes latency and lytic replication stages in its life cycle. The transition into the lytic replication stage, at which virus is produced, is mainly regulated by the viral gene product, Zta. Therefore, the regulation of Zta function becomes a central issue regarding viral biology and pathogenesis. Known modifications of Zta include phosphorylation and sumoylation. Here, we report the role of ubiquitination in regulating Zta function. We found that Zta is subjected to ubiquitination in both EBV-infected and EBV-negative cells. The ubiquitin modification targets 4 lysine residues on Zta, leading to both mono- and polyubiquitination of Zta. Ubiquitination of Zta affects the protein's stability and likely contributes to the progression of viral lytic replication. The function and fate of Zta may be determined by the specific lysine residue being modified.
Collapse
|
5
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
6
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
8
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
9
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
10
|
Kusano S, Ikeda M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription. J Biol Chem 2019; 294:15104-15116. [PMID: 31434743 DOI: 10.1074/jbc.ra119.008193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/15/2019] [Indexed: 11/06/2022] Open
Abstract
Human phospholipid scramblase 1 (PLSCR1) is strongly expressed in response to interferon (IFN) treatment and viral infection, and PLSCR1 has been suggested to play an important role in IFN-dependent antiviral responses. In this study, we showed that the basal expression of PLSCR1 was significantly elevated in Epstein-Barr virus (EBV)-infected nasopharyngeal carcinoma (NPC). PLSCR1 was observed to directly interact with the EBV immediate-early transactivator BZLF1 in vitro and in vivo, and this interaction repressed the BZLF1-mediated transactivation of an EBV lytic BMRF1 promoter construct. In addition, PLSCR1 expression decreased the BZLF1-mediated up-regulation of lytic BMRF1 mRNA and protein expression in WT and PLSCR1-knockout EBV-infected NPC cells. Furthermore, we showed that PLSCR1 represses the interaction between BZLF1 and CREB-binding protein (CBP), which enhances the BZLF1-mediated transactivation of EBV lytic promoters. These results reveal for the first time that PLSCR1 specifically interacts with BZLF1 and negatively regulates its transcriptional regulatory activity by preventing the formation of the BZLF1-CBP complex. This interaction may contribute to the establishment of latent EBV infection in EBV-infected NPC cells.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| |
Collapse
|
11
|
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2017; 91:JVI.00312-17. [PMID: 28794023 DOI: 10.1128/jvi.00312-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers.IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology.
Collapse
|
12
|
Small molecule perturbation of the CAND1-Cullin1-ubiquitin cycle stabilizes p53 and triggers Epstein-Barr virus reactivation. PLoS Pathog 2017; 13:e1006517. [PMID: 28715492 PMCID: PMC5531659 DOI: 10.1371/journal.ppat.1006517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/27/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The chemical probe C60 efficiently triggers Epstein-Barr Virus (EBV) reactivation from latency through an unknown mechanism. Here, we identify the Cullin exchange factor CAND1 as a biochemical target of C60. We also identified CAND1 in an shRNA library screen for EBV lytic reactivation. Gene expression profiling revealed that C60 activates the p53 pathway and protein analysis revealed a strong stabilization and S15 phosphorylation of p53. C60 reduced Cullin1 association with CAND1 and led to a global accumulation of ubiquitylated substrates. C60 also stabilized the EBV immediate early protein ZTA through a Cullin-CAND1-interaction motif in the ZTA transcription activation domain. We propose that C60 perturbs the normal interaction and function of CAND1 with Cullins to promote the stabilization of substrates like ZTA and p53, leading to EBV reactivation from latency. Understanding the mechanism of action of C60 may provide new approaches for treatment of EBV associated tumors, as well as new tools to stabilize p53.
Collapse
|
13
|
Abstract
Epstein-Barr virus (EBV) is a common human herpes virus known to infect the majority of the world population. Infection with EBV is often asymptomatic but can manifest in a range of pathologies from infectious mononucleosis to severe cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV has been linked to nearly 10% of all gastric cancers. Furthermore, recent advances in high-throughput next-generation sequencing and the development of humanized mice, which effectively model EBV pathogenesis, have led to a wealth of knowledge pertaining to strain variation and host-pathogen interaction. This review highlights some recent advances in our understanding of EBV biology, focusing on new findings on the early events of infection, the role EBV plays in gastric cancer, new strain variation, and humanized mouse models of EBV infection.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Balan N, Osborn K, Sinclair AJ. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding. J Gen Virol 2015; 97:725-732. [PMID: 26653871 DOI: 10.1099/jgv.0.000369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.
Collapse
Affiliation(s)
- Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
15
|
Price AM, Luftig MA. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014; 88:279-313. [PMID: 24373315 DOI: 10.1016/b978-0-12-800098-4.00006-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alexander M Price
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA.
| |
Collapse
|
16
|
McFadden K, Luftig MA. Interplay between DNA tumor viruses and the host DNA damage response. Curr Top Microbiol Immunol 2013; 371:229-57. [PMID: 23686238 DOI: 10.1007/978-3-642-37765-5_9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.
Collapse
Affiliation(s)
- Karyn McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Robinson AR, Kwek SS, Kenney SC. The B-cell specific transcription factor, Oct-2, promotes Epstein-Barr virus latency by inhibiting the viral immediate-early protein, BZLF1. PLoS Pathog 2012; 8:e1002516. [PMID: 22346751 PMCID: PMC3276558 DOI: 10.1371/journal.ppat.1002516] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/16/2011] [Indexed: 01/16/2023] Open
Abstract
The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells. Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell malignancies. EBV infection of cells can result in either lytic replication or latency. Memory B cells are the primary site of EBV latency within the human host, while oropharyngeal epithelial cells support the lytic form of infection. However, the cellular mechanism(s) that enable EBV to establish viral latency in a B-cell specific manner are not currently understood. In this report, we show that the B-cell specific cellular transcription factor, Oct-2, promotes viral latency by inhibiting the lytic form of infection. We find that Oct-2 interacts directly with the EBV immediate-early protein, BZLF1, and abrogates its ability to activate lytic viral gene transcription through protein-protein interactions off the DNA. Furthermore, knockdown of endogenous Oct-2 expression in several latently-infected Burkitt lymphoma B-cell lines increases EBV lytic protein expression. In addition, we show that certain stimuli which can prompt lytic EBV reactivation in B cells also decrease expression of endogenous Oct-2. Our results suggest that the cellular transcription factor, Oct-2, promotes EBV latency in a B-cell dependent manner.
