1
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
2
|
Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. Conserved biophysical features of the Ca V2 presynaptic Ca 2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 2020; 295:18553-18578. [PMID: 33097592 PMCID: PMC7939481 DOI: 10.1074/jbc.ra120.015725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Salsabil Abdallah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas Piekut
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute, Toronto, Ontario, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
3
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
4
|
Mulligan T, Farber SA. Central and C-terminal domains of heterotrimeric G protein gamma subunits differentially influence the signaling necessary for primordial germ cell migration. Cell Signal 2011; 23:1617-24. [PMID: 21699975 DOI: 10.1016/j.cellsig.2011.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Heterotrimeric G protein signaling is involved in many pathways essential to development including those controlling cell migration, proliferation, differentiation and apoptosis. One key developmental event known to rely on proper heterotrimeric G protein signaling is primordial germ cell (PGC) migration. We previously developed an in vivo PGC migration assay that identified differences in the signaling capacity of G protein gamma subunits. In this study we developed Gγ subunit chimeras to determine the regions of Gγ isoforms that are responsible for these differences. The central section of the Gγ subunit was found to be necessary for the ability of a Gγ subunit to mediate signaling involved in PGC migration. Residues found in the carboxy-terminal segment of Gγ transducin (gngt1) were found to be responsible for the ability of this subunit to disrupt PGC migration. The type of prenylation did not affect the ability of a Gγ subunit to reverse prenylation-deficient-Gγ-induced PGC migration defects. However, a version of gng2, engineered to be farnesylated instead of geranylgeranylated, still lacks the ability to reverse PGC migration defects known to result from treatment of zebrafish with geranylgeranyl transferase inhibitors (GGTI), supporting the notion that Gγ subunits are one of several protein targets that need to be geranylgeranylated to orchestrate the proper long-range migration of PGCs.
Collapse
Affiliation(s)
- Timothy Mulligan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | | |
Collapse
|
5
|
Abstract
Chemical gradients of peptide mating pheromones are necessary for directional growth, which is critical for yeast mating. These gradients are generated by cell-type specific secretion or export and specific degradation in receiving cells. Spatial information is sensed by dedicated seven-transmembrane G-protein coupled receptors and yeast cells are able to detect extremely small differences in ligand concentration across their approximately 5-microm cell surface. Here, I will discuss our current knowledge of how cells detect and respond to such shallow chemical gradients and in particular what is known about the proteins that are involved in directional growth and the establishment of the polarity axis during yeast mating.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Institute of Developmental Biology and Cancer, Université de Nice-Sophia Antipolis-CNRS UMR6543, Centre de Biochimie, Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
6
|
Navarro-Olmos R, Kawasaki L, Domínguez-Ramírez L, Ongay-Larios L, Pérez-Molina R, Coria R. The beta subunit of the heterotrimeric G protein triggers the Kluyveromyces lactis pheromone response pathway in the absence of the gamma subunit. Mol Biol Cell 2010; 21:489-98. [PMID: 20016006 PMCID: PMC2814793 DOI: 10.1091/mbc.e09-06-0472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022] Open
Abstract
The Kluyveromyces lactis heterotrimeric G protein is a canonical Galphabetagamma complex; however, in contrast to Saccharomyces cerevisiae, where the Ggamma subunit is essential for mating, disruption of the KlGgamma gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Ggamma, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and DeltaGgamma cells of K. lactis. In contrast to the moderate sterility shown by the single DeltaKlGalpha, the double DeltaKlGalpha DeltaKlGgamma mutant displayed full sterility. A partial sterile phenotype of the DeltaKlGgamma mutant was obtained in conditions where the KlGbeta subunit interacted defectively with the Galpha subunit. The addition of a CCAAX motif to the C-end of KlGbeta, partially suppressed the lack of both KlGalpha and KlGgamma subunits. In cells lacking KlGgamma, the KlGbeta subunit cofractionated with KlGalpha in the plasma membrane, but in the DeltaKlGalpha DeltaKlGgamma strain was located in the cytosol. When the KlGbeta-KlGalpha interaction was affected in the DeltaKlGgamma mutant, most KlGbeta fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gbeta subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Ggamma subunit.
