1
|
Foley K, Ward N, Hou H, Mayer A, McKee C, Xia H. Regulation of PP1 interaction with I-2, neurabin, and F-actin. Mol Cell Neurosci 2023; 124:103796. [PMID: 36442541 PMCID: PMC10038014 DOI: 10.1016/j.mcn.2022.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reversible phosphorylation is a fundamental regulatory mechanism required for many biological processes and is coordinated by the opposing actions of protein kinases and phosphatases. Protein phosphatase 1 (PP1) is a major protein phosphatase that plays an important role in many fundamental physiological processes including synaptic transmission and memory formation. Here we investigate the regulation of PP1 by prominent signaling proteins and synaptic scaffolds including GSK3β, inhibitor-2 (I-2), neurabin (Nrb), and actin. While GSK3β is known to regulate PP1 via phosphorylation of the PP1-binding protein I-2, we found that GSK3β directly regulates PP1 via inhibitory phosphorylation in neurons. Additionally, using bioluminescence resonance energy transfer (BRET), we found that GSK3β alters PP1-I-2 interaction in living cells. The effect of GSK3β on PP1-I-2 interaction is independent of the PP1 C-terminal tail, contrary to predictions based on previous findings from purified proteins. I-2 has been shown to form a trimeric complex with PP1 and Nrb, a major synaptic scaffold for promoting PP1 localization to the actin cytoskeleton. Utilizing BRET, we found that Nrb promotes PP1-actin interaction, however no BRET was detected between I-2 and F-actin. Finally, we found that stabilizing F-actin promotes Nrb-PP1 binding and may also lead to conformational changes between Nrb-I-2 and Nrb-F-actin complexes. Overall, our findings elaborate the dynamic regulation of PP1 complexes by GSK3β, targeting proteins, and actin polymerization.
Collapse
Affiliation(s)
- Karl Foley
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hailong Hou
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abigail Mayer
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cody McKee
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Houhui Xia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
2
|
Foley K, Altimimi H, Hou H, Zhang Y, McKee C, Papasergi-Scott MM, Yang H, Mayer A, Ward N, MacLean DM, Nairn AC, Stellwagen D, Xia H. Protein phosphatase-1 inhibitor-2 promotes PP1γ positive regulation of synaptic transmission. Front Synaptic Neurosci 2022; 14:1021832. [PMID: 36276179 PMCID: PMC9582336 DOI: 10.3389/fnsyn.2022.1021832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 in vitro, our previous work has elucidated that, in vivo, I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1γ, but not PP1α, positively regulate synaptic transmission in hippocampal neurons. Moreover, we demonstrated that I-2 enhanced PP1γ interaction with its major synaptic scaffold, neurabin, by Förster resonance energy transfer (FRET)/Fluorescence lifetime imaging microscopy (FLIM) studies, while having a limited effect on PP1 auto-inhibitory phosphorylation. Furthermore, our study indicates that the effect of I-2 on PP1 activity in vivo is dictated by I-2 threonine-72 phosphorylation. Our work thus demonstrates a molecular mechanism by which I-2 positively regulates PP1 function in synaptic transmission.
Collapse
|
3
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
4
|
Tung HYL, Limtung P. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3. Biochem Biophys Res Commun 2020; 532:134-138. [PMID: 32829876 PMCID: PMC7428706 DOI: 10.1016/j.bbrc.2020.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/09/2023]
Abstract
SARS-CoV-2 is the etiologic agent of COVID-19. There is currently no effective means of preventing infections by SARS-CoV-2, except through restriction of population movement and contact. An understanding of the origin, evolution and biochemistry (molecular biology) of SARS-CoV-2 is a prerequisite to its control. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein isolated from various populations and locations, are described. Mutations occurred in the phosphorylation sites, all located within a stretch which forms a phosphorylation dependent interaction site, including C-TAK1 phosphorylation sites for 14-3-3. The consequences of these mutations are discussed and a structure-based model for the role of protein 14-3-3 in the sequestration and inhibition of SARS-CoV-2 nucleocapsid protein's function is presented. It is proposed that the phosphorylation of SARS-CoV-2 nucleocapsid protein and its sequestration by Protein 14-3-3 is a cellular response mechanism for the control and inhibition of the replication, transcription and packaging of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- H Y Lim Tung
- Peptide and Protein Chemistry Research Laboratory, Nacbraht Biomedical Research Institute, 3164 21st Street Suite 122, Astoria (NYC), NY, 11106, USA.
| | - Pierre Limtung
- Peptide and Protein Chemistry Research Laboratory, Nacbraht Biomedical Research Institute, 3164 21st Street Suite 122, Astoria (NYC), NY, 11106, USA
| |
Collapse
|
5
|
Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans 2020; 48:2229-2240. [DOI: 10.1042/bst20200503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
Abstract
Inhibitor-2 (I2) ranks amongst the most ancient regulators of protein phosphatase-1 (PP1). It is a small, intrinsically disordered protein that was originally discovered as a potent inhibitor of PP1. However, later investigations also characterized I2 as an activator of PP1 as well as a chaperone for PP1 folding. Numerous studies disclosed the importance of I2 for diverse cellular processes but did not describe a unifying molecular principle of PP1 regulation. We have re-analyzed the literature on I2 in the light of current insights of PP1 structure and regulation. Extensive biochemical data, largely ignored in the recent I2 literature, provide substantial indirect evidence for a role of I2 as a loader of active-site metals. In addition, I2 appears to function as a competitive inhibitor of PP1 in higher eukaryotes. The published data also demonstrate that several segments of I2 that remain unstructured in the PP1 : I2 complex are in fact essential for PP1 regulation. Together, the available data identify I2 as a dynamic activity-modulator of PP1.