Collapse
Affiliation(s)
- Amanda R. Robinson
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Swee Sen Kwek
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. Virol J 2011; 8:422. [PMID: 21892957 PMCID: PMC3180424 DOI: 10.1186/1743-422x-8-422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022] Open
Abstract
Background The carboxyl terminal of Epstein-Barr virus (EBV) ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA) binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region) similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral replication.
Collapse
|
19
|
Laantri N, Attaleb M, Kandil M, Naji F, Mouttaki T, Dardari R, Belghmi K, Benchakroun N, El Mzibri M, Khyatti M. Human papillomavirus detection in moroccan patients with nasopharyngeal carcinoma. Infect Agent Cancer 2011; 6:3. [PMID: 21352537 PMCID: PMC3060847 DOI: 10.1186/1750-9378-6-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/25/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor which arises in surface epithelium of the posterior wall of the nasopharynx. There's is evidence that Epstein Barr virus (EBV) is associated to NPC development. However, many epidemiologic studies point to a connection between viral infections by the human papillomavirus (HPV) and NPC. METHOD Seventy Moroccan patients with NPC were screened for EBV and HPV. EBV detection was performed by PCR amplification of BZLF1 gene, encoding the ZEBRA (Z Epstein-Barr Virus Replication Activator) protein, and HPV infection was screened by PCR amplification with subsequent typing by hybridization with specific oligonucleotides for HPV types 16, 18, 31, 33, 35, 45 and 59. RESULTS The age distribution of our patients revealed a bimodal pattern. Sixty two cases (88.9%) were classified as type 3 (undifferentiated carcinoma), 6 (8.6%) as type 2 (non keratinizing NPC) and only 2 (2.9%) cases were classified as type 1 (keratinizing NPC). EBV was detected in all NPC tumors, whereas HPV DNA was revealed in 34% of cases (24/70). Molecular analysis showed that 20.8% (5/24) were infected with HPV31, and the remaining were infected with other oncogenic types (i.e., HPV59, 16, 18, 33, 35 and 45). In addition, statistical analysis showed that there's no association between sex or age and HPV infection (P > 0.1). CONCLUSION Our data indicated that EBV is commonly associated with NPC in Moroccan patients and show for the first time that NPC tumours from Moroccan patients harbour high risk HPV genotypes.
Collapse
Affiliation(s)
- Nadia Laantri
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
- Laboratory of Anthropogenetics and Physiopathology of Chouaîb Doukkali University, 299 Eljadida 24 000, Morocco
| | - Mohammed Attaleb
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), 10001 Rabat, Morocco
| | - Mostafa Kandil
- Laboratory of Anthropogenetics and Physiopathology of Chouaîb Doukkali University, 299 Eljadida 24 000, Morocco
| | - Fadwa Naji
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | - Tarik Mouttaki
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | - R'kia Dardari
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | | | - Nadia Benchakroun
- Service de Radiothérapie, Centre d'Oncologie IBN Rochd, Casablanca, Morocco
| | - Mohammed El Mzibri
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), 10001 Rabat, Morocco
| | - Meriem Khyatti
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| |
Collapse
|
20
|
Ning S. Innate immune modulation in EBV infection. HERPESVIRIDAE 2011; 2:1. [PMID: 21429244 PMCID: PMC3063194 DOI: 10.1186/2042-4280-2-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 01/05/2011] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) belongs to the gammaherpesvirus family, members of which are oncogenic. Compared with other closely related herpesviruses, EBV has developed much more elaborate and sophisticated strategies for subverting host immune system, which may account for its high prevalence in immune competent hosts. Thus, study of EBV-specific immune dysregulation is important for understanding EBV latency and oncogenesis, and will identify potential molecular targets for immunotherapeutic interventions. Here I summarize the recent findings of individual EBV products in regulating host immune responses, with emphasis on the innate immune modulation.
Collapse
Affiliation(s)
- Shunbin Ning
- Viral Oncology Program, Sylvester Comprehensive Cancer Center; Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
21
|
Abstract
The year 2011 marks the centenary of Francis Peyton Rous's landmark experiments on an avian cancer virus. Since then, seven human viruses have been found to cause 10-15% of human cancers worldwide. Viruses have been central to modern cancer research and provide profound insights into both infectious and non-infectious cancer causes. This diverse group of viruses reveals unexpected connections between innate immunity, immune sensors and tumour suppressor signalling that control both viral infection and cancer. This Timeline article describes common features of human tumour viruses and discusses how new technologies can be used to identify infectious causes of cancer.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
22
|
Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 2010; 84:4383-94. [PMID: 20181712 DOI: 10.1128/jvi.02369-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation.
Collapse
|
23
|
Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses 2010; 2:298-313. [PMID: 21994612 PMCID: PMC3185551 DOI: 10.3390/v2010298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 is widely known as 'the guardian of the genome' due to its ability to prevent the emergence of transformed cells by the induction of cell cycle arrest and apoptosis. However, recent studies indicate that p53 is also a direct transcriptional target of type I interferons (IFNs) and thus, it is activated by these cytokines upon viral infection. p53 has been shown to contribute to virus-induced apoptosis, therefore dampening the ability of a wide range of viruses to replicate and spread. Interestingly, recent studies also indicate that several IFN-inducible genes such as interferon regulatory factor 9 (IRF9), IRF5, IFN-stimulated gene 15 (ISG15) and toll-like receptor 3 (TLR3) are in fact, p53 direct transcriptional targets. These findings indicate that p53 may play a key role in antiviral innate immunity by both inducing apoptosis in response to viral infection, and enforcing the type I IFN response, and provide a new insight into the evolutionary reasons why many viruses encode p53 antagonistic proteins.
Collapse
Affiliation(s)
- Carmen Rivas
- Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus Universidad Autónoma, Madrid 28049, Spain; E-Mail: (C.R.)
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| | - Cesar Munoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| |
Collapse
|
24
|
Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 2009; 83:12388-98. [PMID: 19776115 DOI: 10.1128/jvi.00304-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infection of host cells with human cytomegalovirus (HCMV) induces cell cycle dysregulation. Two HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, are promiscuous transactivators that have been implicated in the dysregulatory events. Cellular p53 protein is accumulated to high levels in HCMV-infected cells, but the indicative marker of p53 transcriptional activity, p21, is markedly decreased. Both IE1-72 and IE2-86 were able to transactivate the p53 promoter and interact with p53 protein in DNA-transfected or HCMV-infected cells. HCMV UL84, a multiregulatory protein expressed in early periods of HCMV infection, also interacted with p53. HCMV IE1-72 prevented or disrupted p53 binding to p53-specific DNA sequences, while IE2-86 and/or UL84 enhanced p53 binding and induced supershift of this DNA-protein complex. Both HCMV IE1-72 and IE2-86 were able to inhibit p53-dependent transcriptional activation in plasmid-transfected cells. IE1-72, rather than IE2-86, was found to be responsible for p21 downregulation in HCMV-infected HEL cells. DNA transfection analysis using IE1-72 mutants revealed that exon 2/3 and the zinc finger region of IE1-72 are essential for IE1-72's effect on the repression of p53-dependent transcriptional activation. These data suggest that HCMV IE1-72 and/or IE2-86 transactivates the p53 promoter and induces p53 accumulation, but HCMV IE1-72 represses the p53 transactivation activity by a unique binding hindrance mechanism different from that of IE2-86. Thus, various modes of viral IE proteins and p53 interactions might result in multiple outcomes, such as stimulation of cellular DNA synthesis, cell cycle progression and cell cycle arrest, and prevention of program cell death.