Collapse
Affiliation(s)
- Rocío Navarro-Olmos
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Laura Kawasaki
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Lenin Domínguez-Ramírez
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Davis, CA 95616
| | - Laura Ongay-Larios
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Rosario Pérez-Molina
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Roberto Coria
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| |
Collapse
|
7
|
Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish. Cell Signal 2009; 22:221-33. [PMID: 19786091 DOI: 10.1016/j.cellsig.2009.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/02/2009] [Accepted: 09/14/2009] [Indexed: 01/01/2023]
Abstract
Prenylation of G protein gamma (gamma) subunits is necessary for the membrane localization of heterotrimeric G proteins and for functional heterotrimeric G protein coupled receptor (GPCR) signaling. To evaluate GPCR signaling pathways during development, we injected zebrafish embryos with mRNAs encoding Ggamma subunits mutated so that they can no longer be prenylated. Low-level expression of these prenylation-deficient Ggamma subunits driven either ubiquitously or specifically in the primordial germ cells (PGCs) disrupts GPCR signaling and manifests as a PGC migration defect. This disruption results in a reduction of calcium accumulation in the protrusions of migrating PGCs and a failure of PGCs to directionally migrate. When co-expressed with a prenylation-deficient Ggamma, 8 of the 17 wildtype Ggamma isoforms individually confer the ability to restore calcium accumulation and directional migration. These results suggest that while the Ggamma subunits possess the ability to interact with G Beta (beta) proteins, only a subset of wildtype Ggamma proteins are stable within PGCs and can interact with key signaling components necessary for PGC migration. This in vivo study highlights the functional redundancy of these signaling components and demonstrates that prenylation-deficient Ggamma subunits are an effective tool to investigate the roles of GPCR signaling events during vertebrate development.
Collapse
|
8
|
Strickfaden SC, Pryciak PM. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2007; 19:181-97. [PMID: 17978098 DOI: 10.1091/mbc.e07-04-0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
9
|
Krystofova S, Borkovich KA. The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gbetagamma dimer required for normal female fertility, asexual development, and galpha protein levels in Neurospora crassa. EUKARYOTIC CELL 2005; 4:365-78. [PMID: 15701799 PMCID: PMC549333 DOI: 10.1128/ec.4.2.365-378.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a gene encoding a heterotrimeric G protein gamma subunit, gng-1, from the filamentous fungus Neurospora crassa. gng-1 possesses a gene structure similar to that of mammalian Ggamma genes, consisting of three exons and two introns, with introns present in both the open reading frame and 5'-untranslated region. The GNG-1 amino acid sequence displays high identity to predicted Ggamma subunits from other filamentous fungi, including Giberella zeae, Cryphonectria parasitica, Trichoderma harzianum, and Magnaporthe grisea. Deletion of gng-1 leads to developmental defects similar to those previously characterized for Deltagnb-1 (Gbeta) mutants. Deltagng-1, Deltagnb-1, and Deltagng-1 Deltagnb-1 strains conidiate inappropriately in submerged cultures and are female sterile, producing aberrant female reproductive structures. Similar to previous results obtained with Deltagnb-1 mutants, loss of gng-1 negatively influences levels of Galpha proteins (GNA-1, GNA-2, and GNA-3) in plasma membrane fractions isolated from various tissues of N. crassa and leads to a significant reduction in the amount of intracellular cyclic AMP. In addition, we show that GNB-1 is essential for maintenance of normal steady-state levels of GNG-1, suggesting a functional interaction between GNB-1 and GNG-1. Direct evidence for a physical association between GNB-1 and GNG-1 in vivo was provided by coimmunoprecipitation.
Collapse
Affiliation(s)
- Svetlana Krystofova
- Department of Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
10
|
Manahan CL, Patnana M, Blumer KJ, Linder ME. Dual lipid modification motifs in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response pathway in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:957-68. [PMID: 10712512 PMCID: PMC14823 DOI: 10.1091/mbc.11.3.957] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.
