1
|
Hutchings C, Sela-Donenfeld D. Primer on FGF3. Differentiation 2024; 139:100730. [PMID: 37741710 DOI: 10.1016/j.diff.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Though initially discovered as a proto-oncogene in virally induced mouse mammary tumors, FGF3 is primarily active in prenatal stages, where it is found at various sites at specific times. FGF3 is crucial during development, as its roles include tail formation, inner ear development and hindbrain induction and patterning. FGF3 expression and function are highly conserved in vertebrates, while it also interacts with other FGFs in various developmental processes. Intriguingly, while it is classified as a classical paracrine signaling factor, murine FGF3 was uniquely found to also act in an intracrine manner, depending on alternative translation initiation sites. Corresponding with its conserved role in inner ear morphogenesis, mutations in FGF3 in humans are associated with LAMM syndrome, a disorder that include hearing loss and inner ear malformations. While recent studies indicate of some FGF3 presence in post-natal stages, emerging evidences of its upregulation in various human tumors and cariogenic processes in mouse models, highlights the importance of its close regulation in adult tissues. Altogether, the broad and dynamic expression pattern and regulation of FGF3 in embryonic and adult tissues together with its link to congenital malformations and cancer, calls for further discoveries of its diverse roles in health and disease.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Sci Rep 2019; 9:12569. [PMID: 31467334 PMCID: PMC6715813 DOI: 10.1038/s41598-019-48991-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Small numbers of hematopoietic stem cells (HSCs) balance self-renewal and differentiation to produce the diversity and abundance of cell types that make up the blood system. How nutrients are recruited to support this massive differentiation and proliferation process remains largely unknown. The unique metabolism of adult HSCs, which rely on glycolysis and glutaminolysis, suggests a potential role for the post-translational modification O-GlcNAc as a critical nutrient signal in these cells. Glutamine, glucose, and other metabolites drive the hexosamine biosynthetic pathway (HBP) ultimately leading to the O-GlcNAc modification of critical intracellular targets. Here, we used a conditional targeted genetic deletion of the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), to determine the consequences of blocked O-GlcNAc cycling on HSCs. Oga deletion in mouse HSCs resulted in greatly diminished progenitor pools, impaired stem cell self-renewal and nearly complete loss of competitive repopulation capacity. Further, early T cell specification was particularly sensitive to Oga deletion. Loss of Oga resulted in a doubling of apoptotic cells within the bone marrow and transcriptional deregulation of key genes involved in adult stem cell maintenance and lineage specification. These findings suggest that O-GlcNAc cycling plays a critical role in supporting HSC homeostasis and early thymocyte development.
Collapse
|
3
|
Castilho A, Dalanezi F, Franchi F, Price C, Ferreira J, Trevisol E, Buratini J. Expression of fibroblast growth factor 22 (FGF22) and its receptor, FGFR1B, during development and regression of bovine corpus luteum. Theriogenology 2019; 125:1-5. [DOI: 10.1016/j.theriogenology.2018.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
4
|
Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J 2016; 473:4593-4607. [PMID: 27742760 DOI: 10.1042/bcj20160441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.
Collapse
|
5
|
Chen YH, Yu J. Ectopic expression of Fgf3 leads to aberrant lineage segregation in the mouse parthenote preimplantation embryos. Dev Dyn 2012; 241:1651-64. [PMID: 22930543 DOI: 10.1002/dvdy.23851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parthenogenetic mammalian embryos were reported to die in utero no later than the 25-somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. RESULTS We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2(+) /Nanog(+) epiblast cells but increased numbers of Gata4(+) primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up-regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. CONCLUSIONS Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
6
|
Suzuki A, Harada H, Nakamura H. Nuclear translocation of FGF8 and its implication to induce Sprouty2. Dev Growth Differ 2012; 54:463-73. [PMID: 22404534 DOI: 10.1111/j.1440-169x.2012.01332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 8 (FGF8) functions as a local organizing signal for the tectum and cerebellum. FGF8 activates Ras-ERK signaling pathway to induce cerebellar development. We paid attention to the difference in the expression pattern of the molecules that are induced by FGF8 in the mid-hind brain region during normal development and after FGF8 misexpression; some are expressed in the area corresponding to the ERK activation domain but the others are expressed corresponding to the Fgf8 expression domain. Since some of the FGF family members are localized in the nucleus, we wondered if FGF8 could localize in the nuclei and function in the nucleus. We first show that in cultured NIH3T3 cells transfected FGF8b could localize in the nucleus. Transfected FGF8b could also localize in the nucleus of the cells in the chick neural tube. In mouse embryonic neural tube, we detected endogenous FGF8 in the nuclei. Implantation of an FGF8b-soaked bead showed that exogenous FGF8b could be translocated to the nuclei in the isthmus. Furthermore, signal-peptide-deletion mutant of FGF8b mainly localized in the nuclei, and induced Sprouty2 without activating ERK in the mesencephalon. Signal-peptide-deletion mutant of FGF8b could not induce Pax2 expression. Taken together, we concluded that FGF8b could be translocated to the nuclei, and that the nuclear FGF8 could function as transcriptional regulator to induce Sprouty2 in the isthmus.
Collapse
Affiliation(s)
- Ayumu Suzuki
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, 980-8575 Sendai, Japan
| | | | | |
Collapse
|
7
|
Padanad MS, Bhat N, Guo B, Riley BB. Conditions that influence the response to Fgf during otic placode induction. Dev Biol 2012; 364:1-10. [PMID: 22327005 DOI: 10.1016/j.ydbio.2012.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response.
Collapse
Affiliation(s)
- Mahesh S Padanad
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
8
|
Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR. Molecular pathology of the fibroblast growth factor family. Hum Mutat 2009; 30:1245-55. [PMID: 19621416 DOI: 10.1002/humu.21067] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human fibroblast growth factor (FGF) family contains 22 proteins that regulate a plethora of physiological processes in both developing and adult organism. The mutations in the FGF genes were not known to play role in human disease until the year 2000, when mutations in FGF23 were found to cause hypophosphatemic rickets. Nine years later, seven FGFs have been associated with human disorders. These include FGF3 in Michel aplasia; FGF8 in cleft lip/palate and in hypogonadotropic hypogonadism; FGF9 in carcinoma; FGF10 in the lacrimal/salivary glands aplasia, and lacrimo-auriculo-dento-digital syndrome; FGF14 in spinocerebellar ataxia; FGF20 in Parkinson disease; and FGF23 in tumoral calcinosis and hypophosphatemic rickets. The heterogeneity in the functional consequences of FGF mutations, the modes of inheritance, pattern of involved tissues/organs, and effects in different developmental stages provide fascinating insights into the physiology of the FGF signaling system. We review the current knowledge about the molecular pathology of the FGF family.
