1
|
Takasaki T, Bamba A, Kukita Y, Nishida A, Kanbayashi D, Hagihara K, Satoh R, Ishihara K, Sugiura R. Rcn1, the fission yeast homolog of human DSCR1, regulates arsenite tolerance independently from calcineurin. Genes Cells 2024; 29:589-598. [PMID: 38715219 DOI: 10.1111/gtc.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Yuka Kukita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Aiko Nishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Daiki Kanbayashi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Keiichi Ishihara
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| |
Collapse
|
2
|
Cockrell AJ, Lange JJ, Wood C, Mattingly M, McCroskey SM, Bradford WD, Conkright-Fincham J, Weems L, Guo MS, Gerton JL. Regulators of rDNA array morphology in fission yeast. PLoS Genet 2024; 20:e1011331. [PMID: 38968290 PMCID: PMC11253961 DOI: 10.1371/journal.pgen.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.
Collapse
Affiliation(s)
- Alexandria J. Cockrell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mark Mattingly
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott M. McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Juliana Conkright-Fincham
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Promega Corporation, Madison, Wisconsin, United States of America
| | - Lauren Weems
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Monica S. Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, state of Washington, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
3
|
Liu Q, Zhong Z, Zheng S, Chu Y, Sakamoto N, Kuno T, Fang Y. Identification and characterization of a novel antifungal compound tubeimoside I targeting cell wall. Microbiol Spectr 2024; 12:e0404723. [PMID: 38651884 PMCID: PMC11237440 DOI: 10.1128/spectrum.04047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Due to fungal diseases that threaten immunocompromised patients, along with the limited availability of antifungal agents, there is an urgent need for new antifungal compounds to treat fungal infections. Here, we aimed to identify potential antifungal drugs from natural products using the fission yeast Schizosaccharomyces pombe as a model organism since it shares many features with some pathogenic fungi. Here, we identified tubeimoside I (TBMS1), an extract from Chinese herbal medicine, that showed strong antifungal activity against S. pombe. To gain insight into the underlying mechanism, we performed transcriptomics analyses of S. pombe cells exposed to TBMS1. A significant proportion of the differential expressed genes were involved in cell wall organization or biogenesis. Additionally, TBMS1 treatment of S. pombe cells resulted in pleiotropic phenotypes, including increased sensitivity to β-glucanase, enhanced calcineurin activity, translocation of GFP-Prz1 to the nucleus, as well as enhanced dephosphorylation of Prz1, suggesting that TBMS1 disrupted cell wall integrity of S. pombe cells. Notably, calcofluor staining showed that abnormal deposits of cell wall materials were observed in the septum and cell wall of the TBMS1-treated cells, which were further corroborated by electron microscopy analysis. We also found that oxidative stress might be involved in the antifungal action of TBMS1. Moreover, we confirmed the antifungal activities of TBMS1 against several clinical isolates of pathogenic fungi. Collectively, our findings suggest that TBMS1, a novel antifungal compound, exerts its antifungal activity by targeting cell walls, which may pave the way for the development of a new class of antifungals. IMPORTANCE Fungal infections pose a serious threat to public health and have become an emerging crisis worldwide. The development of new antifungal agents is urgently needed. Here, we identified compound tubeimoside I (TBMS1) for the first time showing strong antifungal activity, and explored the underlying mechanisms of its antifungal action by using the model yeast Schizosaccharomyces pombe. Notably, we presented multiple evidence that TBMS1 exerts its antifungal activity through targeting fungal cell walls. Moreover, we verified the antifungal activities of TBMS1 against several pathogenic fungi. Our work indicated that TBMS1 may serve as a novel antifungal candidate, which provides an important foundation for designing and developing new cell wall-targeting agents for combating life-threatening fungal infections.