Collapse
|
25
|
Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 2009; 83:11116-22. [PMID: 19656881 DOI: 10.1128/jvi.00512-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4) poses major clinical problems worldwide. Following primary infection, EBV enters a form of long-lived latency in B lymphocytes, expressing few viral genes, and it persists for the lifetime of the host with sporadic bursts of viral replication. The switch between latency and replication is governed by the action of a multifunctional viral protein Zta (also called BZLF1, ZEBRA, and Z). Using a global proteomic approach, we identified a host DNA damage repair protein that specifically interacts with Zta: 53BP1. 53BP1 is intimately connected with the ATM signal transduction pathway, which is activated during EBV replication. The interaction of 53BP1 with Zta requires the C-terminal ends of both proteins. A series of Zta mutants that show a wild-type ability to perform basic functions of Zta, such as dimer formation, interaction with DNA, and the transactivation of viral genes, were shown to have lost the ability to induce the viral lytic cycle. Each of these mutants also is compromised in the C-terminal region for interaction with 53BP1. In addition, the knockdown of 53BP1 expression reduced viral replication, suggesting that the association between Zta and 53BP1 is involved in the viral replication cycle.
Collapse
|
26
|
Sato Y, Kamura T, Shirata N, Murata T, Kudoh A, Iwahori S, Nakayama S, Isomura H, Nishiyama Y, Tsurumi T. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 2009; 5:e1000530. [PMID: 19649319 PMCID: PMC2712087 DOI: 10.1371/journal.ppat.1000530] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022] Open
Abstract
p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection. Inhibition of p53-mediated transactivation is essential for regulating the cellular environment advantageous for viral infection. Specially, DNA viruses target p53 for inactivation through the ubiquitin-proteasome pathway. The E6 protein of the high-risk human papillomaviruses and the cellular ubiquitin-protein ligase E6AP form a complex which causes ubiquitination and degradation of p53. The adenovirus E1B 55-kDa protein binds to both p53 and E4orf6, and recruits a Cullin-containing complex to direct the ubiquitin-mediated proteolysis of p53. However, in comparison with the effects of the smaller DNA viruses, much less is known regarding the precise mechanisms whereby the Epstein-Barr virus (EBV) inhibits functions of p53. EBV possesses two alternative life cycles, latent and lytic replication. In latent phase, p53 is regulated by MDM2 ubiquitin ligase while after induction of lytic replication p53 is phosphorylated and the level of activated p53 is regulated by a novel system independent of MDM2. This report describes a unique functional role of the BZLF1 protein encoded by EBV in the modulation of activated p53. In this pathway, BZLF1 protein serves as an adaptor molecule for both Cul2- and Cul5-containing E3 ubiquitin ligase complexes to stimulate the ubiquitination and degradation of p53 for inhibiting apoptosis, indicating redundancy in the EBV machinery to downregulate p53 level. Therefore, it would be possible that the complexes regulate not only p53 but also various proteins that interact with BZLF1 protein.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Noriko Shirata
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Ayumi Kudoh
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Satoko Iwahori
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Sanae Nakayama
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
27
|
Topoisomerase I and RecQL1 function in Epstein-Barr virus lytic reactivation. J Virol 2009; 83:8090-8. [PMID: 19494003 DOI: 10.1128/jvi.02379-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular topoisomerases and helicases are thought to play an essential role in herpesvirus replication and gene expression and are considered to be potential targets for antiviral therapies. Topoisomerase I (Topo I) and Topo II inhibitors can selectively inhibit Epstein-Barr virus (EBV) lytic cycle DNA replication. We found that the Topo I inhibitor camptothecin and, to a lesser extent, the Topo II inhibitor etoposide are potent inhibitors of the transcription and replication function of the EBV-encoded immediate-early protein Zta (also referred to as ZEBRA, EB1, and BZLF1). Camptothecin inhibited the Zta transcription activation of endogenous and reporter-linked viral promoters. Small interfering RNA depletion of Topo I also inhibited the Zta-dependent activation of lytic cycle DNA replication. Topo I could be coimmunoprecipitated with Zta, but this interaction was restricted to EBV-positive cells, suggesting that other viral proteins stabilize the interaction between Zta and Topo I. We also found that the RecQL1 helicase, which is known to associate with Kaposi's sarcoma-associated herpesvirus (KSHV) OriLyt, interacts with EBV OriLyt. Treatment with camptothecin reduced both Zta and RecQL1 binding to OriLyt in vivo, suggesting that Topo I promotes replication protein assembly at OriLyt.
Collapse
|
28
|
Heather J, Flower K, Isaac S, Sinclair AJ. The Epstein-Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene egr1. J Gen Virol 2009; 90:1450-1454. [PMID: 19264650 PMCID: PMC2885059 DOI: 10.1099/vir.0.007922-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the host gene egr1 is essential for the lytic replication of Epstein–Barr virus (EBV). egr1 is activated by Zta (BZLF1, ZEBRA). Zta interacts directly with DNA through a series of closely related Zta-response elements (ZREs). Here we dissect the mechanism used by Zta to interact with the egr1 promoter and identify a weak interaction with egr1ZRE that is dependent on the distal part of egr1ZRE. Furthermore, we demonstrate that the ability of Zta to interact with egr1ZRE is enhanced at least tenfold by methylation. The ability of Zta to transactivate a reporter construct driven by the egr1 promoter can be enhanced by methylation. As the ability of Zta to interact with a methylated ZRE in the EBV genome correlates with its ability to activate the expression of the endogenous viral gene BRLF1, this suggests that Zta may also have the capability to overturn epigenetic control of egr1.