Collapse
Affiliation(s)
- Pavel Krejci
- Department of Immunology and Animal Physiology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Savard M, Barbaz D, Bélanger S, Müller-Esterl W, Bkaily G, D'orléans-Juste P, Coté J, Bovenzi V, Gobeil F. Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. J Cell Physiol 2008; 216:234-44. [PMID: 18264983 DOI: 10.1002/jcp.21398] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bradykinin (BK) represents a pro-inflammatory mediator that partakes in many inflammatory diseases. The mechanism of action of BK is thought to be primarily mediated by specific cell surface membrane B2 receptors (B2Rs). Some evidence has suggested, however, the existence of an intracellular/nuclear B2R population. Whether these receptors are functional and contribute to BK signaling remains to be determined. In this study, by mean of Western blotting, 3D-confocal microscopy, receptor autoradiography and radioligand binding analysis, we showed that plasma membrane and highly purified nuclei from isolated rat hepatocytes contain specific B2R that bind BK. The results depicting B2R nuclear expression in isolated nuclear organelles were reproduced in situ on hepatic sections by immunogold labeling and transmission electron microscopy. Functional tests on single nuclei, by means of confocal microscopy and the calcium-sensitive probe fluo-4AM, showed that BK induces concentration-dependent transitory mobilization of nucleoplasmic calcium; these responses were blocked by B2R antagonist HOE 140, not by the B1R antagonist R954 and, were also found in wild-type C57/Bl6 mice, but not in B2R-KO mice. In isolated nuclei, BK elicited activation/phosphorylation of Akt, acetylation of histone H3 and ensuing pro-inflammatory iNOS gene induction as determined by Western blot and RT-PCR. ChIP assay confirmed binding of acetylated-histone H3 complexes, but not B2R, to promoter region of iNOS gene suggesting that B2R-mediated gene expression is bridged with accessory downstream effectors. This study discloses a previously undescribed mechanism in BK-induced transcriptional events, via intracrine B2R-mediated signaling, occurring in rat autologous hepatic cells.
Collapse
Affiliation(s)
- Martin Savard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tekin M, Oztürkmen Akay H, Fitoz S, Birnbaum S, Cengiz FB, Sennaroğlu L, Incesulu A, Yüksel Konuk EB, Hasanefendioğlu Bayrak A, Sentürk S, Cebeci I, Utine GE, Tunçbilek E, Nance WE, Duman D. Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia. Clin Genet 2008; 73:554-65. [PMID: 18435799 DOI: 10.1111/j.1399-0004.2008.01004.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous mutations in the fibroblast growth factor 3 (FGF3) gene have recently been discovered in an autosomal recessive form of syndromic deafness characterized by complete labyrinthine aplasia (Michel aplasia), microtia, and microdontia (OMIM 610706 - LAMM). In order to better characterize the phenotypic spectrum associated with FGF3 mutations, we sequenced the FGF3 gene in 10 unrelated families in which probands had congenital deafness associated with various inner ear anomalies, including Michel aplasia, with or without tooth or external ear anomalies. FGF3 sequence changes were not found in eight unrelated probands with isolated inner ear anomalies or with a cochlear malformation along with auricle and tooth anomalies. We identified two new homozygous FGF3 mutations, p.Leu6Pro (c.17T>C) and p. Ile85MetfsX15 (c.254delT), in four subjects from two unrelated families with LAMM. The p.Leu6Pro mutation occurred within the signal site of FGF3 and is predicted to impair its secretion. The c.254delT mutation results in truncation of FGF3. Both mutations completely co-segregated with the phenotype, and heterozygotes did not have any of the phenotypic findings of LAMM. Some affected children had large skin tags on the upper side of the auricles, which is a distinctive clinical component of the syndrome. Enlarged collateral emissary veins associated with stenosis of the jugular foramen were noted on computerized tomographies of most affected subjects with FGF3 mutations. However, similar venous anomalies were also detected in persons with non-syndromic Michel aplasia, suggesting that a direct causative role of impaired FGF3 signaling is unlikely.
Collapse
Affiliation(s)
- M Tekin
- Division of Clinical Molecular Pathology and Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kosman J, Carmean N, Leaf EM, Dyamenahalli K, Bassuk JA. Translocation of fibroblast growth factor-10 and its receptor into nuclei of human urothelial cells. J Cell Biochem 2008; 102:769-85. [PMID: 17471512 DOI: 10.1002/jcb.21330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor-10 (FGF-10), a mitogen for the epithelial cells lining the lower urinary tract, has been identified inside urothelial cells, despite its acknowledged role as an extracellular signaling ligand. Recombinant (r)FGF-10 was determined by fluorescence microscopy optical sectioning to localize strongly to nuclei inside cultured urothelial cells. To clarify the possible role of a nuclear localization signal (NLS) in this translocation, a variant of rFGF-10 was constructed which lacked this sequence. rFGF-10(no NLS) was found in cytoplasm to a far greater degree than rFGF-10, identifying this motif as a possible NLS. Furthermore, this variant displayed poor or non-existent bioactivity compared to the wild-type protein in triggering mitogenesis in quiescent urothelial cells. The presence of rFGF-10(no NLS) in the nucleus suggested that additional interactions were also responsible for the nuclear accumulation of rFGF-10. The FGF-10 receptor was observed in cell nuclei regardless of the presence or concentration of exogenous rFGF-10 ligand. Co-localization studies between rFGF-10 and the FGF-10 receptor revealed a strong intracellular relationship between the two. This co-localization was seen in nuclei for both rFGF-10 and for rFGF-10(no NLS), although the correlation was weaker for rFGF-10(no NLS). These data show that an NLS-like motif of rFGF-10 is a partial determinant of its intracellular distribution and is necessary for its mitogenic activity. These advancements in the understanding of the activity of FGF-10 present an opportunity to engineer the growth factor as a therapeutic agent for the healing of damaged urothelial tissue.