Collapse
|
6
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
7
|
Cannon JF. Novel phosphorylation-dependent regulation in an unstructured protein. Proteins 2019; 88:366-384. [PMID: 31512287 DOI: 10.1002/prot.25812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
This work explores how phosphorylation of an unstructured protein region in inhibitor-2 (I2) regulates protein phosphatase-1 (PP1) enzyme activity using molecular dynamics (MD). Free I2 is largely unstructured; however, when bound to PP1, three segments adopt a stable structure. In particular, an I2 helix (i-helix) blocks the PP1 active site and inhibits phosphatase activity. I2 phosphorylation in the PP1-I2 complex activates phosphatase activity without I2 dissociation. The I2 Thr74 regulatory phosphorylation site is in an unstructured domain in PP1-I2. PP1-I2 MD demonstrated that I2 phosphorylation promotes early steps of PP1-I2 activation in explicit solvent models. Moreover, phosphorylation-dependent activation occurred in PP1-I2 complexes derived from I2 orthologs with diverse sequences from human, yeast, worm, and protozoa. This system allowed exploration of features of the 73-residue unstructured human I2 domain critical for phosphorylation-dependent activation. These studies revealed that components of I2 unstructured domain are strategically positioned for phosphorylation responsiveness including a transient α-helix. There was no evidence that electrostatic interactions of I2 phosphothreonine74 influenced PP1-I2 activation. Instead, phosphorylation altered the conformation of residues around Thr74. Phosphorylation uncurled the distance between I2 residues Glu71 to Tyr76 to promote PP1-I2 activation, whereas reduced distances reduced activation. This I2 residue Glu71 to Tyr76 distance distribution, independently from Thr74 phosphorylation, controls I2 i-helix displacement from the PP1 active site leading to PP1-I2 activation.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Peng YJ, Ding JL, Feng MG, Ying SH. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Curr Genet 2018; 65:283-291. [DOI: 10.1007/s00294-018-0876-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022]
|
10
|
Ravindran R, Polk P, Robinson LC, Tatchell K. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. J Cell Sci 2018; 131:jcs.217620. [PMID: 30054382 DOI: 10.1242/jcs.217620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paula Polk
- Research Core Facility Genomics Core, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
11
|
Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:859-873. [PMID: 29797049 DOI: 10.1007/s00210-018-1515-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 01/16/2023]
Abstract
About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.
Collapse
|
12
|
Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI, Donaldson AD. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res 2018; 46:3993-4003. [PMID: 29529242 PMCID: PMC5934629 DOI: 10.1093/nar/gky132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Collapse
Affiliation(s)
- Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosemary HC Wilson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kate RM Clark
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
13
|
The Toxoplasma gondii inhibitor-2 regulates protein phosphatase 1 activity through multiple motifs. Parasitol Res 2017; 116:2417-2426. [PMID: 28667522 DOI: 10.1007/s00436-017-5543-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii has a complex life cycle characterized by multiple differentiation steps that are essential for its survival in both human and definitive feline host. Several studies have demonstrated the importance of phosphorylations by protein kinases during the life cycle of T. gondii. However, very little is known about protein phosphatases and their regulators in the parasite. We report the molecular and functional characterization of the T. gondii ortholog of the inhibitor-2 protein, designated TgI2. We show that TgI2 encompasses conserved motifs involved in the interaction and modulation of the phosphatase activity of T. gondii protein phosphatase 1, named TgPP1. We show that a specific combination of motifs is involved in binding and/or inhibition of the TgPP1 activity. We show here that the TgI2 protein is a potent inhibitor of TgPP1 phosphatase activity. TgI2 SILK and RVxF motifs are critical for regulating the activity of TgPP1, a feature that is common with the higher eukaryotes inhibitor-2 protein.
Collapse
|
14
|
Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O’Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 2017; 13:e1006543. [PMID: 28103229 PMCID: PMC5289615 DOI: 10.1371/journal.pgen.1006543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/02/2017] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. The centrosomes are responsible for organizing the mitotic spindle a microtubule-based structure that centers, then segregates, the chromosomes during cell division. When a cell divides it normally possesses two centrosomes, allowing it to build a bipolar spindle and accurately segregate the chromosomes to two daughter cells. Appropriate control of centrosome number is therefore crucial to maintaining genome stability. Centrosome number is largely controlled by their regulated duplication. In particular, the protein Plk4, which is essential for duplication, must be strictly limited as an overabundance leads to excess centrosome duplication. We have identified protein phosphatase 1 as a critical regulator of the C. elegans Plk4 homolog (known as ZYG-1). When protein phosphatase 1 is down-regulated, ZYG-1 levels increase leading to centrosome amplification. Thus our work identifies a novel mechanism that limits centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
- * E-mail: (NP); (KFO)
| | - Jyoti Iyer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Anar Naik
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
| | - Michael P. Dougherty
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Markus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
- * E-mail: (NP); (KFO)
| |
Collapse
|
15
|
Abstract
UNLABELLED Reversible phosphorylation, a fundamental regulatory mechanism required for many biological processes including memory formation, is coordinated by the opposing actions of protein kinases and phosphatases. Type I protein phosphatase (PP1), in particular, has been shown to constrain learning and memory formation. However, how PP1 might be regulated in memory is still not clear. Our previous work has elucidated that PP1 inhibitor-2 (I-2) is an endogenous regulator of PP1 in hippocampal and cortical neurons (Hou et al., 2013). Contrary to expectation, our studies of contextual fear conditioning and novel object recognition in I-2 heterozygous mice suggest that I-2 is a memory suppressor. In addition, lentiviral knock-down of I-2 in the rat dorsal hippocampus facilitated memory for tasks dependent on the hippocampus. Our data indicate that I-2 suppresses memory formation, probably via negatively regulating the phosphorylation of cAMP/calcium response element-binding protein (CREB) at serine 133 and CREB-mediated gene expression in dorsal hippocampus. Surprisingly, the data from both biochemical and behavioral studies suggest that I-2, despite its assumed action as a PP1 inhibitor, is a positive regulator of PP1 function in memory formation. SIGNIFICANCE STATEMENT We found that inhibitor-2 acts as a memory suppressor through its positive functional influence on type I protein phosphatase (PP1), likely resulting in negative regulation of cAMP/calcium response element-binding protein (CREB) and CREB-activated gene expression. Our studies thus provide an interesting example of a molecule with an in vivo function that is opposite to its in vitro function. PP1 plays critical roles in many essential physiological functions such as cell mitosis and glucose metabolism in addition to its known role in memory formation. PP1 pharmacological inhibitors would thus not be able to serve as good therapeutic reagents because of its many targets. However, identification of PP1 inhibitor-2 as a critical contributor to suppression of memory formation by PP1 may provide a novel therapeutic target for memory-related diseases.
Collapse
|
16
|
Franck WL, Gokce E, Randall SM, Oh Y, Eyre A, Muddiman DC, Dean RA. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development. J Proteome Res 2015; 14:2408-24. [PMID: 25926025 PMCID: PMC4838196 DOI: 10.1021/pr501064q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rice pathogen, Magnaporthe oryzae, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the M. oryzae phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development.
Collapse
Affiliation(s)
- William L. Franck
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Emine Gokce
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Shan M. Randall
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - Alex Eyre
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| | - David C. Muddiman
- W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Ralph A. Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, 27606
| |
Collapse
|
17
|
Hou H, Sun L, Siddoway BA, Petralia RS, Yang H, Gu H, Nairn AC, Xia H. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. ACTA ACUST UNITED AC 2013; 203:521-35. [PMID: 24189275 PMCID: PMC3824016 DOI: 10.1083/jcb.201303035] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synaptic stimulation promotes proteasome-dependent degradation of p35, inactivation of Cdk5, and decreased phosphorylation of PP1, allowing PP1 to act in the induction of long-term depression. The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity.