Collapse
Affiliation(s)
- James Heather
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kirsty Flower
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Samine Isaac
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
29
|
Murata T, Sato Y, Nakayama S, Kudoh A, Iwahori S, Isomura H, Tajima M, Hishiki T, Ohshima T, Hijikata M, Shimotohno K, Tsurumi T. TORC2, a coactivator of cAMP-response element-binding protein, promotes Epstein-Barr virus reactivation from latency through interaction with viral BZLF1 protein. J Biol Chem 2009; 284:8033-41. [PMID: 19164291 DOI: 10.1074/jbc.m808466200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reactivation of the Epstein-Barr virus from latency is dependent on expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found here that Transducer of Regulated cAMP-response Element-binding Protein (CREB) (TORC) 2 enhances Zp activity 10-fold and more than 100-fold with co-expression of the BZLF1 protein. Mutational analysis of Zp revealed that the activation by TORC is dependent on ZII and ZIII cis elements, binding sites for CREB family transcriptional factors and the BZLF1 protein, respectively. Immunoprecipitation, chromatin immunoprecipitation, and reporter assay using Gal4-luc and Gal4BD-BZLF1 fusion protein indicate that TORC2 interacts with BZLF1, and that the complex is efficiently recruited onto Zp. These observations clearly indicate that TORC2 activates the promoter through interaction with the BZLF1 protein as well as CREB family transcriptional factors. Induction of the lytic replication resulted in the translocation of TORC2 from cytoplasm to viral replication compartments in nuclei, and furthermore, activation of Zp by TORC2 was augmented by calcium-regulated phosphatase, calcineurin. Silencing of endogenous TORC2 gene expression by RNA interference decreased the levels of the BZLF1 protein in response to 12-O-tetradecanoylphorbol-13-acetate/ionophore. Based on these results, we conclude that Epstein-Barr virus exploits the calcineurin-TORC signaling pathway through interactions between TORC and the BZLF1 protein in reactivation from latency.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vannella KM, Moore BB. Viruses as co-factors for the initiation or exacerbation of lung fibrosis. FIBROGENESIS & TISSUE REPAIR 2008; 1:2. [PMID: 19014649 PMCID: PMC2577044 DOI: 10.1186/1755-1536-1-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 10/13/2008] [Indexed: 12/27/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains exactly that. The disease originates from an unknown cause, and little is known about the mechanisms of pathogenesis. While the disease is likely multi-factorial, evidence is accumulating to implicate viruses as co-factors (either as initiating or exacerbating agents) of fibrotic lung disease. This review summarizes the available clinical and experimental observations that form the basis for the hypothesis that viral infections may augment fibrotic responses. We review the data suggesting a link between hepatitis C virus, adenovirus, human cytomegalovirus and, in particular, the Epstein-Barr gammaherpesvirus, in IPF. In addition, we highlight the recent associations made between gammaherpesvirus infection and lung fibrosis in horses and discuss the various murine models that have been used to investigate the contribution of gammaherpesviruses to fibrotic progression. We review the work demonstrating that gammaherpesvirus infection of Th2-biased mice leads to multi-organ fibrosis and highlight studies showing that gammaherpesviral infections of mice either pre- or post-fibrotic challenge can augment the development of fibrosis. Finally, we discuss potential mechanisms whereby viral infections may amplify the development of fibrosis. While none of these studies prove causality, we believe the evidence suggests that viral infections should be considered as potential initiators or exacerbating agents in at least some cases of IPF and thereby justify further study.
Collapse
Affiliation(s)
- Kevin M Vannella
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
31
|
Critical role of p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression. J Virol 2008; 82:7745-51. [PMID: 18495777 DOI: 10.1128/jvi.02717-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The tumor suppressor gene p53 plays a central role in the maintenance of normal cell growth and genetic integrity, while its impact on the Epstein-Barr virus (EBV) life cycle remains elusive. We found that p53 is important for histone deacetylase inhibitor-induced EBV lytic gene expression in nasopharyngeal carcinoma cells. Restoration of p53 in p53-null, EBV-infected H1299 cells augments the potential for viral lytic cycle initiation. Evidence from reporter assays demonstrated that p53 contributes to the expression of the immediate-early viral Zta gene. Further analysis indicated that the DNA-binding ability of p53 and phosphorylation of Ser392 may be critical. This study provides the first evidence that p53 is involved in the regulation of EBV lytic cycle initiation.
Collapse
|
32
|
Jiang Y, Xu D, Zhao Y, Zhang L. Mutual inhibition between Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus lytic replication initiators in dually-infected primary effusion lymphoma. PLoS One 2008; 3:e1569. [PMID: 18253508 PMCID: PMC2215330 DOI: 10.1371/journal.pone.0001569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/11/2008] [Indexed: 01/15/2023] Open
Abstract
Background Both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are members of the human gamma herpesvirus family: each is associated with various human cancers. The majority of AIDS-associated primary effusion lymphoma (PEL) are co-infected with both KSHV and EBV. Dually-infected PELs selectively switch from latency to lytic replication of either KSHV or EBV in response to chemical stimuli. KSHV replication and transcription activator (K-RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication, while EBV BZLF1 gene product (EBV-Z) is a critical initiator for induction of EBV lytic replication. Methodology/Principal Findings We show K-RTA and EBV-Z are co-localized and physically interact with each other in dually-infected PELs. K-RTA inhibits the EBV lytic replication by nullifying EBV-Z-mediated EBV lytic gene activation. EBV-Z inhibits KSHV lytic gene expression by blocking K-RTA-mediated transactivations. The physical interaction between K-RTA and EBV-Z are required for the mutual inhibition of the two molecules. The leucine heptapeptide repeat (LR) region in K-RTA and leucine zipper region in EBV-Z are involved in the physical interactions of the two molecules. Finally, initiation of KSHV lytic gene expression is correlated with the reduction of EBV lytic gene expression in the same PEL cells. Conclusions/Significance In this report, how the two viruses interact with each other in dually infected PELs is addressed. Our data may provide a possible mechanism for maintaining viral latency and for selective lytic replication in dually infected PELs, i.e., through mutual inhibition of two critical lytic replication initiators. Our data about putative interactions between EBV and KSHV would be applicable to the majority of AIDS-associated PELs and may be relevant to the pathogenesis of PELs.
Collapse
Affiliation(s)
- Yanjun Jiang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Dongsheng Xu
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yong Zhao
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- *E-mail:
| |
Collapse
|
33
|
Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 2006; 81:1037-42. [PMID: 17079287 PMCID: PMC1797481 DOI: 10.1128/jvi.01416-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We demonstrate here that the Epstein-Barr virus (EBV) BZLF1 gene, a switch from latent infection to lytic infection, is expressed as early as 1.5 h after EBV infection in Burkitt's lymphoma-derived, EBV-negative Akata and Daudi cells and primary B lymphocytes. Since BZLF1 mRNA is expressed even when the cells are infected with EBV in the presence of anisomycin, an inhibitor of protein synthesis, its expression does not require prerequisite protein synthesis, indicating that BZLF1 is expressed as an immediate-early gene following primary EBV infection of B lymphocytes.