Collapse
Affiliation(s)
- Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Zhiqi Zhong
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shunxin Zheng
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Takasaki T, Utsumi R, Shimada E, Bamba A, Hagihara K, Satoh R, Sugiura R. Atg1, a key regulator of autophagy, functions to promote MAPK activation and cell death upon calcium overload in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:133-140. [PMID: 37275474 PMCID: PMC10236205 DOI: 10.15698/mic2023.06.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Autophagy promotes or inhibits cell death depending on the environment and cell type. Our previous findings suggested that Atg1 is genetically involved in the regulation of Pmk1 MAPK in fission yeast. Here, we showed that Δatg1 displays lower levels of Pmk1 MAPK phosphorylation than did the wild-type (WT) cells upon treatment with a 1,3-β-D-glucan synthase inhibitor micafungin or CaCl2, both of which activate Pmk1. Moreover, the overproduction of Atg1, but not that of the kinase inactivating Atg1D193A activates Pmk1 without any extracellular stimuli, suggesting that Atg1 may promote Pmk1 MAPK signaling activation. Notably, the overproduction of Atg1 induces a toxic effect on the growth of WT cells and the deletion of Pmk1 failed to suppress the cell death induced by Atg1, indicating that the Atg1-mediated cell death requires additional mechanism(s) other than Pmk1 activation. Moreover, atg1 gene deletion induces tolerance to micafungin and CaCl2, whereas pmk1 deletion induces severe sensitivities to these compounds. The Δatg1Δpmk1 double mutants display intermediate sensitivities to these compounds, showing that atg1 deletion partly suppressed growth inhibition induced by Δpmk1. Thus, Atg1 may act to promote cell death upon micafungin and CaCl2 stimuli regardless of Pmk1 MAPK activity. Since micafungin and CaCl2 are intracellular calcium inducers, our data reveal a novel role of the autophagy regulator Atg1 to induce cell death upon calcium overload independent of its role in Pmk1 MAPK activation.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Utsumi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Erika Shimada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Hygienic Science, Department of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| |
Collapse
|
5
|
Abah F, Kuang Y, Biregeya J, Abubakar YS, Ye Z, Wang Z. Mitogen-Activated Protein Kinases SvPmk1 and SvMps1 Are Critical for Abiotic Stress Resistance, Development and Pathogenesis of Sclerotiophoma versabilis. J Fungi (Basel) 2023; 9:455. [PMID: 37108909 PMCID: PMC10142639 DOI: 10.3390/jof9040455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are evolutionarily conserved in eukaryotes and modulate responses to both internal and external stimuli. Pmk1 and Mps MAPK pathways regulate stress tolerance, vegetative growth and cell wall integrity in Saccharomyces cerevisiae and Pyricularia oryzae. Here, we deployed genetic and cell biology strategies to investigate the roles of the orthologs of Pmk1 and Mps1 in Sclerotiophoma versabilis (herein referred to as SvPmk1 and SvMps1, respectively). Our results showed that SvPmk1 and SvMps1 are involved in hyphal development, asexual reproduction and pathogenesis in S. versabilis. We found that ∆Svpmk1 and ∆Svmps1 mutants have significantly reduced vegetative growths on PDA supplemented with osmotic stress-inducing agents, compared to the wild type, with ∆Svpmps1 being hypersensitive to hydrogen peroxide. The two mutants failed to produce pycnidia and have reduced pathogenicity on Pseudostellaria heterophylla. Unlike SvPmk1, SvMps1 was found to be indispensable for the fungal cell wall integrity. Confocal microscopic analyses revealed that SvPmk1 and SvMps1 are ubiquitously expressed in the cytosol and nucleus. Taken together, we demonstrate here that SvPmk1 and SvMps1 play critical roles in the stress resistance, development and pathogenesis of S. versabilis.