Collapse
Affiliation(s)
- C L Manahan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
11
|
Hirschman JE, Jenness DD. Dual lipid modification of the yeast ggamma subunit Ste18p determines membrane localization of Gbetagamma. Mol Cell Biol 1999; 19:7705-11. [PMID: 10523659 PMCID: PMC84814 DOI: 10.1128/mcb.19.11.7705] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pheromone response in the yeast Saccharomyces cerevisiae is mediated by a heterotrimeric G protein. The Gbetagamma subunit (a complex of Ste4p and Ste18p) is associated with both internal and plasma membranes, and a portion is not stably associated with either membrane fraction. Like Ras, Ste18p contains a farnesyl-directing CaaX box motif (C-terminal residues 107 to 110) and a cysteine residue (Cys 106) that is a potential site for palmitoylation. Mutant Ste18p containing serine at position 106 (mutation ste18-C106S) migrated more rapidly than wild-type Ste18p during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic mobility of wild-type Ste18p (but not the mutant Ste18p) was sensitive to hydroxylamine treatment, consistent with palmitoyl modification at Cys 106. Furthermore, immunoprecipitation of the Gbetagamma complex from cells cultured in the presence of [(3)H]palmitic acid resulted in two radioactive species on nonreducing SDS-PAGE gels, with molecular weights corresponding to Ggamma and Gbetagamma. Substitution of serine for either Cys 107 or Cys 106 resulted in the failure of Gbetagamma to associate with membranes. The Cys 107 substitution also resulted in reduced steady-state accumulation of Ste18p, suggesting that the stability of Ste18p requires modification at Cys 107. All of the mutant forms of Ste18p formed complexes with Ste4p, as assessed by coimmunoprecipitation. We conclude that tight membrane attachment of the wild-type Gbetagamma depends on palmitoylation at Cys 106 and prenylation at Cys 107 of Ste18p.
Collapse
Affiliation(s)
- J E Hirschman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | |
Collapse
|
12
|
Pryciak PM, Huntress FA. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 1998; 12:2684-97. [PMID: 9732267 PMCID: PMC317142 DOI: 10.1101/gad.12.17.2684] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the Saccharomyces cerevisiae pheromone response pathway, the Gbetagamma complex activates downstream responses by an unknown mechanism involving a MAP kinase cascade, the PAK-like kinase Ste20, and a Rho family GTPase, Cdc42. Here we show that Gbetagamma must remain membrane-associated after release from Galpha to activate the downstream pathway. We also show that pheromone stimulates translocation of the kinase cascade scaffold protein Ste5 to the cell surface. This recruitment requires Gbetagamma function and the Gbetagamma-binding domain of Ste5, but not the kinases downstream of Gbetagamma, suggesting that it is mediated by Gbetagamma itself. Furthermore, this event has functional significance, as artificial targeting of Ste5 to the plasma membrane, but not intracellular membranes, activates the pathway in the absence of pheromone or Gbetagamma. Remarkably, although independent of Gbetagamma, activation by membrane-targeted Ste5 requires Ste20, Cdc42, and Cdc24, indicating that their participation in this pathway does not require them to be activated by Gbetagamma. Thus, membrane recruitment of Ste5 defines a molecular activity for Gbetagamma. Moreover, our results suggest that this event promotes kinase cascade activation by delivering the Ste5-associated kinases to the cell surface kinase Ste20, whose function may depend on Cdc42 and Cdc24.
Collapse
Affiliation(s)
- P M Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, Massachusetts 01545, USA.
| | | |
Collapse
|
13
|
Chen Y, Weng G, Li J, Harry A, Pieroni J, Dingus J, Hildebrandt JD, Guarnieri F, Weinstein H, Iyengar R. A surface on the G protein beta-subunit involved in interactions with adenylyl cyclases. Proc Natl Acad Sci U S A 1997; 94:2711-4. [PMID: 9122261 PMCID: PMC20154 DOI: 10.1073/pnas.94.6.2711] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/1996] [Accepted: 12/30/1996] [Indexed: 02/04/2023] Open
Abstract
Receptor activation of heterotrimeric G proteins dissociates G alpha from the G betagamma complex, allowing both to regulate effectors. Little is known about the effector-interaction regions of G betagamma. We had used molecular modeling to dock a peptide encoding the region of residues 956-982 of adenylyl cyclase (AC) 2 onto Gbeta to identify residues on Gbeta that may interact with effectors. Based on predictions from the model, we synthesized peptides encoding sequences of residues 86-105 (Gbeta 86-105) and 115-135 (Gbeta 115-135) from Gbeta. The Gbeta 86-105 peptide inhibited G betagamma stimulation of AC2 and blocked G betagamma inhibition of AC1 and by itself inhibited calmodulin-stimulated AC1, thus displaying partial agonist activity. Substitution of Met-101 with Asn in this peptide resulted in the loss of both the inhibitory and partial agonist activities. Most activities of the Gbeta 115-135 peptide were similar to those of Gbeta 86-105 but Gbeta 115-135 was less efficacious in blocking G betagamma inhibition of AC1. Substitution of Tyr-124 with Val in the Gbeta 115-135 peptide diminished all of its activities. These results identify the region encoded by amino acids 84-143 of Gbeta as a surface that is involved in transmitting signals to effectors.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|