Collapse
Affiliation(s)
- Jeffrey Kosman
- Program in Human Urothelial Biology, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
12
|
Ahn HJ, Kim S, Nam HW. Nucleolar translocalization of GRA10 of Toxoplasma gondii transfectionally expressed in HeLa cells. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 45:165-74. [PMID: 17876161 PMCID: PMC2526324 DOI: 10.3347/kjp.2007.45.3.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii GRA10 expressed as a GFP-GRA10 fusion protein in HeLa cells moved to the nucleoli within the nucleus rapidly and entirely. GRA10 was concentrated specifically in the dense fibrillar component of the nucleolus morphologically by the overlap of GFP-GRA10 transfection image with IFA images by monoclonal antibodies against GRA10 (Tg378), B23 (nucleophosmin) and C23 (nucleolin). The nucleolar translocalization of GRA10 was caused by a putative nucleolar localizing sequence (NoLS) of GRA10. Interaction of GRA10 with TATA-binding protein associated factor 1B (TAF1B) in the yeast two-hybrid technique was confirmed by GST pull-down assay and immunoprecipitation assay. GRA10 and TAF1B were also co-localized in the nucleolus after co-transfection. The nucleolar condensation of GRA10 was affected by actinomycin D. Expressed GFP-GRA10 was evenly distributed over the nucleoplasm and the nucleolar locations remained as hollows in the nucleoplasm under a low dose of actinomycin D. Nucleolar localizing and interacting of GRA10 with TAF1B suggested the participation of GRA10 in rRNA synthesis of host cells to favor the parasitism of T. gondii.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology and the Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
13
|
Nilsen T, Rosendal KR, Sørensen V, Wesche J, Olsnes S, Wiedłocha A. A nuclear export sequence located on a beta-strand in fibroblast growth factor-1. J Biol Chem 2007; 282:26245-56. [PMID: 17616529 DOI: 10.1074/jbc.m611234200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Receptor-bound and endocytosed fibroblast growth factor-1 (FGF-1) is able to cross the vesicle membrane and translocate to cytosol and nucleus. This suggests an intracellular role of FGF-1, which also signals by activating transmembrane FGF receptors. Phosphorylation of internalized FGF-1 by nuclear protein kinase C delta induces rapid export from the nuclei by a leptomycin B-sensitive pathway. In the present work, we have searched for and identified a Leu-rich nuclear export sequence (NES) at the C terminus of FGF-1 required for its nuclear export and able to confer nuclear export activity to a reporter protein in an in vivo system. Mutants where hydrophobic amino acids within the NES were exchanged for alanine exhibited reduced or abolished nuclear export. As demonstrated in co-immunoprecipitation experiments, a complex containing FGF-1, exportin-1, and its co-factor Ran-GTP, was formed in vitro. Formation of this complex in vivo was demonstrated by a peroxisomal targeting assay. Formation of the FGF-1-exportin-1-Ran-GTP complex in vitro as well as nuclear export of FGF-1 in vivo was dependent on phosphorylation of FGF-1, and it was abolished by leptomycin B. The FGF-1 NES was found to be situated along a beta-strand, which has not been reported before, since NESs usually are alpha-helical.
Collapse
Affiliation(s)
- Trine Nilsen
- Centre for Cancer Biomedicine, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Montebello, University of Oslo, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
14
|
Barton ER. The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair. Appl Physiol Nutr Metab 2006; 31:791-7. [PMID: 17213901 DOI: 10.1139/h06-054] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-I) plays a critical role in the growth and development of many tissues in the body. It is a key regulator of skeletal muscle development, and continues to enhance the ability for muscle to grow and undergo repair throughout life. Although the focus of research has been on the molecular actions and physiological impact of IGF-I, there has also been a growing undercurrent of studies geared toward the characterization of additional potentially active peptides produced by the igf1 gene. Alternative splicing of the gene results in multiple isoforms that retain the identical sequence for mature IGF-I, but also give rise to divergent C-terminal peptides. The peptides might modulate the actions, stability, or bioavailability of IGF-I, or they might have independent activity. These possibilities have gained the attention of the skeletal muscle field, where novel actions of IGF-I could have significant impact on muscle mass, strength, and repair.
Collapse
Affiliation(s)
- Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Planque N, Long Li C, Saule S, Bleau AM, Perbal B. Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 2006; 99:105-16. [PMID: 16598765 DOI: 10.1002/jcb.20887] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CCN3 is a founding member of the CCN (Cyr61, Ctgf, Nov) family of cell growth and differentiation regulators. These secreted proteins are key regulators in embryonic development, and are associated with severe pathologies including fibrotic diseases and cancers. CCN3 was discovered as a MAV integration site in an avian nephroblastoma. Previous work established that the amino-truncated protein expressed in this tumor was inducing morphological transformation of chicken embryo fibroblasts, whereas the full-length secreted CCN3 protein was inhibiting cell growth. Amino-truncated variants were identified in cancer cell lines. Since the lack of signal peptide was expected to alter the fate of the truncated proteins, we hypothesized that modifications of CCN3 subcellular addressing could be responsible for the oncogenic activities of CCN3. The CCN proteins are composed of four structural modules (IGFBP, TSP1, VWC, and CT). We report that amino-truncated variants of CCN3 are addressed to the nucleus and that the carboxyterminal (CT) module of CCN3 is responsible for the nuclear addressing. Furthermore, our data identify nuclear CCN3 variants as potential transcriptional regulators. In this context, the CT module confers on nuclear CCN3 proteins a negative regulatory effect on transcription. We propose that the nuclear localization of amino-truncated CCN3 proteins be correlated to oncogenicity.
Collapse
Affiliation(s)
- Nathalie Planque
- Université Paris7-D. Diderot, UFR de Biochimie, Laboratoire d'Oncologie Virale et Moléculaire, 2 Place Jussieu, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
16
|
Planque N. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal 2006; 4:7. [PMID: 17049074 PMCID: PMC1626074 DOI: 10.1186/1478-811x-4-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/18/2006] [Indexed: 12/14/2022] Open
Abstract
Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.
Collapse
Affiliation(s)
- Nathalie Planque
- Laboratoire d'Oncologie Virale et Moléculaire, Université Paris7-Denis Diderot, UFR de Biochimie, 2 place Jussieu, 75005 Paris, France.
| |
Collapse
|
17
|
Antoine M, Reimers K, Wirz W, Gressner AM, Müller R, Kiefer P. Fibroblast growth factor 3, a protein with a dual subcellular fate, is interacting with human ribosomal protein S2. Biochem Biophys Res Commun 2005; 338:1248-55. [PMID: 16263090 DOI: 10.1016/j.bbrc.2005.10.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
The secreted isoform of fibroblast growth factor 3 (FGF3) induces a mitogenic cell response, while the nuclear form inhibits cell proliferation. Recently, we identified a nucleolar FGF3-binding protein which is implicated in processing of pre-rRNA as a possible target of nuclear FGF3 signalling. Here, we report a second candidate protein identified by a yeast two-hybrid screen for nuclear FGF3 action, ribosomal protein S2, rpS2. Recombinant rpS2 binds to in vitro translated FGF3 and to nuclear FGF3 extracted from transfected COS-1 cells. Characterization of the FGF3 binding domain of rpS2 showed that both the Arg-Gly-rich N-terminal region and a short carboxyl-terminal sequence of rpS2 are necessary for FGF3 binding. Mapping the S2 binding domains of FGF3 revealed that these domains are important for both NoBP and rpS2 interaction. Transient co-expression of rpS2 and nuclear FGF3 resulted in a reduced nucleolar localization of the FGF. These findings suggest that the nuclear form of FGF3 inhibits cell proliferation by interfering with ribosomal biogenesis.