Collapse
Affiliation(s)
- Felix Abah
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Kuang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Jules Biregeya
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuyun Ye
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
6
|
Takasaki T, Utsumi R, Shimada E, Tomimoto N, Satoh R, Sugiura R. Autophagy-related genes genetically interact with Pmk1 MAPK signaling in fission yeast. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000618. [PMID: 35996690 PMCID: PMC9391948 DOI: 10.17912/micropub.biology.000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Apart from the highly conserved role in the cellular degradation process, autophagy also appears to play a key role in cellular proliferation. Here, we describe the genetic interaction of autophagy-related genes and Pmk1 MAPK signaling in fission yeast. atg1 deletion cells (Δ atg1 ) exhibit the vic (viable in the presence of immunosuppressant and Cl - ) phenotype, indicative of Pmk1 signaling inhibition. Moreover, the Δ atg1 Δ pmk1 double mutant resembles the single Δ pmk1 mutant, suggesting that Atg1 functions in the Pmk1 pathway. In addition, the growth defect induced by overexpression of Pck2, an upstream activator of Pmk1 MAPK was alleviated by the deletion of atg1 + . Finally, the deletion of autophagy-related genes recapitulates Pmk1 MAPK signaling inhibition. Our data suggest a novel role for autophagy in MAPK signaling regulation.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Ryosuke Utsumi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Erika Shimada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Naofumi Tomimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
,
Correspondence to: Reiko Sugiura (
)
| |
Collapse
|
7
|
Varberg JM, Unruh JR, Bestul AJ, Khan AA, Jaspersen SL. Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe. Life Sci Alliance 2022; 5:e202201423. [PMID: 35354597 PMCID: PMC8967992 DOI: 10.26508/lsa.202201423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Azqa A Khan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Liu K, Liu Q, Sun Y, Fan J, Zhang Y, Sakamoto N, Kuno T, Fang Y. Phosphoinositide-Dependent Protein Kinases Regulate Cell Cycle Progression Through the SAD Kinase Cdr2 in Fission Yeast. Front Microbiol 2022; 12:807148. [PMID: 35082773 PMCID: PMC8784684 DOI: 10.3389/fmicb.2021.807148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Aberration in the control of cell cycle contributes to the development and progression of many diseases including cancers. Ksg1 is a Schizosaccharomyces pombe fission yeast homolog of mammalian phosphoinositide-dependent protein kinase 1 (PDK1) which is regarded as a signaling hub for human tumorigenesis. A previous study reported that Ksg1 plays an important role in cell cycle progression, however, the underlying mechanism remains elusive. Our genomic library screen for novel elements involved in Ksg1 function identified two serine/threonine kinases, namely SAD family kinase Cdr2 and another PDK1 homolog Ppk21, as multicopy suppressors of the thermosensitive phenotype of ksg1-208 mutant. We found that overexpression of Ppk21 or Cdr2 recovered the defective cell cycle transition of ksg1-208 mutant. In addition, ksg1-208 Δppk21 cells showed more marked defects in cell cycle transition than each single mutant. Moreover, overexpression of Ppk21 failed to recover the thermosensitive phenotype of the ksg1-208 mutant when Cdr2 was lacking. Notably, the ksg1-208 mutation resulted in abnormal subcellular localization and decreased abundance of Cdr2, and Ppk21 deletion exacerbated the decreased abundance of Cdr2 in the ksg1-208 mutant. Intriguingly, expression of a mitotic inducer Cdc25 was significantly decreased in ksg1-208, Δppk21, or Δcdr2 cells, and overexpression of Ppk21 or Cdr2 partially recovered the decreased protein level of Cdc25 in the ksg1-208 mutant. Altogether, our findings indicated that Cdr2 is a novel downstream effector of PDK1 homologs Ksg1 and Ppk21, both of which cooperatively participate in regulating cell cycle progression, and Cdc25 is involved in this process in fission yeast.