Collapse
Affiliation(s)
- Wangrong Wen
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Yip KW, Shi W, Pintilie M, Martin JD, Mocanu JD, Wong D, MacMillan C, Gullane P, O'Sullivan B, Bastianutto C, Liu FF. Prognostic Significance of the Epstein-Barr Virus, p53, Bcl-2, and Survivin in Nasopharyngeal Cancer. Clin Cancer Res 2006; 12:5726-32. [PMID: 17020977 DOI: 10.1158/1078-0432.ccr-06-0571] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nasopharyngeal cancer (NPC) is a malignant epithelial carcinoma which is intimately associated with EBV. The latent presence of EBV affects the function of p53, Bcl-2, and survivin. We thus investigated the relationship between EBV status, p53, Bcl-2, and survivin in biopsy specimens from patients with primary NPC. EXPERIMENTAL DESIGN Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 80 patients treated with curative radiation from a single institution. The presence of EBV was determined using EBER in situ hybridization, whereas p53, Bcl-2, and survivin were assessed using immunohistochemistry. RESULTS The majority of NPC specimens in this patient cohort were EBER-positive (64 of 78, or 82%), which in turn, was significantly associated with ethnicity (P = 0.0007), and WHO subtype 2A/2B (P = 0.04). EBER-positive tumors were also associated with p53 (P = 0.002), Bcl-2 (P = 0.04), and nuclear survivin (P = 0.03) expression. Patients with EBER-positive NPC fared better, with a 10-year overall survival of 68% versus 48% for EBER-negative patients (P = 0.03). For nuclear survivin, patients with either low or high nuclear survivin fared worse than patients with intermediate survivin expression (P = 0.05), suggesting that there is an optimal proportion of survivin-expressing cells for best function and clinical outcome. CONCLUSIONS With an extended median follow-up time of 11.4 years, EBV status remains a strong predictor for overall survival in NPC. EBV-positive NPC has strong molecular associations with p53, Bcl-2, and survivin expression. Furthermore, we provide clinical data revealing the potentially dual nature of survivin in predicting clinical outcome.
Collapse
Affiliation(s)
- Kenneth W Yip
- Department of Medical Biophysics, University of Toronto, and Division of Applied Molecular Oncology, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang P, Day L, Lieberman PM. Multivalent sequence recognition by Epstein-Barr virus Zta requires cysteine 171 and an extension of the canonical B-ZIP domain. J Virol 2006; 80:10942-9. [PMID: 16971443 PMCID: PMC1642168 DOI: 10.1128/jvi.00907-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) immediate-early protein Zta is a member of the basic-leucine zipper (B-ZIP) family of DNA binding proteins that has an unusual capacity to recognize multiple DNA recognition sites, including AP-1 and C/EBP binding sites. To better understand the structure and function of Zta, we have mutagenized cysteine residues within or adjacent to the B-ZIP domain. We found that serine substitution for cysteine 171 (C171S), which lies outside and amino terminal to the B-ZIP basic region, completely abrogates Zta capacity to initiate lytic cycle replication. C171S disrupted Zta transcription activation function of several EBV lytic cycle promoters, including the BMRF1 gene (EA-D) and the other lytic activator, Rta. Overexpression of Rta could not rescue the C171S defect for transcription reactivation or viral DNA replication. Zta C171S was defective for binding to these promoters in vivo, as measured by chromatin immunoprecipitation assay. Purified Zta C171S bound AP-1 sites similar to wild-type Zta, but it was incapable of binding several degenerate Zta sites, including a consensus C/EBP site. Zta truncation mutations reveal that residues N terminal to the B-ZIP (amino acids 156 to 178) confer C/EBP binding capacity to the otherwise AP-1-restricted DNA recognition function. Comparison among viral orthologues of Zta suggest that a conserved N-terminal extension of the consensus B-ZIP domain is required for this multivalent DNA recognition capacity of Zta and is essential for viral reactivation.
Collapse
MESH Headings
- Amino Acid Substitution
- Chromatin Immunoprecipitation
- Cysteine/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Reporter
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Luciferases/analysis
- Luciferases/genetics
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Pu Wang
- The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104-4268, USA
| | | | | |
Collapse
|
36
|
Surjit M, Liu B, Chow VTK, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 2006; 281:10669-81. [PMID: 16431923 PMCID: PMC7995956 DOI: 10.1074/jbc.m509233200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/17/2006] [Indexed: 11/15/2022] Open
Abstract
Deregulation of the cell cycle is a common strategy employed by many DNA and RNA viruses to trap and exploit the host cell machinery toward their own benefit. In many coronaviruses, the nucleocapsid protein (N protein) has been shown to inhibit cell cycle progression although the mechanism behind this is poorly understood. The N protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) bears signature motifs for binding to cyclin and phosphorylation by cyclin-dependent kinase (CDK) and has recently been reported by us to get phosphorylated by the cyclin-CDK complex (Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., and Lal, S. K. (2005) J. Virol. 79, 11476-11486). In the present study, we prove that the N protein of SARS-CoV can inhibit S phase progression in mammalian cell lines. N protein expression was found to directly inhibit the activity of the cyclin-CDK complex, resulting in hypophosphorylation of retinoblastoma protein with a concomitant down-regulation in E2F1-mediated transactivation. Coexpression of E2F1 under such conditions could restore the expression of S phase genes. Analysis of RXL and CDK phosphorylation mutant N protein identified the mechanism of inhibition of CDK4 and CDK2 activity to be different. Whereas N protein could directly bind to cyclin D and inhibit the activity of CDK4-cyclin D complex; inhibition of CDK2 activity appeared to be achieved in two different ways: indirectly by down-regulation of protein levels of CDK2, cyclin E, and cyclin A and by direct binding of N protein to CDK2-cyclin complex. Down-regulation of E2F1 targets was also observed in SARS-CoV-infected VeroE6 cells. These data suggest that the S phase inhibitory activity of the N protein may have major significance during viral pathogenesis.