Collapse
Affiliation(s)
- Marianne Antoine
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Quarto N, Fong KD, Longaker MT. Gene profiling of cells expressing different FGF-2 forms. Gene 2005; 356:49-68. [PMID: 16023796 DOI: 10.1016/j.gene.2005.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/18/2005] [Accepted: 05/04/2005] [Indexed: 11/19/2022]
Abstract
Fibroblast Growth Factor-2 (FGF-2) induces cell proliferation, cell migration, embryonic development, cell differentiation, angiogenesis and malignant transformation. The four forms of FGF-2 (Low Molecular Weight) and (High Molecular Weights) are alternative translation products, and have a different subcellular localization: the high molecular weight (HMWFGF-2) forms are nuclear while the low molecular weight form, (LMWFGF-2) is mainly cytoplasmic. Our previous work demonstrated NIH 3T3 cells expressing different FGF-2 forms, displayed a different phenotype, suggesting that nuclear and cytoplasmic forms of FGF-2 may have different functions. Here we report a cDNA microarray-based study in NIH 3T3 fibroblasts expressing different FGF-2 forms. Several candidate genes that affect cell-cycle, tumor suppression, adhesion and transcription were identified as possible mediators of the HMWFGF-2 phenotype and signaling pattern. These results demonstrated that HMWFGF-2 and LMWFGF-2 target the expression of different genes. Particularly, our data suggest that HMWFGF-2 forms may function as inducers of growth inhibition and tumor suppression activities.
Collapse
Affiliation(s)
- Natalina Quarto
- Department of Surgery, School of Medicine Stanford University, 257 Campus Drive, Stanford, CA 94305-5148, USA.
| | | | | |
Collapse
|
19
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
20
|
Wiedłocha A, Sørensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 2004; 286:45-79. [PMID: 15645710 DOI: 10.1007/978-3-540-69494-6_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fibroblast growth factor (FGF) family contains 23 members in mammals including its prototype members FGF-1 and FGF-2. FGFs have been implicated in regulation of many key cellular responses involved in developmental and physiological processes. These includes proliferation, differentiation, migration, apoptosis, angiogenesis, and wound healing. FGFs bind to five related, specific cell surface receptors (FGFRs). Four of these have intrinsic tyrosine kinase activity. Dimerization of the receptor is a prerequisite for receptor transphosphorylation and activation of downstream signaling molecules. All members of the FGF family have a high affinity for heparin and for cell surface heparan sulfate proteoglycans, which participate in formation of stable and active FGF-FGFR complexes. FGF-mediated signaling is an evolutionarily conserved signaling module operative in invertebrates and vertebrates. It seems that some members of the family have a dual mode of action. FGF-1, FGF-2, FGF-3, and FGF-11-14 have been found intranuclearly as endogenous proteins. Exogenous FGF-1 and FGF-2 are internalized by receptor-mediated endocytosis, in a clathrin-dependent and -independent way. Internalized FGF-1 and FGF-2 are able to cross cellular membranes to reach the cytosol and the nuclear compartment. The role of FGF internalization and the intracellular activity of some FGFs are discussed in the context of the known signaling induced by FGF.
Collapse
Affiliation(s)
- A Wiedłocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
21
|
Tan DSW, Cook A, Chew SL. Nucleolar localization of an isoform of the IGF-I precursor. BMC Cell Biol 2002; 3:17. [PMID: 12095420 PMCID: PMC117215 DOI: 10.1186/1471-2121-3-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2002] [Accepted: 07/02/2002] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Alternative exons encode different isoforms of the human insulin-like growth factor-I (IGF-I) precursor without altering mature IGF-I. We hypothesized that the various IGF-I precursors may traffic IGF-I differently. Chimeric IGF-I precursors were made with green fluorescent protein (GFP) cloned between the signal and mature IGF-I domains. RESULTS Chimeras containing exons 1 or 2 were located in the cytoplasm, consistent with a secretory pathway, and suggesting that both exons encoded functional signal peptides. Exon 5-containing chimeras localized to the nucleus and strongly to the nucleolus, while chimeras containing exon 6 or the upstream portion of exon 5 did not. Nuclear and nucleolar localization also occurred when the mature IGF-I domain was deleted from the chimeras, or when signal peptides were deleted. CONCLUSIONS We have identified a nucleolar localization for an isoform of the human IGF-I precursor. The findings are consistent with the presence of a nuclear and nucleolar localization signal situated in the C-terminal part of the exon 5-encoded domain with similarities to signals in several other growth factors.
Collapse
Affiliation(s)
- Daniel SW Tan
- Department of Endocrinology, St Bartholomew's Hospital, Queen Mary, University of London, London EC1A 7BE, United Kingdom
| | - Alexandra Cook
- Department of Endocrinology, St Bartholomew's Hospital, Queen Mary, University of London, London EC1A 7BE, United Kingdom
| | - Shern L Chew
- Department of Endocrinology, St Bartholomew's Hospital, Queen Mary, University of London, London EC1A 7BE, United Kingdom
| |
Collapse
|
22
|
Chua SS, Ma ZQ, Gong L, Lin SH, DeMayo FJ, Tsai SY. Ectopic expression of FGF-3 results in abnormal prostate and Wolffian duct development. Oncogene 2002; 21:1899-908. [PMID: 11896623 DOI: 10.1038/sj.onc.1205096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Revised: 09/27/2001] [Accepted: 10/12/2001] [Indexed: 11/09/2022]
Abstract
To evaluate the effects of FGF-3 expression in the prostate and male reproductive tract, we employed a bitransgenic system to target FGF-3 to these organs. We present a first study that ectopic FGF-3 expression resulted in exuberant hyperplasia of all bigenic prostatic lobes typified by epithelial stratification, cribiform structures and papillary tufts. These cells displayed increased nuclear-to-cytoplasmic ratios and bromodeoxyuridine (BrdU) proliferative index but retained relatively uniform nuclear androgen receptor (AR) and the tumor suppressor C-CAM1 staining. Furthermore, the dysmorphogenic prostatic cells also resembled PIN (prostatic intraepithelial neoplasia)-like lesions but did not appear to have invaded the basal lamina. In addition to these phenotypes, profound disorders of the bigenic Wolffian duct derivatives were observed. The bigenic ampullary glands and vas deferens were extremely cystic, hypertrophic and hyperplastic; the enlarged epididymi showed a reduction of spermatozoa and the seminal vesicles exhibited a dramatic reduction of seminal secretions. Because of these severe abnormalities, these infertile males presented with diaphragmatic hernias, hemoperitoneum and many secondary abnormalities at sacrifice. Taken together, we show that ectopic FGF-3 expression severely perturbs normal prostate development and our system should be useful for the analyses of early changes in prostatic hyperplasia.