Collapse
Affiliation(s)
- Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yanli Sun
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jinwei Fan
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Cansado J, Soto T, Franco A, Vicente-Soler J, Madrid M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J Fungi (Basel) 2021; 8:jof8010032. [PMID: 35049972 PMCID: PMC8781887 DOI: 10.3390/jof8010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
The survival of eukaryotic organisms during environmental changes is largely dependent on the adaptive responses elicited by signal transduction cascades, including those regulated by the Mitogen-Activated Protein Kinase (MAPK) pathways. The Cell Integrity Pathway (CIP), one of the three MAPK pathways found in the simple eukaryote fission of yeast Schizosaccharomyces pombe, shows strong homology with mammalian Extracellular signal-Regulated Kinases (ERKs). Remarkably, studies over the last few decades have gradually positioned the CIP as a multi-faceted pathway that impacts multiple functional aspects of the fission yeast life cycle during unperturbed growth and in response to stress. They include the control of mRNA-stability through RNA binding proteins, regulation of calcium homeostasis, and modulation of cell wall integrity and cytokinesis. Moreover, distinct evidence has disclosed the existence of sophisticated interplay between the CIP and other environmentally regulated pathways, including Stress-Activated MAP Kinase signaling (SAPK) and the Target of Rapamycin (TOR). In this review we present a current overview of the organization and underlying regulatory mechanisms of the CIP in S. pombe, describe its most prominent functions, and discuss possible targets of and roles for this pathway. The evolutionary conservation of CIP signaling in the dimorphic fission yeast S. japonicus will also be addressed.
Collapse
|
10
|
Song M, Fang S, Li Z, Wang N, Li X, Liu W, Zhang Y, Lin C, Miao W. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense. Fungal Genet Biol 2021; 158:103649. [PMID: 34921997 DOI: 10.1016/j.fgb.2021.103649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
In phytopathogenic fungi, the HOG MAPK pathway has roles in osmoregulation, fungicide sensitivity, and other processes. The ATF1/CREB-activating transcription factor Atf1 is a regulator that functions downstream of the HOG MAPK pathway. Here, we identified a gene, designated CsAtf1, that encodes a bZIP transcription factor in Colletotrichum siamense, which is the main pathogen that causes Colletotrichum leaf fall disease in rubber trees in China. CsAtf1 localizes to the nucleus. Its mRNA expression correlates positively with that of CsPbs2 and CsHog1 in the HOG MAPK pathway in response to activator (anisomycin), inhibitor (SB203580) and fludioxonil treatments. The CsAtf1 deletion mutant showed slightly retarded mycelial growth, small conidia, slow spore germination, and abnormal appressorium formation. This mutant showed the increased spore germination rate after fludioxonil treatment and more resistance to the fungicide fludioxonil than did the wild-type fungus. However, unlike deletion of Pbs2 or Hog1, which resulted in greater sensitivity to osmotic stress, the CsAtf1 deletion induced slightly increased resistance to osmotic stress and the cell wall stress response. The ΔCsAtf1 strain also exhibited significantly reduced virulence on rubber tree leaves. These data revealed that CsAtf1 plays a key role in the regulation of fludioxonil sensitivity and in pathogenicity regulation in C. siamense.
Collapse
Affiliation(s)
- Miao Song
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Siqi Fang
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhigang Li
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Na Wang
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiao Li
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Wenbo Liu
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yu Zhang
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Roncero C, Celador R, Sánchez N, García P, Sánchez Y. The Role of the Cell Integrity Pathway in Septum Assembly in Yeast. J Fungi (Basel) 2021; 7:jof7090729. [PMID: 34575767 PMCID: PMC8471060 DOI: 10.3390/jof7090729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis, fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities in the assembly of the septa in both yeasts, there are significant mechanistic differences, including the relationship of this process with the cell integrity signalling pathways.