Collapse
Affiliation(s)
- Milan Surjit
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Rd., New Delhi 110067, India
| | | | | | | |
Collapse
|
37
|
Abstract
Many viruses, with distinct replication strategies, activate DNA-damage response pathways, including the lentivirus human immunodeficiency virus (HIV) and the DNA viruses Epstein-Barr virus (EBV), herpes simplex virus 1, adenovirus and SV40. DNA-damage response pathways involving DNA-dependent protein kinase, ataxia-telengiectasia mutated (ATM) and 'ataxia-telengiectasia and Rad3-related' (ATR) have all been implicated. This review focuses on the effects of HIV and EBV replication on DNA repair pathways. It has been suggested that activation of cellular DNA repair and recombination enzymes is beneficial for viral replication, as illustrated by the ability of suppressors of the ATM and ATR family to inhibit HIV replication. However, activation of DNA-damage response pathways can also promote apoptosis. Viruses can tailor the cellular response by suppressing downstream signalling from DNA-damage sensors, as exemplified by EBV. New small-molecule inhibitors of the DNA-damage response pathways could therefore be of value to treat viral infections.
Collapse
Affiliation(s)
- Alison Sinclair
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Sarah Yarranton
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax: +44 1273 678 433;
| | - Celine Schelcher
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax +44 1273 678 433;
| |
Collapse
|
38
|
Arbach H, Viglasky V, Lefeu F, Guinebretière JM, Ramirez V, Bride N, Boualaga N, Bauchet T, Peyrat JP, Mathieu MC, Mourah S, Podgorniak MP, Seignerin JM, Takada K, Joab I. Epstein-Barr virus (EBV) genome and expression in breast cancer tissue: effect of EBV infection of breast cancer cells on resistance to paclitaxel (Taxol). J Virol 2006; 80:845-53. [PMID: 16378986 PMCID: PMC1346837 DOI: 10.1128/jvi.80.2.845-853.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) has been detected in subsets of breast cancers. In order to elaborate on these observations, we quantified by real-time PCR (Q-PCR) the EBV genome in biopsy specimens of breast cancer tissue as well as in tumor cells isolated by microdissection. Our findings show that EBV genomes can be detected by Q-PCR in about half of tumor specimens, usually in low copy numbers. However, we also found that the viral load is highly variable from tumor to tumor. Moreover, EBV genomes are heterogeneously distributed in morphologically identical tumor cells, with some clusters of isolated tumor cells containing relatively high genome numbers while other tumor cells isolated from the same specimen may be negative for EBV DNA. Using reverse transcription-PCR, we detected EBV gene transcripts: EBNA-1 in almost all of the EBV-positive tumors and RNA of the EBV oncoprotein LMP-1 in a smaller subset of the tissues analyzed. Moreover, BARF-1 RNA was detected in half of the cases studied. Furthermore, we observed that in vitro EBV infection of breast carcinoma cells confers resistance to paclitaxel (taxol) and provokes overexpression of a multidrug resistance gene (MDR1). Consequently, even if a small number of breast cancer cells are EBV infected, the impact of EBV infection on the efficiency of anticancer treatment might be of importance.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Adenocarcinoma/virology
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Phytogenic/pharmacology
- Biopsy
- Breast/metabolism
- Breast/pathology
- Breast/virology
- Breast Neoplasms/pathology
- Breast Neoplasms/virology
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/virology
- DNA, Viral/genetics
- Drug Resistance, Neoplasm
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Female
- Gene Expression
- Genes, MDR/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Middle Aged
- Paclitaxel/pharmacology
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Hratch Arbach
- INSERM U716, IUH, IFR Saint-Louis, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang P, Day L, Dheekollu J, Lieberman PM. A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication. J Virol 2005; 79:13298-309. [PMID: 16227252 PMCID: PMC1262569 DOI: 10.1128/jvi.79.21.13298-13309.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation from latency is known to be sensitive to redox regulation. The immediate-early protein Zta is a member of the basic-leucine zipper (bZIP) family of DNA binding proteins that stimulates viral and cellular transcription and nucleates a replication complex at the viral lytic origin. Zta shares with several members of the bZIP family a conserved cysteine residue (C189) that confers redox regulation of DNA binding. In this work, we show that replacement of C189 with serine (C189S) eliminated lytic cycle DNA replication function of Zta. The mechanistic basis for this replication defect was investigated. We show that C189S was not significantly altered for DNA binding activity in vitro or in vivo. We also show that C189S was not defective for transcription activation of EBV early gene promoters. C189S was deficient for transcription activation of several viral late genes that depend on lytic replication and therefore was consistent with a primary defect of C189S in activating lytic replication. C189S was not defective in binding methylated DNA binding sites and was capable of activating Rta from endogenous latent viral genomes, in contrast to the previously characterized S186A mutation. C189S was slightly impaired for its ability to form a stable complex with Rta, although this did not prevent Rta recruitment to OriLyt. C189S did provide some resistance to oxidation and nitrosylation, which potently inhibit Zta DNA binding activity in vitro. Interestingly, this redox sensitivity was not strictly dependent on C189S but involved additional cysteine residues in Zta. These results provide evidence that the conserved cysteine in the bZIP domain of Zta plays a primary role in EBV lytic cycle DNA replication.
Collapse
Affiliation(s)
- Pu Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
40
|
Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K, Uchiyama Y, Yamanishi K. Human herpesvirus 6 open reading frame U14 protein and cellular p53 interact with each other and are contained in the virion. J Virol 2005; 79:13037-46. [PMID: 16189006 PMCID: PMC1235810 DOI: 10.1128/jvi.79.20.13037-13046.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/23/2005] [Indexed: 02/02/2023] Open
Abstract
A mass spectroscopic analysis of proteins from human herpesvirus 6 (HHV-6)-infected cells showed that the HHV-6 U14 protein coimmunoprecipitated with the tumor suppressor p53. The binding of U14 to p53 was verified by coimmunoprecipitation experiments in both Molt-3 cells infected with HHV-6 and 293 cells cotransfected with U14 and p53 expression vectors. Indirect immunofluorescence assays (IFAs) showed that by 18 h postinfection (hpi) U14 localized to the dot-like structures observed in both the nucleus and cytoplasm where p53 was partly accumulated. Despite Northern blotting evidence that U14 follows late kinetics, the U14 protein was detected immediately after infection (at 3 hpi) by IFA. In addition, by Western blotting, U14 was detected at 0 hpi or in the presence of cycloheximide which completely abolished the expression of IE1 protein. In addition to U14, p53 was detected at 0 hpi although it was not detected in mock-infected cells. Furthermore, both U14 and p53 were clearly detected in the viral particles by Western blotting and immunoelectron microscopy, supporting the idea that U14 and p53 are incorporated into virions. Our study provides the first evidence of the incorporation of cellular p53 into viral particles and suggests that p53 may play an important role in viral infection.