Collapse
Affiliation(s)
- Hailong Hou
- Neuroscience Center, LSU Health Science Center, New Orleans, LA 70112
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghosh A, Cannon JF. Analysis of protein phosphatase-1 and aurora protein kinase suppressors reveals new aspects of regulatory protein function in Saccharomyces cerevisiae. PLoS One 2013; 8:e69133. [PMID: 23894419 PMCID: PMC3718817 DOI: 10.1371/journal.pone.0069133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 01/31/2023] Open
Abstract
Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates.
Collapse
Affiliation(s)
- Anuprita Ghosh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - John F. Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fréville A, Cailliau-Maggio K, Pierrot C, Tellier G, Kalamou H, Lafitte S, Martoriati A, Pierce RJ, Bodart JF, Khalife J. Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 2013; 11:80. [PMID: 23837822 PMCID: PMC3735429 DOI: 10.1186/1741-7007-11-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/18/2013] [Indexed: 01/21/2023] Open
Abstract
Background It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. Results In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. Conclusions Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019 Lille, Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Böhm S, Buchberger A. The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7). PLoS One 2013; 8:e56486. [PMID: 23418575 PMCID: PMC3572051 DOI: 10.1371/journal.pone.0056486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Suppressors of ipl1-2 in components of a Glc7 phosphatase complex, Cdc48 AAA ATPase, TORC1, and the kinetochore. G3-GENES GENOMES GENETICS 2012; 2:1687-701. [PMID: 23275890 PMCID: PMC3516489 DOI: 10.1534/g3.112.003814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 01/26/2023]
Abstract
Ipl1/Aurora B is the catalytic subunit of a protein kinase complex required for chromosome segregation and nuclear division. Before anaphase, Ipl1 is required to establish proper kinetochore-microtubule associations and to regulate the spindle assembly checkpoint (SAC). The phosphatase Glc7/PP1 opposes Ipl1 for these activities. To investigate Ipl1 and Glc7 regulation in more detail, we isolated and characterized mutations in the yeast Saccharomyces cerevisiae that raise the restrictive temperature of the ipl-2 mutant. These suppressors include three intragenic, second-site revertants in IPL1; 17 mutations in Glc7 phosphatase components (GLC7, SDS22, YPI1); two mutations in SHP1, encoding a regulator of the AAA ATPase Cdc48; and a mutation in TCO89, encoding a subunit of the TOR Complex 1. Two revertants contain missense mutations in microtubule binding components of the kinetochore. rev76 contains the missense mutation duo1-S115F, which alters an essential component of the DAM1/DASH complex. The mutant is cold sensitive and arrests in G2/M due to activation of the SAC. rev8 contains the missense mutation ndc80-K204E. K204 of Ndc80 corresponds to K166 of human Ndc80 and the human Ndc80 K166E variant was previously shown to be defective for microtubule binding in vitro. In a wild-type IPL1 background, ndc80-K204E cells grow slowly and the SAC is activated. The slow growth and cell cycle delay of ndc80-K204E cells are partially alleviated by the ipl1-2 mutation. These data provide biological confirmation of a biochemically based model for the effect of phosphorylation on Ndc80 function.
Collapse
|
22
|
Eto M, Brautigan DL. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012; 64:732-9. [PMID: 22815089 DOI: 10.1002/iub.1067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 01/23/2023]
Abstract
Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting in addition to, not instead of, regulatory subunits. The cellular actions of the endogenous inhibitors are controlled by phosphorylation, connecting them to kinase pathways. More recent progress has unveiled additional functions of PP1 inhibitor-2 (I-2), including regulation of protein kinases. Transcriptional mechanisms govern the expression levels of CPI-17 in response to stimuli. If true for other inhibitor proteins, they have the potential of being diagnostic markers for pathological conditions. We discuss specific examples of PP1 inhibitor proteins regulating particular cellular functions and the rationale for incorporating phosphatase inhibitor proteins in development of new therapeutic strategies.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
23
|
Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 2012; 22:1058-77. [PMID: 22290422 PMCID: PMC3367521 DOI: 10.1038/cr.2012.20] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.
Collapse
Affiliation(s)
- Dries Castermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Temperature-sensitive ipl1-2/Aurora B mutation is suppressed by mutations in TOR complex 1 via the Glc7/PP1 phosphatase. Proc Natl Acad Sci U S A 2011; 108:3994-9. [PMID: 21368139 DOI: 10.1073/pnas.1014406108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ipl1/Aurora B is the catalytic subunit of a complex that is required for chromosome segregation and nuclear division. Before anaphase, Ipl1 localizes to kinetochores, where it is required to establish proper kinetochore-microtubule associations and regulate the spindle assembly checkpoint. The protein phosphatase Glc7/PP1 opposes Ipl1 for some of these activities. To more thoroughly characterize the Glc7 phosphatase that opposes Ipl1, we have identified mutations that suppress the thermosensitivity of an ipl1-2 mutant. In addition to mutations in genes previously associated with ipl1 suppression, we recovered a null mutant in TCO89, which encodes a subunit of the TOR complex 1 (TORC1), the conserved rapamycin-sensitive kinase activity that regulates cell growth in response to nutritional status. The temperature sensitivity of ipl1-2 can also be suppressed by null mutation of TOR1 or by administration of pharmacological TORC1 inhibitors, indicating that reduced TORC1 activity is responsible for the suppression. Suppression of the ipl1-2 growth defect is accompanied by increased fidelity of chromosome segregation and increased phosphorylation of the Ipl1 substrates histone H3 and Dam1. Nuclear Glc7 levels are reduced in a tco89 mutant, suggesting that TORC1 activity is required for the nuclear accumulation of Glc7. In addition, several mutant GLC7 alleles that suppress the temperature sensitivity of ipl1-2 exhibit negative synthetic genetic interactions with TORC1 mutants. Together, our results suggest that TORC1 positively regulates the Glc7 activity that opposes Ipl1 and provide a mechanism to tie nutritional status with mitotic regulation.
Collapse
|
25
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
27
|
Interaction between TAK1-TAB1-TAB2 and RCAN1-calcineurin defines a signalling nodal control point. Nat Cell Biol 2009; 11:154-61. [PMID: 19136967 PMCID: PMC2656285 DOI: 10.1038/ncb1823] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/15/2008] [Indexed: 01/28/2023]
Abstract
The calcium-activated protein phosphatase calcineurin is controlled by regulator of calcineurin (RCAN) in organisms ranging from yeast to mammals. Here we performed a yeast two-hybrid screen with RCAN1 as bait, identifying TAK1 binding protein 2 (TAB2) as an interacting partner. TAB2 interacted directly with RCAN1 in vitro and in vivo, recruiting TAK1, TAB1 and calcineurin, forming a macromolecular signalling complex. Overexpression of TAK1 and TAB1, or active TAK1(DeltaN), promoted direct phosphorylation of RCAN1 in vitro and in vivo. TAK1 phosphorylated RCAN1 at Ser 94 and Ser 136, converting RCAN1 from an inhibitor to a facilitator of calcineurin-NFAT signalling, and enhancing NFATc1 nuclear translocation, NFAT transcriptional activation and the hypertrophic growth of cultured cardiomyocytes. The TAK1-TAB1-TAB2 and the calcineurin-NFAT signalling modules did not interact in Rcan1/2- or Tab2-deficient mouse embryonic fibroblast (MEF) cultures. Calcineurin activation also dephosphorylated and inhibited TAK1 and TAB1, an effect that was absent in Rcan1/2 deficient MEFs. Functionally, TAK1 was indispensable for the cardiomyocyte growth response induced by pro-hypertrophic stimuli through calcineurin. These results describe a signalling relationship between two central regulatory pathways in which TAK1-TAB1-TAB2 selectively induces calcineurin-NFAT signalling through direct phosphorylation of RCAN1, while calcineurin activation diminishes TAK1 signalling by dephosphorylation of TAK1 and TAB1.