Collapse
Affiliation(s)
- Steven S Chua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Goldfarb M. Signaling by fibroblast growth factors: the inside story. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe37. [PMID: 11687709 PMCID: PMC3208904 DOI: 10.1126/stke.2001.106.pe37] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polypeptide growth factors bind to the extracellular domains of cell surface receptors, triggering activation of receptor-intrinsic or receptor-associated protein kinases. Although this central thesis is widely accepted, one family of proteins, the fibroblast growth factors (FGFs), have for more than a decade attracted a research "counterculture" looking for direct FGF actions inside cells. Goldfarb discusses how the search for alternative signaling pathways is moving mainstream with the help of two recent publications reporting specific intracellular targets for FGF and FGF-like proteins.
Collapse
Affiliation(s)
- M Goldfarb
- Department of Biochemistry and Molecular Biology, Box 1020, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA.
| |
Collapse
|
25
|
Reimers K, Antoine M, Zapatka M, Blecken V, Dickson C, Kiefer P. NoBP, a nuclear fibroblast growth factor 3 binding protein, is cell cycle regulated and promotes cell growth. Mol Cell Biol 2001; 21:4996-5007. [PMID: 11438656 PMCID: PMC87226 DOI: 10.1128/mcb.21.15.4996-5007.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secreted and nuclear forms of fibroblast growth factor 3 (FGF3) have opposing effects on cells. The secreted form stimulates cell growth and transformation, while the nuclear form inhibits DNA synthesis and cell proliferation. By using the yeast two-hybrid system we have identified a nucleolar FGF3 binding protein (NoBP) which coimmunoprecipitated and colocalized with FGF3 in transfected COS-1 cells. Characterization of the NoBP binding domain of FGF3 exactly matched the sequence requirements of FGF3 for its translocation into the nucleoli, suggesting that NoBP might be the nucleolar binding partner of FGF3 essential for its nucleolus localization. Carboxyl-terminal domains of NoBP contain linear nuclear and nucleolar targeting motifs which are capable of directing a heterologous protein beta-galactosidase to the nucleus and the nucleoli. While NoBP expression was detected in all analyzed proliferating established cell lines, NoBP transcription was rapidly downregulated in the promyelocytic leukemia cell line HL60 when induced to differentiate. Analysis on the expression pattern of NoBP mRNA throughout the cell cycle in HeLa cells synchronized by lovastatin demonstrated a substantial upregulation during the late G(1)/early S phase. NoBP overexpression conferred a proliferating effect onto NIH 3T3 cells and can counteract the inhibitory effect of nuclear FGF3, suggesting a role of NoBP in controlling proliferation in cells. We propose that NoBP is the functional target of nuclear FGF3 action.
Collapse
Affiliation(s)
- K Reimers
- Institut für Hämostaseologie und Transfusionsmedizin, Medizinische Fakultät, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Prudovsky I, Landriscina M, Soldi R, Bellum S, Small D, Andreeva V, Maciag T. Fusions to members of fibroblast growth factor gene family to study nuclear translocation and nonclassic exocytosis. Methods Enzymol 2001; 327:369-82. [PMID: 11044997 DOI: 10.1016/s0076-6879(00)27290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- I Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, South Portland 04106, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Grieb TA, Burgess WH. The mitogenic activity of fibroblast growth factor-1 correlates with its internalization and limited proteolytic processing. J Cell Physiol 2000; 184:171-82. [PMID: 10867641 DOI: 10.1002/1097-4652(200008)184:2<171::aid-jcp4>3.0.co;2-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fibroblast growth factor-1 (FGF-1) mitogenic signal transduction pathway is not well characterized, and evidence indicates that FGF-1 binding to and activation of cell-surface receptors is not solely sufficient for a full mitogenic response. Although initiation of the phosphorylation signaling cascades are likely important in FGF-1-induced mitogenic signaling, there appear to be additional signaling requirements. In this study, we demonstrate that FGF-1 internalization and subsequent processing correlates with the mitogenic potential of the growth factor on NIH 3T3 cells. Using site-directed mutants of FGF-1 and inhibitors of the endocytic and degradative pathways, we provide evidence for growth factor internalization and exposure to an acidic environment as necessary components of FGF-1-induced mitogenesis. In addition, a protease-sensitive event(s) appears critical for a complete mitogenic response to FGF-1, whereas, this protease sensitivity was not detected under the same conditions for serum-stimulated mitogenesis. Therefore, proteolytic modification of internalized FGF-1 may result in the activation of additional, intracellular signaling events.