Collapse
|
12
|
Gómez-Gil E, Franco A, Vázquez-Marín B, Prieto-Ruiz F, Pérez-Díaz A, Vicente-Soler J, Madrid M, Soto T, Cansado J. Specific Functional Features of the Cell Integrity MAP Kinase Pathway in the Dimorphic Fission Yeast Schizosaccharomyces japonicus. J Fungi (Basel) 2021; 7:jof7060482. [PMID: 34198697 PMCID: PMC8232204 DOI: 10.3390/jof7060482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mitogen activated protein kinase (MAPK) signaling pathways execute essential functions in eukaryotic organisms by transducing extracellular stimuli into adaptive cellular responses. In the fission yeast model Schizosaccharomyces pombe the cell integrity pathway (CIP) and its core effector, MAPK Pmk1, play a key role during regulation of cell integrity, cytokinesis, and ionic homeostasis. Schizosaccharomyces japonicus, another fission yeast species, shows remarkable differences with respect to S. pombe, including a robust yeast to hyphae dimorphism in response to environmental changes. We show that the CIP MAPK module architecture and its upstream regulators, PKC orthologs Pck1 and Pck2, are conserved in both fission yeast species. However, some of S. pombe's CIP-related functions, such as cytokinetic control and response to glucose availability, are regulated differently in S. japonicus. Moreover, Pck1 and Pck2 antagonistically regulate S. japonicus hyphal differentiation through fine-tuning of Pmk1 activity. Chimeric MAPK-swapping experiments revealed that S. japonicus Pmk1 is fully functional in S. pombe, whereas S. pombe Pmk1 shows a limited ability to execute CIP functions and promote S. japonicus mycelial development. Our findings also suggest that a modified N-lobe domain secondary structure within S. japonicus Pmk1 has a major influence on the CIP signaling features of this evolutionarily diverged fission yeast.
Collapse
|
13
|
Stress granules safeguard against MAPK signaling hyperactivation by sequestering PKC/Pck2: new findings and perspectives. Curr Genet 2021; 67:857-863. [PMID: 34100129 DOI: 10.1007/s00294-021-01192-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 01/28/2023]
Abstract
Stress granule (SG) assembly is a conserved cellular strategy that copes with stress-related damage and promotes cell survival. SGs form through a process of liquid-liquid phase separation. Cellular signaling also appears to employ SG assembly as a mechanism for controlling cell survival and cell death by spatial compartmentalization of signal-transducing factors. While several lines of evidence highlight the importance of SGs as signaling hubs, where protein components of signaling pathways can be temporarily sequestered, shielded from the cytoplasm, the regulation and physiological significance of SGs in this aspect remain largely obscure. A recent study of the heat-shock response in the fission yeast Schizosaaccharomyces pombe provides an unexpected answer to this question. Recently, we demonstrated that the PKC orthologue Pck2 in fission yeast translocates into SGs through phase separation in a PKC kinase activity-dependent manner upon high-heat stress (HHS). Importantly, the downstream MAPK Pmk1 promotes Pck2 recruitment into SGs, which intercepts MAPK hyperactivation and cell death, thus posing SGs as a negative feedback circuit in controlling MAPK signaling. Intriguingly, HHS, but not modest-heat stress targets Pck2 to SGs, independent of canonical SG machinery. Finally, cells fail to activate MAPK signaling when Pck2 is sequestrated into SGs. In this review, we will discuss how SGs have a role as signaling hubs beyond serving as a repository for non-translated mRNAs during acute stress.