Collapse
|
28
|
Jwa M, Kim JH, Chan CSM. Regulation of Sli15/INCENP, kinetochore, and Cdc14 phosphatase functions by the ribosome biogenesis protein Utp7. ACTA ACUST UNITED AC 2008; 182:1099-111. [PMID: 18794331 PMCID: PMC2542472 DOI: 10.1083/jcb.200802085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sli15–Ipl1–Bir1 chromosomal passenger complex is essential for proper kinetochore–microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation. Utp7 associates with and regulates the localization of Sli15 and Cdc14. Before anaphase onset, it prevents the premature nucleolar release of Cdc14 and the premature concentration of Sli15 on the spindle. Furthermore, Utp7 can regulate the localization and phosphorylation status of Sli15 independent of its effect on Cdc14 function. Thus, Utp7 is a multifunctional protein that plays essential roles in the vital cellular processes of ribosome biogenesis, chromosome segregation, and cell cycle control.
Collapse
Affiliation(s)
- Miri Jwa
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
29
|
Wang W, Stukenberg PT, Brautigan DL. Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol Biol Cell 2008; 19:4852-62. [PMID: 18716057 DOI: 10.1091/mbc.e08-05-0460] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitosis in Saccharomyces cerevisiae depends on IPL1 kinase, which genetically interacts with GLC8. The metazoan homologue of GLC8 is inhibitor-2 (I-2), but its function is not understood. We found endogenous and ectopic I-2 localized to the spindle, midzone, and midbody of mitotic human epithelial ARPE-19 cells. Knockdown of I-2 by RNA interference produced multinucleated cells, with supernumerary centrosomes, multipolar spindles and lagging chromosomes during anaphase. These defects did not involve changes in levels of protein phosphatase-1 (PP1), and the multinuclear phenotype was rescued by overexpression of I-2. Appearance of multiple nuclei and supernumerary centrosomes required progression through the cell cycle and I-2 knockdown cells failed cytokinesis, as observed by time-lapse microscopy. Inhibition of Aurora B by hesperadin produced multinucleated cells and reduced H3S10 phosphorylation. I-2 knockdown enhanced this latter effect. Partial knockdown of PP1Calpha prevented multiple nuclei caused by either knockdown of I-2 or treatment with hesperadin. Expression of enhanced green fluorescent protein-I-2 or hemagglutinin-I-2 made cells resistant to hesperadin. We propose that I-2 acts to enhance Aurora B by inhibiting specific PP1 holoenzymes that dephosphorylate Aurora B substrates necessary for chromosome segregation and cytokinesis. Conserved together throughout eukaryotic evolution, I-2, PP1 and Aurora B function interdependently during mitosis.
Collapse
Affiliation(s)
- Weiping Wang
- Center for Cell Signaling, Departments of Microbiology and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
30
|
Maternal phosphatase inhibitor-2 is required for proper chromosome segregation and mitotic synchrony during Drosophila embryogenesis. Genetics 2008; 179:1823-33. [PMID: 18689877 DOI: 10.1534/genetics.108.091959] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphatase-1 (PP1) is a major Ser/Thr phosphatase conserved among all eukaryotes, present as the essential GLC7 gene in yeast. Inhibitor-2 (I-2) is an ancient PP1 regulator, named GLC8 in yeast, but its in vivo function is unknown. Unlike mammals with multiple I-2 genes, in Drosophila there is a single I-2 gene, and here we describe its maternally derived expression and required function during embryogenesis. During oogenesis, germline expression of I-2 results in the accumulation of RNA and abundant protein in unfertilized eggs; in embryos, the endogenous I-2 protein concentrates around condensed chromosomes during mitosis and also surrounds interphase nuclei. An I-2 loss-of-function genotype is associated with a maternal-effect phenotype that results in drastically reduced progeny viability, as measured by reduced embryonic hatch rates and larval lethality. Embryos derived from I-2 mutant mothers show faulty chromosome segregation and loss of mitotic synchrony in cleavage-stage embryos, patchy loss of nuclei in syncytial blastoderms, and cuticular pattern defects in late-stage embryos. Transgenic expression of wild-type I-2 in mutant mothers gives dose-dependent rescue of the maternal effect on embryo hatch rate. We propose that I-2 is required for proper chromosome segregation during Drosophila embryogenesis through the coordinated regulation of PP1 and Aurora B.
Collapse
|
31
|
Logan MR, Nguyen T, Szapiel N, Knockleby J, Por H, Zadworny M, Neszt M, Harrison P, Bussey H, Mandato CA, Vogel J, Lesage G. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7. BMC Genomics 2008; 9:336. [PMID: 18627629 PMCID: PMC2481269 DOI: 10.1186/1471-2164-9-336] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 07/15/2008] [Indexed: 01/21/2023] Open
Abstract
Background Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. Results We created a novel glc7 catalytic mutant (glc7-E101Q). Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. Conclusion We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.
Collapse
Affiliation(s)
- Michael R Logan
- Department of Biology, McGill University, Montreal (QC), Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Emanuele MJ, Lan W, Jwa M, Miller SA, Chan CSM, Stukenberg PT. Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. ACTA ACUST UNITED AC 2008; 181:241-54. [PMID: 18426974 PMCID: PMC2315672 DOI: 10.1083/jcb.200710019] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The outer kinetochore binds microtubules to control chromosome movement. Outer kinetochore assembly is restricted to mitosis, whereas the inner kinetochore remains tethered to centromeres throughout the cell cycle. The cues that regulate this transient assembly are unknown. We find that inhibition of Aurora B kinase significantly reduces outer kinetochore assembly in Xenopus laevis and human tissue culture cells, frog egg extracts, and budding yeast. In X. leavis M phase extracts, preassembled kinetochores disassemble after inhibiting Aurora B activity with either drugs or antibodies. Kinetochore disassembly, induced by Aurora B inhibition, is rescued by restraining protein phosphatase 1 (PP1) activity. PP1 is necessary for kinetochores to disassemble at the exit from M phase, and purified enzyme is sufficient to cause disassembly on isolated mitotic nuclei. These data demonstrate that Aurora B activity is required for kinetochore maintenance and that PP1 is necessary and sufficient to disassemble kinetochores. We suggest that Aurora B and PP1 coordinate cell cycle–dependent changes in kinetochore assembly though phosphorylation of kinetochore substrates.