Collapse
Affiliation(s)
- T A Grieb
- Department of Tissue Biology, Holland Laboratory, American Red Cross, Rockville, Maryland, USA
| | | |
Collapse
|
28
|
Mertani HC, Morel G, Lobie PE. Cytoplasmic and nuclear cytokine receptor complexes. VITAMINS AND HORMONES 1999; 57:79-121. [PMID: 10232047 DOI: 10.1016/s0083-6729(08)60641-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each cytokine.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
29
|
Antoine M, Wegmann B, Kiefer P. Envelope and long terminal repeat sequences of an infectious murine leukemia virus from a human SCLC cell line: implications for gene transfer. Virus Genes 1998; 17:157-68. [PMID: 9857989 DOI: 10.1023/a:1008020808314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of methods for gene transfer into specific cell types or tissues is important for experimental research as well as clinical therapeutical approaches. We report here the cloning and characterization of the envelope (env) gene and the U3 region of a retrovirus from an infected human Small Cell Lung Cancer (SCLC) cell line. The replication of this murine retrovirus is also fully supported by other lung cancer cell lines of different histological origin. We present evidence that a long terminal repeat (LTR)-beta-galactosidase (beta-Gal) reporter construct performed as well as an analogous cytomegalovirus (CMV) promoter beta-Gal construct in the human lung epithelial cell line A549 and in the human larynx carcinoma cell line HEp2.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Carcinoma, Small Cell
- Cloning, Molecular
- Gene Transfer Techniques
- Genes, Reporter
- Genes, env/genetics
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Lung Neoplasms
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic
- Terminal Repeat Sequences/genetics
- Tumor Cells, Cultured
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Virus Replication
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- M Antoine
- Ruhr-Universität Bochum, Medizinische Fakultät, Institut für Hygiene und Mikrobiologie, Abteilung für Med. Mikrobiol. und Virologie, Gebäude, Germany
| | | | | |
Collapse
|
30
|
Abstract
It is becoming increasingly apparent that parathyroid hormone-related peptide (PTHrP) modulates cellular function in a dual mode of action: first, by binding and activating its cognate cell surface G-protein-coupled receptor and, second, by direct intracellular effects following translocation to the nucleus and/or nucleolus of the target cell. Little is presently known about the mechanisms and events that determine the timing and degree of PTHrP nuclear translocation or the role it may serve in normal or dysregulated cellular function. Clarifying the nuclear actions of PTHrP would add significantly to our present understanding of this protein as a signaling molecule during embryonic development and as an oncoprotein whose expression in many tumors correlates with increased tumor aggressiveness and propensity for metastasis.
Collapse
Affiliation(s)
- M T Nguyen
- Department of Medicine, S.M.B.D.-Jewish General Hospital, and Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
31
|
Abstract
The role of membrane receptors is regarded as being to transduce the signal represented by ligand binding from the external cell surface across the membrane into the cell. Signals are subsequently conveyed from the cytoplasm to the nucleus through a combination of second-messenger molecules, kinase/phosphorylation cascades, and transcription factor (TF) translocation to effect changes in gene expression. Mounting evidence suggests that through direct targeting to the nucleus, polypeptide ligands and their receptors may have an important additional signaling role. Ligands such as those of the platelet-derived and fibroblast growth factor classes, as well as cytokines such as interferon-gamma and interleukins-1 and -5, have been found to localize in the nucleus through the action of nuclear localization sequences (NLSs). Where tested, these NLSs appear to be essential for full signaling activity and may be responsible for cotranslocating receptors to the nucleus in complexes with their ligands. The implication is that, subsequent to endocytosis at the membrane, particular polypeptide ligands or their receptors, or both, may translocate to the nucleus to participate directly in gene regulation.
Collapse
Affiliation(s)
- D A Jans
- Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia.
| | | |
Collapse
|
32
|
Wysolmerski JJ, Stewart AF. The physiology of parathyroid hormone-related protein: an emerging role as a developmental factor. Annu Rev Physiol 1998; 60:431-60. [PMID: 9558472 DOI: 10.1146/annurev.physiol.60.1.431] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is the agent responsible for humoral hypercalcemia of malignancy. Its pathogenic role in this syndrome is well established and attention has focused in recent years on the elucidation of the roles played by PTHrP in normal developmental and adult physiology. This review focuses on studies of the past two years: (a) elucidation of the posttranslational processing pattern of PTHrP, the mechanisms of action of the various secretory forms of PTHrP, the role of PTHrP as an intracrine regulator of cell growth and cell death; (b) the emergence of PTHrP as a critical developmental factor in the mammary gland, epidermis, and the skeleton; and (c) the advances in understanding of the roles of PTHrP in the regulation of pancreatic islet mass, vascular smooth muscle tone and proliferation, and materno-fetal calcium transfer across the placenta.
Collapse
Affiliation(s)
- J J Wysolmerski
- Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
33
|
Massfelder T, Fiaschi-Taesch N, Stewart AF, Helwig JJ. Parathyroid hormone-related peptide--a smooth muscle tone and proliferation regulatory protein. Curr Opin Nephrol Hypertens 1998; 7:27-32. [PMID: 9442359 DOI: 10.1097/00041552-199801000-00005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) appears to play crucial roles in the cardiovascular system. Over the past few years it has become apparent that there is more than one receptor recognizing parathyroid hormone or PTHrP, or both, and that PTHrP is not only a potent vasodilator of vascular smooth muscle cell tone, but is also a regulator of vascular smooth muscle cell proliferation and a secretagogue of renin and vasopressin. Investigators in several laboratories have started to query whether PTHrP intervenes in vascular diseases such as hypertension, (re)stenosis-atherosclerosis and endotoxaemia.
Collapse
Affiliation(s)
- T Massfelder
- Pharmacology Department, University Louis Pasteur School of Medicine, Strasbourg, France
| | | | | | | |
Collapse
|
34
|
Guillonneau X, Régnier-Ricard F, Dupuis C, Courtois Y, Mascarelli F. Paracrine effects of phosphorylated and excreted FGF1 by retinal pigmented epithelial cells. Growth Factors 1998; 15:95-112. [PMID: 9505166 DOI: 10.3109/08977199809117186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that both inhibition of endogenous Fibroblast growth factor (FGF) synthesis in non dividing lens epithelial cells (Renaud et al. J. Biol. Chem 1996, 271: 2801-2811) and inhibition of secreted FGF1 in confluent quiescent retinal pigmented epithelial (RPE) cells (Guillonneau et al., Exp. Cell. Res. 1997, in press) induce rapid cell apoptosis. In addition, FGF2-stimulated release of endogenous FGF1 is associated with reduced apoptosis in RPE cells. We now show that a single addition of exogenous FGF2 to RPE cells induces after 4 days of culture, a great accumulation of FGF1 within the cells. Concomitantly we observe that FGF1 was released into the extracellular medium. Secreted FGF1 from RPE cells, purified from culture medium and added to either Go-arrested RPE or RMG cells at low plating density induced cell proliferation, whereas when it is added once to serum-depleted confluent RPE and RMG cells it prevented apoptosis. Both endogenous and secreted FGF1 are phosphorylated. In addition, FGF2 stimulated the production and release of phosphorylated FGF1 by RPE cells. We show that this secreted form of phosphorylated FGF1 binds to the high affinity tyrosine kinase receptors of RPE and RMG cells on retinal sections and to heparan sulfate proteoglycan in RPE cell extracellular matrix. In contrast to non-phosphorylated FGF1, phosphorylated secreted FGF1 was not degraded after internalization but accumulated within RPE and RMG cells, and is rapidly translocated to the nucleus suggesting a role in signal transduction and gene expression pathways. These results show that exogenous FGF2 activities might be mediated indirectly by phosphorylation and that secretion of FGF1 may function as a paracrine trophic factor for retinal cells.