Collapse
|
14
|
Kanda Y, Satoh R, Takasaki T, Tomimoto N, Tsuchiya K, Tsai CA, Tanaka T, Kyomoto S, Hamada K, Fujiwara T, Sugiura R. Sequestration of the PKC ortholog Pck2 in stress granules as a feedback mechanism of MAPK signaling in fission yeast. J Cell Sci 2021; 134:224095. [PMID: 33277379 DOI: 10.1242/jcs.250191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Protein kinase C (PKC) signaling is a highly conserved signaling module that plays a central role in a myriad of physiological processes, ranging from cell proliferation to cell death, via various signaling pathways, including MAPK signaling. Stress granules (SGs) are non-membranous cytoplasmic foci that aggregate in cells exposed to environmental stresses. Here, we explored the role of SGs in PKC/MAPK signaling activation in fission yeast. High-heat stress (HHS) induced Pmk1 MAPK activation and Pck2 translocation from the cell tips into poly(A)-binding protein (Pabp)-positive SGs. Pck2 dispersal from the cell tips required Pck2 kinase activity, and constitutively active Pck2 exhibited increased translocation to SGs. Importantly, Pmk1 deletion impaired Pck2 recruitment to SGs, indicating that MAPK activation stimulates Pck2 SG translocation. Consistently, HHS-induced SGs delayed Pck2 relocalization at the cell tips, thereby blocking subsequent Pmk1 reactivation after recovery from HHS. HHS partitioned Pck2 into the Pabp-positive SG-containing fraction, which resulted in reduced Pck2 abundance and kinase activity in the soluble fraction. Taken together, these results indicate that MAPK-dependent Pck2 SG recruitment serves as a feedback mechanism to intercept PKC/MAPK activation induced by HHS, which might underlie PKC-related diseases.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Naofumi Tomimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Kiko Tsuchiya
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Chun An Tsai
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Taemi Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Shu Kyomoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Kozo Hamada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
15
|
Jiang G, Liu Q, Kato T, Miao H, Gao X, Liu K, Chen S, Sakamoto N, Kuno T, Fang Y. Role of mitochondrial complex III/IV in the activation of transcription factor Rst2 in Schizosaccharomyces pombe. Mol Microbiol 2021; 115:1323-1338. [PMID: 33400299 DOI: 10.1111/mmi.14678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China.,Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Edreira T, Celador R, Manjón E, Sánchez Y. A novel checkpoint pathway controls actomyosin ring constriction trigger in fission yeast. eLife 2020; 9:59333. [PMID: 33103994 PMCID: PMC7661037 DOI: 10.7554/elife.59333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the septation initiation network (SIN) ensures temporal coordination between actomyosin ring (CAR) constriction with membrane ingression and septum synthesis. However, questions remain about CAR regulation under stress conditions. We show that Rgf1p (Rho1p GEF), participates in a delay of cytokinesis under cell wall stress (blankophor, BP). BP did not interfere with CAR assembly or the rate of CAR constriction, but did delay the onset of constriction in the wild type cells but not in the rgf1Δ cells. This delay was also abolished in the absence of Pmk1p, the MAPK of the cell integrity pathway (CIP), leading to premature abscission and a multi-septated phenotype. Moreover, cytokinesis delay correlates with maintained SIN signaling and depends on the SIN to be achieved. Thus, we propose that the CIP participates in a checkpoint, capable of triggering a CAR constriction delay through the SIN pathway to ensure that cytokinesis terminates successfully.
Collapse
Affiliation(s)
- Tomás Edreira
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Rubén Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Elvira Manjón
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Yolanda Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
NADPH-Cytochrome P450 Reductase Ccr1 Is a Target of Tamoxifen and Participates in Its Antifungal Activity via Regulating Cell Wall Integrity in Fission Yeast. Antimicrob Agents Chemother 2020; 64:AAC.00079-20. [PMID: 32571823 DOI: 10.1128/aac.00079-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Invasive fungal diseases are a leading cause of mortality among immunocompromised populations. Treatment is notoriously difficult due to the limited number of antifungal drugs as well as the emergence of drug resistance. Tamoxifen (TAM), a selective estrogen receptor modulator frequently used for the treatment of breast cancer, has been found to have antifungal activities and may be a useful addition to the agents used to treat fungal infectious diseases. However, the molecular mechanisms underlying its antifungal actions remain obscure. Here, we screened for mutations that confer sensitivity to azole antifungal drugs by using the fission yeast Schizosaccharomyces pombe as a model and isolated a mutant with a mutation in cls1 (ccr1), an allele of the gene encoding the NADPH-cytochrome P450 reductase Ccr1. We found that strains with a deletion of the ccr1 + gene exhibited hypersensitivities to various drugs, including antifungal drugs (azoles, terbinafine, micafungin), the immunosuppressor FK506, and the anticancer drugs TAM and 5-fluorouracil (5-FU). Unexpectedly, the overexpression of Ccr1 caused yeast cell resistance to TAM but not the other drugs tested here. Additionally, strains with a deletion of Ccr1 displayed pleiotropic phenotypes, including defects in cell wall integrity and vacuole fusion, enhanced calcineurin activity, as well as increased intracellular Ca2+ levels. Overexpression of the constitutively active calcineurin suppressed the drug-sensitive phenotypes of the Δccr1 cells. Notably, TAM treatment of wild-type cells resulted in pleiotropic phenotypes, similar to those of cells lacking Ccr1. Furthermore, TAM inhibited Ccr1 NADPH-cytochrome P450 reductase activities in a dose-dependent manner. Moreover, TAM treatment also inhibited the NADPH-cytochrome P450 reductase activities of Candida albicans and resulted in defective cell wall integrity. Collectively, our findings suggest that Ccr1 is a novel target of TAM and is involved in the antifungal activity of TAM by regulating cell wall integrity in fission yeast.