Collapse
Affiliation(s)
- Michael J Emanuele
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bharucha JP, Larson JR, Gao L, Daves LK, Tatchell K. Ypi1, a positive regulator of nuclear protein phosphatase type 1 activity in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:1032-45. [PMID: 18172024 DOI: 10.1091/mbc.e07-05-0499] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The catalytic subunit of protein phosphatase type 1 (PP1) has an essential role in mitosis, acting in opposition to the Ipl1/Aurora B protein kinase to ensure proper kinetochore-microtubule interactions. However, the regulatory subunit(s) that completes the PP1 holoenzyme that functions in this capacity is not known. We show here that the budding yeast Ypi1 protein is a nuclear protein that functions with PP1 (Glc7) in this mitotic role. Depletion of cellular Ypi1 induces mitotic arrest due to activation of the spindle checkpoint. Ypi1 depletion is accompanied by a reduction of nuclear PP1 and by loss of nuclear Sds22, a Glc7 binding partner that is found in a ternary complex with Ypi1 and Glc7. Expression of a Ypi1 variant that binds weakly to PP1 also activates the spindle checkpoint and suppresses the temperature sensitivity of an ipl1-2 mutant. These results, together with genetic interactions among YPI1, GLC7, and SDS22 mutants, indicate that Ypi1 and Sds22 are positive regulators of the nuclear Glc7 activity that is required for mitosis.
Collapse
Affiliation(s)
- Jennifer P Bharucha
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
34
|
Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, Lackner DH, Ogris E. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol 2007; 5:e155. [PMID: 17550305 PMCID: PMC1885835 DOI: 10.1371/journal.pbio.0050155] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 04/09/2007] [Indexed: 11/18/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Δ strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit. Multisubunit enzymes, such as protein phosphatase 2A, consist of a catalytic subunit and one of several regulatory subunits that are responsible for substrate specificity. Whereas this molecular architecture enables the assembly of a few components into many different substrate-specific enzymes, it possesses an inherent danger in the form of the uncomplexed catalytic subunit with its unspecific phosphatase activity. Until substrate-specific complexes assemble, the catalytic subunit would constitute a risk to the cell if no control mechanisms existed. We recently obtained evidence for the existence of the catalytic subunit in a low-activity conformation that requires an activator for the switch into the active conformation. This requirement suggested that the existing model of protein phosphatase 2A biogenesis was incomplete, because it could not explain how the activity of the catalytic subunit is kept in check until it is assembled with the substrate-targeting subunits. In this study, we provide evidence that the generation of the active catalytic subunit is coupled with and regulated by holoenzyme assembly. We propose a novel model of protein phosphatase biogenesis in which a tightly controlled activation cascade protects cells from the potential risk of unspecific dephosphorylation events. Analysis of protein phosphatase 2A (PP2A) biogenesis in yeast suggests that a tightly controlled activation cascade, involving an interaction between the protein RRD2 and the structural subunit TPD3, protects cells from untargeted activity of the free catalytic PP2A subunit.
Collapse
Affiliation(s)
- Hans Hombauer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - David Weismann
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Ingrid Mudrak
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Claudia Stanzel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Fellner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Daniel H Lackner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Egon Ogris
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Kotwaliwale CV, Frei SB, Stern BM, Biggins S. A pathway containing the Ipl1/aurora protein kinase and the spindle midzone protein Ase1 regulates yeast spindle assembly. Dev Cell 2007; 13:433-45. [PMID: 17765685 PMCID: PMC2679386 DOI: 10.1016/j.devcel.2007.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/23/2007] [Accepted: 07/11/2007] [Indexed: 11/25/2022]
Abstract
It is critical to elucidate the pathways that mediate spindle assembly and therefore ensure accurate chromosome segregation during cell division. Our studies of a unique allele of the budding yeast Ipl1/Aurora protein kinase revealed that it is required for centrosome-mediated spindle assembly in the absence of the BimC motor protein Cin8. In addition, we found that the Ase1 spindle midzone-associated protein is required for bipolar spindle assembly. The cin8 ipl1 and cin8 ase1 double mutant cells exhibit similar defects, and Ase1 overexpression completely restores spindle assembly in cin8 ipl1 strains. Consistent with the possibility that Ipl1 regulates Ase1, an ase1 mutant lacking the Ipl1 consensus phosphorylation sites cannot assemble spindles in the absence of Cin8. In addition, Ase1 phosphorylation and localization were altered in an ipl1 mutant. We therefore propose that Ipl1/Aurora and Ase1 constitute a previously unidentified spindle assembly pathway that becomes essential in the absence of Cin8.
Collapse
Affiliation(s)
- Chitra V. Kotwaliwale
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, Washington 98109
| | - Stéphanie Buvelot Frei
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, Washington 98109
| | - Bodo M. Stern
- Harvard FAS Center for Systems Biology, Bauer Laboratory, 7 Divinity Avenue, Cambridge MA 02138
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, Washington 98109
- Contact: , 206-667-1351 (phone), 206-667-6526 (fax)
| |
Collapse
|
36
|
Swain JE, Ding J, Brautigan DL, Villa-Moruzzi E, Smith GD. Proper Chromatin Condensation and Maintenance of Histone H3 Phosphorylation During Mouse Oocyte Meiosis Requires Protein Phosphatase Activity1. Biol Reprod 2007; 76:628-38. [PMID: 17182892 DOI: 10.1095/biolreprod.106.055798] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.
Collapse
Affiliation(s)
- Jason E Swain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0617, USA
| | | | | | | | | |
Collapse
|
37
|
Pedelini L, Marquina M, Ariño J, Casamayor A, Sanz L, Bollen M, Sanz P, Garcia-Gimeno MA. YPI1 and SDS22 proteins regulate the nuclear localization and function of yeast type 1 phosphatase Glc7. J Biol Chem 2006; 282:3282-92. [PMID: 17142459 DOI: 10.1074/jbc.m607171200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently characterized Ypi1 as an inhibitory subunit of yeast Glc7 PP1 protein phosphatase. In this work we demonstrate that Ypi1 forms a complex with Glc7 and Sds22, another Glc7 regulatory subunit that targets the phosphatase to substrates involved in cell cycle control. Interestingly, the combination of equimolar amounts of Ypi1 and Sds22 leads to an almost full inhibition of Glc7 activity. Because YPI1 is an essential gene, we have constructed conditional mutants that demonstrate that depletion of Ypi1 leads to alteration of nuclear localization of Glc7 and cell growth arrest in mid-mitosis with aberrant mitotic spindle. These phenotypes mimic those produced upon inactivation of Sds22. The fact that progressive depletion of either Ypi1 or Sds22 resulted in similar physiological phenotypes and that both proteins inhibit the phosphatase activity of Glc7 strongly suggest a common role of these two proteins in regulating Glc7 nuclear localization and function.