Collapse
Affiliation(s)
- X Guillonneau
- INSERM U. 450, Association Claude Bernard, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Massfelder T, Dann P, Wu TL, Vasavada R, Helwig JJ, Stewart AF. Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: a critical role for nuclear targeting. Proc Natl Acad Sci U S A 1997; 94:13630-5. [PMID: 9391077 PMCID: PMC28357 DOI: 10.1073/pnas.94.25.13630] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/1997] [Accepted: 09/26/1997] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an "intracrine" fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- T Massfelder
- Division of Endocrinology, Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA 15240, USA
| | | | | | | | | | | |
Collapse
|
36
|
Antoine M, Reimers K, Dickson C, Kiefer P. Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal. J Biol Chem 1997; 272:29475-81. [PMID: 9368007 DOI: 10.1074/jbc.272.47.29475] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major isoform of fibroblast growth factor 3 (FGF3) is initiated from a CUG codon, and the resultant product is distributed to the nucleus/nucleolus and secretory pathway. This dual subcellular localization is achieved in part by the competing effects of two classical intracellular targeting signals located near the amino terminus. At the extreme amino terminus is a short stretch of 29 amino acids before a signal peptide necessary for translocation into the endoplasmic reticulum, which is next to an adjacent bipartite nuclear localization signal. The carboxyl-terminal region of FGF3 is also implicated in nuclear/nucleolar localization. We describe here the characterization of carboxyl-terminal signals by showing they are capable of directing a heterologous protein, beta-galactosidase, to the nucleus. Furthermore, appending both the amino- and carboxyl-terminal domains onto beta-galactosidase, reproduces the dual subcellular localization properties of FGF3. Nuclear uptake of FGF3 appears to be signal-mediated since it binds to karyopherin alpha, the nuclear localization signal binding subunit of a heterodimeric receptor of the nuclear import machinery. The import of FGF3 into the nucleus is energy-dependent, and the inhibition of this process has demonstrated the importance of the nucleolar retention signal in nucleoplasmic and nucleolar accumulation.
Collapse
Affiliation(s)
- M Antoine
- Ruhr-Universitaet Bochum, Medizinische Fakultaet, Institut fuer Hygiene und Mikrobiologie, Abteilung fuer Medizinische Mikrobiologie Virologie, Universitaetsstrasse 150, D-44780, Bochum, Gebaeude MA 6/130, Germany
| | | | | | | |
Collapse
|
37
|
|
38
|
Liu JL, Lee LF, Ye Y, Qian Z, Kung HJ. Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ. J Virol 1997; 71:3188-96. [PMID: 9060682 PMCID: PMC191451 DOI: 10.1128/jvi.71.4.3188-3196.1997] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Marek's disease virus (MDV) is one of the most oncogenic herpesviruses and induces T lymphomas in chickens within weeks after infection. Only a limited number of viral transcripts are detected in MDV tumor samples and cell lines. One of the major transcripts encodes MEQ, a 339-amino-acid bZIP protein which is homologous to the Jun/Fos family of transcription factors. The C-terminal half of MEQ contains proline-rich repeats and, when fused to the DNA-binding domain of a yeast transcription factor, Gal4 (residues 1 to 147), exhibits transactivation function. MEQ can dimerize with itself and with c-Jun. The MEQ-c-Jun heterodimers bind to an AP-1-like enhancer within the MEQ promoter region with greater affinity than do homodimers of either protein, and they transactivate MEQ expression. Here we show that MEQ is expressed in the nucleus but, interestingly, with a predominant fraction in the nucleoli and coiled bodies. This makes MEQ the first bZIP protein to be identified in the nucleoli. MEQ contains two stretches of basic residues, designated basic region 1 (BR1) and basic region 2 (BR2). Using a series of deletion mutants, we have mapped the primary nuclear localization signal (NLS) and the sole nucleolar localization signal (NoLS) to the BR2 region. BR1 was shown to provide an auxiliary signal in nuclear translocation. To demonstrate that BR2 is an authentic NoLS, BR2 was fused to cytoplasmic v-Raf (delta gag) kinase. The BR2-Raf fusion protein was observed to migrate into the nucleoplasm and the nucleolus. The BR2 region can be further divided into two long arginine-lysine stretches, BR2N and BR2C, which are separated by the five amino acids Asn-Arg-Asp-Ala-Ala (NRDAA). We provide evidence that the requirement for nuclear translocation is less stringent than that for nucleolar translocation, as either BR2N or BR2C alone is sufficient to translocate the cytoplasmic v-Raf (delta gag) into the nucleus, but only in combination can they translocate v-Raf (delta gag) into the nucleolus. Our studies demonstrate that MEQ is both a nuclear and nucleolar protein, adding MEQ to the growing list of transactivators which localize to the nucleolus.
Collapse
Affiliation(s)
- J L Liu
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
39
|
Shi J, Friedman S, Maciag T. A carboxyl-terminal domain in fibroblast growth factor (FGF)-2 inhibits FGF-1 release in response to heat shock in vitro. J Biol Chem 1997; 272:1142-7. [PMID: 8995414 DOI: 10.1074/jbc.272.2.1142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The fibroblast growth factor (FGF) prototypes, FGF-1 and FGF-2, lack a signal sequence, but both contain a nuclear localization sequence. We prepared a series of FGF-1 deletion mutants fused to the reporter gene, beta-galactosidase (beta-gal) and determined that a domain between residues 83 and 154 is responsible for FGF-1 cytosol retention in NIH 3T3 cells. Using a series of FGF-beta-gal chimeric proteins prepared by the shuffling of cassette-formatted synthetic FGF prototype genes, we were able to demonstrate that the nuclear localization sequence from the 5'-CUG region of FGF-2 is not able to direct the nuclear association of FGF-1 due to its inability to repress the function of the FGF-1 cytosol retention domain. We also observed that while the FGF-1:beta-gal chimera was released in response to heat shock, the FGF-2:beta-gal protein was not. Further, replacement of the FGF-1 cytosol retention domain with the corresponding domain from FGF-2 repressed the release of the chimeric protein. These data suggest that the specificity of the stress-induced secretion pathway for FGF-1 involves a carboxyl-terminal domain that is absent in FGF-2 and that the FGF-1 secretion pathway does not restrict the release of high molecular weight forms of FGF-1.