Collapse
Affiliation(s)
- Masaya Takemoto
- Department of Microbiology, Osaka University Graduate School of Medicine C1, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 2005; 79:10040-52. [PMID: 16014964 PMCID: PMC1181586 DOI: 10.1128/jvi.79.15.10040-10052.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.
Collapse
Affiliation(s)
- Angela M Hahn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
42
|
Izumiya Y, Ellison TJ, Yeh ETH, Jung JU, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 2005; 79:9912-25. [PMID: 16014952 PMCID: PMC1181544 DOI: 10.1128/jvi.79.15.9912-9925.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus implicated in AIDS-related neoplasms. Previously, we demonstrated that the early lytic gene product K-bZIP is a transcriptional repressor that affects a subset of viral gene transcriptions mediated by the viral transactivator K-Rta (Y. Izumiya et al. J. Virol. 77:1441-1451, 2003). Sumoylation has emerged as an important posttranslational modification that affects the location and function of cellular and viral proteins and also plays a significant role in transcriptional repression along with Ubc9, the E2 SUMO conjugation enzyme. Here, we provide evidence that K-bZIP is sumoylated at the lysine 158 residue and associates with Ubc9 both in a cell-free system and in virus-infected BCBL-1 cells. Reporter assays showed that the expression of SUMO-specific protease 1 attenuated the transcriptional repression activity of K-bZIP. The expression of a K-bZIPK158R mutant, which was no longer sumoylated, exhibited the reduced transcriptional repression activity. This indicates that sumoylation plays an important part in the transcriptional repression activity of K-bZIP. Finally, chromatin immunoprecipitation experiments demonstrated that K-bZIP interacts with and recruits Ubc9 to specific KSHV promoters. Thus, our data indicate that K-bZIP is a SUMO adaptor, which recruits Ubc9 to specific viral target promoters, thereby exerting its transcriptional repression activity.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Biological Chemistry, University of California--Davis (UC Davis), School of Medicine, Sacramento, 95817, USA
| | | | | | | | | | | |
Collapse
|
43
|
Adamson AL, Wright N, LaJeunesse DR. Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics 2005; 171:1125-35. [PMID: 16079238 PMCID: PMC1456816 DOI: 10.1534/genetics.105.042572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several forms of cancer, including lymphomas and nasopharyngeal carcinoma. The EBV immediate-early protein BZLF1 functions as a transcriptional activator of EBV early gene expression and is essential for the viral transition between latent and lytic replication. In addition to its role in the EBV life cycle, BZLF1 (Z) also has profound effects upon the host cellular environment, including disruption of cell cycle regulation, signal transduction pathways, and transcription. In an effort to understand the nature of Z interactions with the host cellular environment, we have developed a Drosophila model of early EBV infection, where we have expressed Z in the Drosophila eye. Using this system, we have identified a highly conserved interaction between the Epstein-Barr virus Z protein and shaven, a Drosophila homolog of the human Pax2/5/8 family of genes. Pax5 is a well-characterized human gene involved with B-cell development. The B-cell-specific Pax5 also promotes the transcription of EBV latent genes from the EBV Wp promoter. Our work clearly demonstrates that the Drosophila system is an appropriate and powerful tool for identifying the underlying genetic networks involved in human infectious disease.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina, Greensboro, North Carolina, 27402, USA.
| | | | | |
Collapse
|
44
|
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and is associated with several types of cancers, including nasopharyngeal carcinoma and Burkitt's lymphoma. An EBV protein that plays an integral role during lytic replication is the immediate-early protein BZLF1. Our laboratory has found that BZLF1 (Z) localizes to host chromosomes during mitosis. Two Z-interacting proteins are also found localized to mitotic chromosomes in the presence of Z. The association between Z and mitotic chromosomes may lead to the sequestering of Z-interacting proteins within the cell and potentially cause an alteration of chromosome compaction or chromatin structure.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
45
|
Al Mehairi S, Cerasoli E, Sinclair AJ. Investigation of the multimerization region of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) protein K-bZIP: the proposed leucine zipper region encodes a multimerization domain with an unusual structure. J Virol 2005; 79:7905-10. [PMID: 15919946 PMCID: PMC1143620 DOI: 10.1128/jvi.79.12.7905-7910.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The K8 gene of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) shares many functional similarities with the BZLF1 gene of Epstein-Barr virus. The protein products of K8 and BZLF1, K-bZIP (RAP, K8) and Zta (BZLF1, ZEBRA, Z) have both been proposed to be members of the bZIP family of transcription factors, forming multimers via a coiled-coil motif termed a leucine zipper. Substantial evidence supporting this model for Zta is published. Here, we demonstrate that the proposed leucine zipper region of K-bZIP (amino acids 182 to 218) is required for multimer formation but that it does not fold as a coiled coil.
Collapse
Affiliation(s)
- Salama Al Mehairi
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
46
|
Wang Y, Luo B, Yan LP, Huang BH, Zhao P. Relationship between Epstein-Barr virus-encoded proteins with cell proliferation, apoptosis, and apoptosis-related proteins in gastric carcinoma. World J Gastroenterol 2005; 11:3234-9. [PMID: 15929173 PMCID: PMC4316054 DOI: 10.3748/wjg.v11.i21.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the interrelationship between Epstein-Barr virus (EBV)-encoded proteins and cell proliferation, apoptosis and apoptosis-related proteins in gastric carcinoma, and to explore their role in gastric carcinogenesis.
METHODS: Tissues from 13 cases of EBV-associated gastric carcinoma (EBVaGC) and 45 cases of matched EBV-negative gastric carcinoma (EBVnGC) were collected, and then subjected to analysis for apoptotic index (AI) using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Nuclear cell proliferation-associated antigen ki-67 index (KI), bcl-2, and p53 expression were examined by immunohistochemistry. p53 mutation in exons 5-8 of 13 EBVaGC cases was determined by single-strand conformation polymorphism (SSCP) and DNA sequencing. RT-PCR and Southern hybridization were used to detect the expression of nuclear antigens (EBNAs) 1 and 2, latent membrane protein (LMP) 1, immediately early gene BZLF1 and early genes BARF1 and BHRF1 in 13 EBVaGC cases.
RESULTS: The percentage of AI, KI and p53 overexpression was significantly lower in the EBVaGC group than in the EBVnGC group. However, bcl-2 expression did not show significant difference between the two groups. p53 gene mutations were not found in 13 EBVaGCs. Transcripts of EBNA1 were detected in all 13 EBVaGCs, while both EBNA2 and LMP1 mRNA were not detected. Six of the thirteen cases exhibited BZLF1 transcripts and two exhibited BHRF1 transcripts. BARF1 mRNA was detected in six cases.