Collapse
Affiliation(s)
- Leda Pedelini
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sanna B, Brandt EB, Kaiser RA, Pfluger P, Witt SA, Kimball TR, van Rooij E, De Windt LJ, Rothenberg ME, Tschop MH, Benoit SC, Molkentin JD. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc Natl Acad Sci U S A 2006; 103:7327-32. [PMID: 16648267 PMCID: PMC1464340 DOI: 10.1073/pnas.0509340103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The calcium-activated phosphatase calcineurin is regulated by a binding cofactor known as modulatory calcineurin-interacting protein (MCIP) in yeast up through mammals. The physiologic function of MCIP remains an area of ongoing investigation, because both positive and negative calcineurin regulatory effects have been reported. Here we disrupted the mcip1 and mcip2 genes in the mouse and provide multiple lines of evidence that endogenous MCIP functions as a calcineurin facilitator in vivo. Mouse embryonic fibroblasts deficient in both mcip1/2 showed impaired activation of nuclear factor of activated T cells (NFAT), suggesting that MCIP is required for efficient calcineurin-NFAT coupling. Mice deficient in mcip1/2 showed a dramatic impairment in cardiac hypertrophy induced by pressure overload, neuroendocrine stimulation, or exercise, similar to mice lacking calcineurin Abeta. Moreover, simultaneous deletion of calcineurin Abeta in the mcip1/2-null background did not rescue impaired hypertrophic growth after pressure overload. Slow/oxidative fiber-type switching in skeletal muscle after exercise stimulation was also impaired in mcip1/2 mice, similar to calcineurin Abeta-null mice. Moreover, CD4(+) T cells from mcip1/2-null mice showed enhanced apoptosis that was further increased by loss of calcineurin Abeta. Finally, mcip1/2-null mice displayed a neurologic phenotype that was similar to calcineurin Abeta-null mice, such as increased locomotor activity and impaired working memory. Thus, a loss-of-function analysis suggests that MCIPs serve either a permissive or facilitative function for calcineurin-NFAT signaling in vivo.
Collapse
Affiliation(s)
- Bastiano Sanna
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Eric B. Brandt
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Robert A. Kaiser
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Paul Pfluger
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45243; and
| | - Sandy A. Witt
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Thomas R. Kimball
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Eva van Rooij
- Hubrecht Laboratory and Interuniversity Cardiology Institute of The Netherlands, 3584 CT, Utrecht, The Netherlands
| | - Leon J. De Windt
- Hubrecht Laboratory and Interuniversity Cardiology Institute of The Netherlands, 3584 CT, Utrecht, The Netherlands
| | - Marc E. Rothenberg
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Matthias H. Tschop
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45243; and
| | - Stephen C. Benoit
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45243; and
| | - Jeffery D. Molkentin
- *Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Pinsky BA, Kotwaliwale CV, Tatsutani SY, Breed CA, Biggins S. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol Cell Biol 2006; 26:2648-60. [PMID: 16537909 PMCID: PMC1430313 DOI: 10.1128/mcb.26.7.2648-2660.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Faithful chromosome segregation depends on the opposing activities of the budding yeast Glc7/PP1 protein phosphatase and Ipl1/Aurora protein kinase. We explored the relationship between Glc7 and Ipl1 and found that the phosphorylation of the Ipl1 substrate, Dam1, was altered by decreased Glc7 activity, whereas Ipl1 levels, localization, and kinase activity were not. These data strongly suggest that Glc7 ensures accurate chromosome segregation by dephosphorylating Ipl1 targets rather than regulating the Ipl1 kinase. To identify potential Glc7 and Ipl1 substrates, we isolated ipl1-321 dosage suppressors. Seven genes (SDS22, BUD14, GIP3, GIP4, SOL1, SOL2, and PEX31) encode newly identified ipl1 dosage suppressors, and all 10 suppressors encode proteins that physically interact with Glc7. The overexpression of the Gip3 and Gip4 suppressors altered Glc7 localization, indicating they are previously unidentified Glc7 regulatory subunits. In addition, the overexpression of Gip3 and Gip4 from the galactose promoter restored Dam1 phosphorylation in ipl1-321 mutant cells and caused wild-type cells to arrest in metaphase with unsegregated chromosomes, suggesting that Gip3 and Gip4 overexpression impairs Glc7's mitotic functions. We therefore propose that the overexpression of Glc7 regulatory subunits can titrate Glc7 away from relevant Ipl1 targets and thereby suppress ipl1-321 cells by restoring the balance of phosphatase/kinase activity.
Collapse
Affiliation(s)
- Benjamin A Pinsky
- Molecular and Cellular Biology Program, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
40
|
Li M, Stefansson B, Wang W, Schaefer EM, Brautigan DL. Phosphorylation of the Pro-X-Thr-Pro site in phosphatase inhibitor-2 by cyclin-dependent protein kinase during M-phase of the cell cycle. Cell Signal 2005; 18:1318-26. [PMID: 16377132 DOI: 10.1016/j.cellsig.2005.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/07/2005] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation serves as a primary mechanism for triggering events during mitosis and depends on coordinated regulation of kinases and phosphatases. Protein Ser-Thr phosphatase-1 (PP1) activity is essential for the metaphase to anaphase transition and the most ancient regulator of PP1 conserved from yeast to human is inhibitor-2 (I-2), an unstructured heat-stable protein. A unique sequence motif in I-2 from various species surrounds a phosphorylation site PXTP that can be phosphorylated in biochemical assays by GSK3, MAPK and CDK kinases. Here we used a phosphosite specific antibody to investigate the phosphorylation of I-2. We fractioned extracts from HeLa cells arrested with nocodazole and assayed for PXTP kinases using recombinant I-2. One major and two minor peaks of kinase activity were identified and the major peak contained both active MAPK and cdk1::cyclinB1, confirmed by immunoblotting. Cells released from a double thymidine block synchronously progressed through mitosis and immunoblotting revealed transient phosphorylation of endogenous I-2 in cells only during mitosis, and corresponding phosphorylation of histone H3 (Ser10) and PP1 (Thr320). Activation of cdk1::cyclinB1 was coincident with I-2 phosphorylation, but neither MAPK nor GSK3 were phosphorylated at this time, so we concluded that in living cells only cdk1::cyclinB1 phosphorylated the PXTP site in I-2. Immunofluorescent staining of cells with the PXTP phosphosite antibody revealed highly specific staining of mitotic cells prior to anaphase, at which point the staining disappeared. Thus, phosphorylation of I-2 is catalyzed by cdk1::cyclinB1 and staining with a specific antibody should prove useful as a selective marker of cells in the early stages of mitosis.