Collapse
Affiliation(s)
- J Shi
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
40
|
Kerby JD, Verran DJ, Luo KL, Ding Q, Tagouri Y, Herrera GA, Diethelm AG, Thompson JA. Immunolocalization of FGF-1 and receptors in glomerular lesions associated with chronic human renal allograft rejection. Transplantation 1996; 62:190-200. [PMID: 8755815 DOI: 10.1097/00007890-199607270-00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glomerular lesions are considered one of the more detrimental pathologic changes associated with chronic rejection of renal allografts. To elucidate potential pathophysiologic mechanisms associated with transplant glomerulopathy, we examined the expression of acidic fibroblast growth factor (FGF-1) and its high-affinity receptors (FGFR) in both relevant renal transplant controls (n=5) and tissue from patients (n=19) who underwent nephrectomy following graft loss secondary to chronic rejection. In situ immunohistochemical analyses demonstrated minimal staining and distribution of FGFR and FGF-1, which was localized to the mesangial matrix in glomeruli from normal human kidneys. In situ hybridization failed to detect the presence of FGF-1 mRNA in control tissue. In contrast, each stage of the developing glomerular lesion associated with chronic rejection demonstrated the exaggerated appearance of FGF-1 protein in visceral and parietal epithelial cells. Intense staining for FGF-1 protein did not correlate with the increased appearance of FGF-1 mRNA, which was restricted to circulating inflammatory cells. Glomeruli in kidneys with findings of chronic rejection also exhibited increased immunodetection of both FGFR and PCNA in mesangial and epithelial cells. Immunogold labeling of chronically rejected visceral epithelial cells revealed both cytoplasmic and nuclear/localization of FGF-1, thereby establishing mitogenic potential of the growth factor. The enhanced appearance of both biologically active FGF-1 and FGFR suggests that this polypeptide may serve as an important mediator of growth responses associated with glomerular lesion development during chronic rejection.
Collapse
Affiliation(s)
- J D Kerby
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Prudovsky IA, Savion N, LaVallee TM, Maciag T. The nuclear trafficking of extracellular fibroblast growth factor (FGF)-1 correlates with the perinuclear association of the FGF receptor-1alpha isoforms but not the FGF receptor-1beta isoforms. J Biol Chem 1996; 271:14198-205. [PMID: 8662999 DOI: 10.1074/jbc.271.24.14198] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The alternatively spliced fibroblast growth factor receptor (FGFR)-1 isoforms, FGFR-1alpha and FGFR-1beta, are characterized by the presence of either three or two Ig-like loops in the extracellular domain and are differentially expressed during embryonic development and tumor progression. We have previously shown that in cells irreversibly committed to DNA synthesis by FGF-1, approximately 15% of cell surface FGFR-1 traffics to a perinuclear locale as a structurally intact and functional tyrosine kinase (Prudovsky, I., Savion, N., Zhan, X., Friesel, R., Xu, J., Hou, J., McKeehan, W. L., and Maciag, T. (1994) J. Biol. Chem. 269, 31720-31724). In order to define the structural requirement for association of FGFR-1 with the nucleus, the expression and trafficking of FGFR-1 in FGFR-1alpha and FGFR-1beta L6 myoblast transfectants was studied. Although FGFR-1alpha was expressed as p145 and p125 forms, FGFR-1beta was expressed as p120 and p100 forms in the L6 myoblast transfectants. Tunicamycin and N-glyconase experiments suggest that these forms of FGFR-1alpha and FGFR-1beta are the result of differential glycosylation. However, only the p145 form of FGFR-1alpha and the p120 form of FGFR-1beta were able to bind FGF-1 and activate tyrosine phosphorylation. Pulse-chase analysis of FGFR-1 biosynthesis suggests that the p125 and p100 proteins are the precursor forms of p145 FGFR-1alpha and p120 FGFR-1beta, respectively. Because ligand-chase analysis demonstrated that FGFR-1beta L6 myoblast transfectants exhibited a reduced efficiency of nuclear translocation of exogenous FGF-1 when compared with FGFR-1alpha transfectants, the intracellular trafficking of the FGFR-1alpha and FGFR-1beta isoforms was studied using an in vitro kinase assay to amplify immunoprecipitated FGFR-1. Indeed, the appearance of the FGFR-1alpha but not FGFR-1beta isoform in the nuclear fraction of L6 myoblast transfectants suggests that the distal Ig-like loop in FGFR-1alpha mediates the differential nuclear association of FGFR-1alpha as a structurally intact and functional tyrosine kinase. Further, the FGFR-1beta L6 myoblast transfectants but not the FGFR-1alpha myoblast transfectants exhibited a pronounced morphologic change in response to exogenous FGF-1. Because this phenotype change involves the induction of a rounded cellular shape, it is possible that the FGFR-1alpha and FGFR-1beta may ultimately exhibit differential trafficking to adhesion sites.
Collapse
Affiliation(s)
- I A Prudovsky
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | |
Collapse
|
42
|
Magoulas C, Fried M. The Surf-6 gene of the mouse surfeit locus encodes a novel nucleolar protein. DNA Cell Biol 1996; 15:305-16. [PMID: 8639267 DOI: 10.1089/dna.1996.15.305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Surfeit locus contains the tightest cluster of mammalian genes so far described. The five Surfeit genes (Surf-1 to -5) that have been previously isolated and characterized do not share any DNA or amino acid sequence homology. These Surfeit genes appear to be housekeeping genes, with the Surf-3 gene encoding the 1.7a ribosomal protein and the Surf-4 gene encoding an integral membrane protein most likely associated with the endoplasmic reticulum. In this work, we have isolated the Surf-6 gene, a sixth member of the Surfeit locus. The Surf-6 gene contains four exons spanning a genomic region of 14 kb and specifies a mRNA of 2,571 bases. Surf-6 has features common to housekeeping genes because its transcript is present in every tissue tested, its 5' end is associated with a CpG-rich island, and its promoter does not contain a canonical TATA box. The Surf-6 long open reading frame encodes a novel highly basic polypeptide of 355 amino acids (28% Arg and Lys). By immunofluorescence and immunoblot analyses, the Surf-6 protein has been found to be located in the nucleolus and by immunocytochemical microscopy to be localized predominantly in the nucleolar granular component, a structure that is involved in ribosome maturation. These results indicate that the novel Surf-6 gene is involved in a nucleolar function.
Collapse
Affiliation(s)
- C Magoulas
- Eukaryotic Gene Organisation and Expression Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
43
|
Wiedłocha A, Falnes PO, Rapak A, Muñoz R, Klingenberg O, Olsnes S. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization. Mol Cell Biol 1996; 16:270-80. [PMID: 8524304 PMCID: PMC231000 DOI: 10.1128/mcb.16.1.270] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell.
Collapse
Affiliation(s)
- A Wiedłocha
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|