CONCLUSION: Lower AI and KI may reflect a low biological activity in EBVaGC. EBV infection is associated with p53 abnormal expression but not bcl-2 protein in EBVaGC. BZLF1, BARF1, and BHRF1 may play important roles in inhibiting cell apoptosis and tumorigenesis of EBVaGC through different pathways.
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology, Qingdao University Medical College, Number 38 of Dengzhou Road, Qingdao 266021, Shandong Province, China
| | | | | | | | | |
Collapse
|
47
|
Boutell C, Everett RD. Herpes simplex virus type 1 infection induces the stabilization of p53 in a USP7- and ATM-independent manner. J Virol 2004; 78:8068-77. [PMID: 15254178 PMCID: PMC446092 DOI: 10.1128/jvi.78.15.8068-8077.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major oncoprotein p53 regulates several cellular antiproliferation pathways that can be triggered in response to a variety of cellular stresses, including viral infection. The stabilization of p53 is a key factor in the ability of cells to initiate an efficient transcriptional response after cellular stress. Here we present data demonstrating that herpes simplex virus type 1 (HSV-1) infection of HFFF-2 cells, a low-passage-number nontransformed human primary cell line, results in the stabilization of p53. This process required viral immediate-early gene expression but occurred independently of the viral regulatory protein ICP0 and viral DNA replication. No specific viral protein could be identified as being solely responsible for the effect, which appears to be a cellular response to developing HSV-1 infections. HSV-1 infection also induced the phosphorylation of p53 at residues Ser15 and Ser20, which have previously been implicated in its stabilization in response to DNA damage. However, an HSV-1 infection of ATM(-/-) cells, which lack a kinase implicated in these phosphorylation events, did not lead to the phosphorylation of p53 at these residues, but nonetheless p53 was stabilized. We also show that the wild-type p53 expressed by osteosarcoma U2OS cells can be stabilized in response to DNA damage induced by UV irradiation, but not in response to HSV-1 infection. These data suggest that multiple cellular mechanisms are initiated to stabilize p53 during an HSV-1 infection. These mechanisms occur independently of ICP0 and its ability to sequester USP7 and may differ from those initiated in response to DNA damage.
Collapse
Affiliation(s)
- Chris Boutell
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom
| | | |
Collapse
|
48
|
El-Guindy AS, Miller G. Phosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. J Virol 2004; 78:7634-44. [PMID: 15220438 PMCID: PMC434091 DOI: 10.1128/jvi.78.14.7634-7644.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ZEBRA, a member of the bZIP family, serves as a master switch between latent and lytic cycle Epstein-Barr virus (EBV) gene expression. ZEBRA influences the activity of another viral transactivator, Rta, in a gene-specific manner. Some early lytic cycle genes, such as BMRF1, are activated in synergy by ZEBRA and Rta. However, ZEBRA suppresses Rta's ability to activate a late gene, BLRF2. Here we show that this repressive activity is dependent on the phosphorylation state of ZEBRA. We find that two residues of ZEBRA, S167 and S173, that are phosphorylated by casein kinase 2 (CK2) in vitro are also phosphorylated in vivo. Inhibition of ZEBRA phosphorylation at the CK2 substrate motif, either by serine-to-alanine substitutions or by use of a specific inhibitor of CK2, abolished ZEBRA's capacity to repress Rta activation of the BLRF2 gene, but did not alter its ability to initiate the lytic cycle or to synergize with Rta in activation of the BMRF1 early-lytic-cycle gene. These studies illustrate how the phosphorylation state of a transcriptional activator can modulate its behavior as an activator or repressor of gene expression. Phosphorylation of ZEBRA at its CK2 sites is likely to play an essential role in proper temporal control of the EBV lytic life cycle.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8064, USA
| | | |
Collapse
|
49
|
Izumiya Y, Lin SF, Ellison TJ, Levy AM, Mayeur GL, Izumiya C, Kung HJ. Cell cycle regulation by Kaposi's sarcoma-associated herpesvirus K-bZIP: direct interaction with cyclin-CDK2 and induction of G1 growth arrest. J Virol 2003; 77:9652-61. [PMID: 12915577 PMCID: PMC187423 DOI: 10.1128/jvi.77.17.9652-9661.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to cope with hostile host environments, many viruses have developed strategies to perturb the cellular machinery to suit their replication needs. Some herpesvirus genes protect cells from undergoing apoptosis to prolong the lives of infected cells, while others, such as Epstein-Barr virus Zta, slow down the G(1)/S transition phase to allow ample opportunity for transcription and translation of viral genes before the onset of cellular genomic replication. In this study, we investigated whether Kaposi's sarcoma-associated herpesvirus (KSHV) K-bZIP, a homologue of the Epstein-Barr virus transcription factor BZLF1 (Zta), plays a role in cell cycle regulation. Here we show that K-bZIP physically associates with cyclin-CDK2 and downmodulates its kinase activity. The association can be detected in the natural environment of KSHV-infected cells without artificial overexpression of either component. With purified protein, it can be shown that the interaction between K-bZIP and cyclin-CDK2 is direct and that K-bZIP alone is sufficient to inhibit CDK2 activity. The interacting domain of K-bZIP has been mapped to the basic region. The result of these associations is a prolonged G(1) phase, accompanied by the induction of p21 and p27 in a naturally infected B-cell line. Thus, in addition to the previously described transcription and genome replication functions, a new role of K-bZIP in KSHV replication is identified in this report.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Biological Chemistry, School of Medicine, University of California, Davis, UC Davis Cancer Center, Sacramento, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Johansen LM, Deppmann CD, Erickson KD, Coffin WF, Thornton TM, Humphrey SE, Martin JM, Taparowsky EJ. EBNA2 and activated Notch induce expression of BATF. J Virol 2003; 77:6029-40. [PMID: 12719594 PMCID: PMC154003 DOI: 10.1128/jvi.77.10.6029-6040.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins. In contrast to other target genes activated by EBNA2, the BATF gene encodes a member of the AP-1 family of transcription factors that functions as a negative regulator of AP-1 activity and as an antagonist of cell growth. A potential role for BATF in promoting EBV latency is supported by studies in which BATF was shown to negatively impact the expression of a BZLF1 reporter gene and to reduce the frequency of lytic replication in latently infected cells. The identification of BATF as a cellular target of EBV provides important new information on how programs of viral and cellular gene expression may be coordinated to promote viral latency and control lytic-cycle entry.
Collapse
Affiliation(s)
- Lisa M Johansen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | | | | | |
Collapse
|