Collapse
Affiliation(s)
- Mingguang Li
- Center for Cell Signaling and Department of Microbiology University of Virginia School of Medicine Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
41
|
Fox DS, Heitman J. Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. EUKARYOTIC CELL 2005; 4:1526-38. [PMID: 16151246 PMCID: PMC1214203 DOI: 10.1128/ec.4.9.1526-1538.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/20/2005] [Indexed: 11/20/2022]
Abstract
Mating and virulence of the human fungal pathogen Cryptococcus neoformans are controlled by calcineurin, a serine-threonine-specific calcium-activated phosphatase that is the target of the immunosuppressive drugs cyclosporine A and FK506. In previous studies, a calcineurin binding protein (Cbp1, Rcn1, Dscr1/Csp1-3/MCIP1-3) that is conserved from yeasts to humans has been identified, but whether this protein functions to regulate calcineurin activity or facilitate calcineurin function as a signaling effector has been unclear. Here we show that, like calcineurin, Cbp1 is required for mating in C. neoformans. By contrast, Cbp1 plays no role in promoting calcineurin-dependent growth at 37 degrees C and is not essential for haploid fruiting. Site-directed mutagenesis studies provide evidence that tandem phosphorylation and dephosphorylation of two serine residues in the conserved SP repeat motif are critical for Cbp1 function. Epistasis analysis supports models in which Cbp1 functions coordinately with calcineurin to direct hyphal elongation during mating. Taken together, these findings provide insights into the roles of Cbp1 as an accessory subunit or effector of calcineurin-specific signaling pathways, which may be features conserved among the calcipressins to govern calcineurin signaling in immune cells, cardiomyocytes, and neurons of multicellular eukaryotes.
Collapse
Affiliation(s)
- Deborah S Fox
- Research Institute for Children and Department of Pediatrics, Louisiana State Health Science Center, Children's Hospital, 200 Henry Clay Avenue, New Orleans, LA 70118, USA.
| | | |
Collapse
|
42
|
Tompa P, Szász C, Buday L. Structural disorder throws new light on moonlighting. Trends Biochem Sci 2005; 30:484-9. [PMID: 16054818 DOI: 10.1016/j.tibs.2005.07.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/27/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
A basic mechanism by which individual proteins can increase network complexity is moonlighting, whereby a given protein fulfils more than one function. Traditionally, this phenomenon is attributed to separate binding surfaces of globular, folded proteins but we suggest that intrinsically unstructured proteins (IUPs) might provide radically different mechanisms. Eleven IUPs have been identified that suggest that the structural malleability of IUPs gives rise to unprecedented cases of moonlighting by eliciting opposing (inhibiting and activating) action on different partners or even the same partner molecule. Unlike classical cases, these proteins use the same region or overlapping interaction surfaces to exert distinct effects and employ non-conventional mechanisms to switch function, enabled by their capacity to adopt different conformations upon binding. Owing to the apparent functional benefits, we expect to see many more examples of this parsimonious use of protein material in complex metabolic networks.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 29 Karolina Street, 1113 Budapest, Hungary.
| | | | | |
Collapse
|
43
|
Lapasset L, Pradet-Balade B, Lozano JC, Peaucellier G, Picard A. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes. Dev Biol 2005; 285:200-10. [PMID: 16081061 DOI: 10.1016/j.ydbio.2005.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/03/2005] [Accepted: 06/13/2005] [Indexed: 11/29/2022]
Abstract
In vertebrates, enhanced translation of mRNAs in oocytes and early embryos entering M-phase is thought to occur through polyadenylation, involving binding, hyperphosphorylation and proteolytic degradation of Aurora-activated CPEB. In starfish, an unknown component of the oocyte nucleus is required for cyclin B synthesis following the release of G2/prophase block by hormonal stimulation. We have found that CPEB cannot be hyperphosphorylated following hormonal stimulation in starfish oocytes from which the nucleus has been removed. Activation of Aurora kinase, known to interact with protein phosphatase 1 and its specific inhibitor Inh-2, is also prevented. The microinjection of Inh-2 restores Aurora activation, CPEB hyperphosphorylation and cyclin B translation in enucleated oocytes. Nevertheless, we provide evidence that CPEB is in fact hyperphosphorylated by cdc2, without apparent involvement of Aurora or MAP kinase, and that cyclin B synthesis can be stimulated without previous degradation of phosphorylated CPEB. Thus, the regulation of cyclin B synthesis necessary for progression through meiosis can be explained by an equilibrium between CPEB phosphorylation and dephosphorylation, and both aspects of this control may rely on the sole activation of Cdc2 and subsequent nuclear breakdown.
Collapse
Affiliation(s)
- Laure Lapasset
- Laboratoire Arago, UMR 7628, CNRS and Université Pierre et Marie Curie, BP 44, F 66651 Banyuls-sur-mer, France
| | | | | | | | | |
Collapse
|
44
|
Sanchez-Perez I, Renwick SJ, Crawley K, Karig I, Buck V, Meadows JC, Franco-Sanchez A, Fleig U, Toda T, Millar JBA. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J 2005; 24:2931-43. [PMID: 16079915 PMCID: PMC1187944 DOI: 10.1038/sj.emboj.7600761] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 07/11/2005] [Indexed: 11/08/2022] Open
Abstract
We identified a truncated allele of dam1 as a multicopy suppressor of the sensitivity of cdc13-117 (cyclin B) and mal3-1 (EB-1) cells to thiabendazole, a microtubule poison. We find that Dam1 binds to the plus end of spindle microtubules and kinetochores as cells enter mitosis and this is dependent on other components of the fission yeast DASH complex, including Ask1, Duo1, Spc34 and Dad1. By contrast, Dad1 remains bound to kinetochores throughout the cell cycle and its association is dependent on the Mis6 and Mal2, but not Mis12, Nuf2 or Cnp1, kinetochore proteins. In cells lacking Dam1, or other components of the DASH complex, anaphase is delayed due to activation of the spindle assembly checkpoint and lagging sister chromatids are frequently observed and occasionally sister chromatid pairs segregate to the same spindle pole. We find that the mitotic centromere-associated Klp5/Klp6 kinesin complex is essential in cells lacking components of the DASH complex. Cells lacking both Dam1 and Klp5 undergo a first cell cycle arrest in mitosis due to a failure to establish bipolar chromosome attachment.
Collapse
Affiliation(s)
| | - Steven J Renwick
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
| | - Karen Crawley
- Laboratory of Cell Regulation, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Inga Karig
- Institut für Mikrobiologie, Heinrich-Heine-Universitat Düsseldorf, Düsseldorf, Germany
| | - Vicky Buck
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
| | - John C Meadows
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
| | | | - Ursula Fleig
- Institut für Mikrobiologie, Heinrich-Heine-Universitat Düsseldorf, Düsseldorf, Germany
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Jonathan B A Millar
- Division of Yeast Genetics, National Institute for Medical Research, London, UK
- Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. Tel.: +44 208 816 2367; Fax: +44 208 816 2523; E-mail:
| |
Collapse
|
45
|
Wilson WA, Wang Z, Roach PJ. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochem Biophys Res Commun 2005; 329:161-7. [PMID: 15721288 DOI: 10.1016/j.bbrc.2005.01.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Yeast accumulate glycogen in response to nutrient limitation. The key enzymes of glycogen synthesis and degradation, glycogen synthase, and phosphorylase, are regulated by reversible phosphorylation. Phosphorylation inactivates glycogen synthase but activates phosphorylase. The kinases and phosphatases that control glycogen synthase are well characterized whilst the enzymes modifying phosphorylase are poorly defined. Here, we show that the cyclin-dependent protein kinase, Pho85p, which we have previously found to regulate glycogen synthase also controls the phosphorylation state of phosphorylase.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
46
|
Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A. Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. THE PLANT CELL 2005; 17:836-48. [PMID: 15722465 PMCID: PMC1069702 DOI: 10.1105/tpc.104.029710] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aurora-like kinases play key roles in chromosome segregation and cytokinesis in yeast, plant, and animal systems. Here, we characterize three Arabidopsis thaliana protein kinases, designated AtAurora1, AtAurora2, and AtAurora3, which share high amino acid identities with the Ser/Thr kinase domain of yeast Ipl1 and animal Auroras. Structure and expression of AtAurora1 and AtAurora2 suggest that these genes arose by a recent gene duplication, whereas the diversification of plant alpha and beta Aurora kinases predates the origin of land plants. The transcripts and proteins of all three kinases are most abundant in tissues containing dividing cells. Intracellular localization of green fluorescent protein-tagged AtAuroras revealed an AtAurora-type specific association mainly with dynamic mitotic structures, such as microtubule spindles and centromeres, and with the emerging cell plate of dividing tobacco (Nicotiana tabacum) BY-2 cells. Immunolabeling using AtAurora antibodies yielded specific signals at the centromeres that are coincident with histone H3 that is phosphorylated at Ser position10 during mitosis. An in vitro kinase assay demonstrated that AtAurora1 preferentially phosphorylates histone H3 at Ser 10 but not at Ser 28 or Thr 3, 11, and 32. The phylogenetic analysis of available Aurora sequences from different eukaryotic origins suggests that, although a plant Aurora gene has been duplicated early in the evolution of plants, the paralogs nevertheless maintained a role in cell cycle-related signal transduction pathways.
Collapse
Affiliation(s)
- Dmitri Demidov
- Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
47
|
Satinover DL, Leach CA, Stukenberg PT, Brautigan DL. Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 2004; 101:8625-30. [PMID: 15173575 PMCID: PMC423245 DOI: 10.1073/pnas.0402966101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aurora-A kinase is necessary for centrosome maturation, for assembly and maintenance of a bipolar spindle, and for proper chromosome segregation during cell division. Aurora-A is an oncogene that is overexpressed in multiple human cancers. Regulation of kinase activity apparently depends on phosphorylation of Thr-288 in the T-loop. In addition, interactions with targeting protein for Xenopus kinesin-like protein 2 (TPX2) allosterically activate Aurora-A. The Thr-288 phosphorylation is reversed by type-1 protein phosphatase (PP1). Mutations in the yeast Aurora, Ipl1, are suppressed by overexpression of Glc8, the yeast homolog of phosphatase inhibitor-2 (I-2). In this study, we show that human I-2 directly and specifically stimulated recombinant human Aurora-A activity in vitro. The I-2 increase in kinase activity was not simply due to inhibition of PP1 because it was not mimicked by other phosphatase inhibitors. Furthermore, activation of Aurora-A was unaffected by deletion of the I-2 N-terminal PP1 binding motif but was eliminated by deletion of the I-2 C-terminal domain. Aurora-A and I-2 were recovered together from mitotic HeLa cells. Kinase activation by I-2 and TPX2 was not additive and occurred without a corresponding increase in T-loop phosphorylation. These results suggest that both I-2 and TPX2 function as allosteric activators of Aurora-A. This implies that I-2 is a bifunctional signaling protein with separate domains to inhibit PP1 and directly stimulate Aurora-A kinase.
Collapse
Affiliation(s)
- David L Satinover
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
48
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
49
|
Hilioti Z, Gallagher DA, Low-Nam ST, Ramaswamy P, Gajer P, Kingsbury TJ, Birchwood CJ, Levchenko A, Cunningham KW. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev 2004; 18:35-47. [PMID: 14701880 PMCID: PMC314273 DOI: 10.1101/gad.1159204] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 11/18/2003] [Indexed: 11/25/2022]
Abstract
The conserved RCN family of proteins can bind and directly regulate calcineurin, a Ca(2+)-activated protein phosphatase involved in immunity, heart growth, muscle development, learning, and other processes. Whereas high levels of RCNs can inhibit calcineurin signaling in fungal and animal cells, RCNs can also stimulate calcineurin signaling when expressed at endogenous levels. Here we show that the stimulatory effect of yeast Rcn1 involves phosphorylation of a conserved serine residue by Mck1, a member of the GSK-3 family of protein kinases. Mutations at the GSK-3 consensus site of Rcn1 and human DSCR1/MCIP1 abolish the stimulatory effects on calcineurin signaling. RCNs may therefore oscillate between stimulatory and inhibitory forms in vivo in a manner similar to the Inhibitor-2 regulators of type 1 protein phosphatase. Computational modeling indicates a biphasic response of calcineurin to increasing RCN concentration such that protein phosphatase activity is stimulated by low concentrations of phospho-RCN and inhibited by high concentrations of phospho- or dephospho-RCN. This prediction was verified experimentally in yeast cells expressing Rcn1 or DSCR1/MCIP1 at different concentrations. Through the phosphorylation of RCNs, GSK-3 kinases can potentially contribute to a positive feedback loop involving calcineurin-dependent up-regulation of RCN expression. Such feedback may help explain the large induction of DSCR1/MCIP1 observed in brain of Down syndrome individuals.
Collapse
Affiliation(s)
- Zoe Hilioti
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
García-Gimeno MA, Muñoz I, Ariño J, Sanz P. Molecular characterization of Ypi1, a novel Saccharomyces cerevisiae type 1 protein phosphatase inhibitor. J Biol Chem 2003; 278:47744-52. [PMID: 14506263 DOI: 10.1074/jbc.m306157200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.
Collapse
Affiliation(s)
- Maria Adelaida García-Gimeno
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010-Valencia, Spain
| | | | | | | |
Collapse
|