Collapse
|
18
|
Kampmeyer C, Johansen JV, Holmberg C, Karlson M, Gersing SK, Bordallo HN, Kragelund BB, Lerche MH, Jourdain I, Winther JR, Hartmann-Petersen R. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth Biol 2020; 9:733-748. [PMID: 32142608 DOI: 10.1021/acssynbio.9b00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jens V. Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Christian Holmberg
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Magnus Karlson
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Sarah K. Gersing
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mathilde H. Lerche
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jakob R. Winther
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
19
|
Miao H, Liu Q, Jiang G, Zhang W, Liu K, Gao X, Huo Y, Chen S, Kato T, Sakamoto N, Kuno T, Fang Y. AMPKα Subunit Ssp2 and Glycogen Synthase Kinases Gsk3/Gsk31 are involved in regulation of sterol regulatory element-binding protein (SREBP) activity in fission yeast. PLoS One 2020; 15:e0228845. [PMID: 32053662 PMCID: PMC7018046 DOI: 10.1371/journal.pone.0228845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP), a highly conserved family of membrane-bound transcription factors, is an essential regulator for cellular cholesterol and lipid homeostasis in mammalian cells. Sre1, the homolog of SREBP in the fission yeast Schizosaccharomyces pombe (S. pombe), regulates genes involved in the transcriptional responses to low sterol as well as low oxygen. Previous study reported that casein kinase 1 family member Hhp2 phosphorylated the Sre1 N-terminal transcriptional factor domain (Sre1N) and accelerated Sre1N degradation, and other kinases might exist for regulating the Sre1 function. To gain insight into the mechanisms underlying the Sre1 activity and to identify additional kinases involved in regulation of Sre1 function, we developed a luciferase reporter system to monitor the Sre1 activity through its binding site called SRE2 in living yeast cells. Here we showed that both ergosterol biosynthesis inhibitors and hypoxia-mimic CoCl2 caused a dose-dependent increase in the Sre1 transcription activity, concurrently, these induced transcription activities were almost abolished in Δsre1 cells. Surprisingly, either AMPKα Subunit Ssp2 deletion or Glycogen Synthase Kinases Gsk3/Gsk31 double deletion significantly suppressed ergosterol biosynthesis inhibitors- or CoCl2-induced Sre1 activity. Notably, the Δssp2Δgsk3Δgsk31 mutant showed further decreased Sre1 activity when compared with their single or double deletion. Consistently, the Δssp2Δgsk3Δgsk31 mutant showed more marked temperature sensitivity than any of their single or double deletion. Moreover, the fluorescence of GFP-Sre1N localized at the nucleus in wild-type cells, but significantly weaker nuclear fluorescence of GFP-Sre1N was observed in Δssp2, Δgsk3Δgsk31, Δssp2Δgsk3, Δssp2Δgsk31 or Δssp2Δgsk3Δgsk31 cells. On the other hand, the immunoblot showed a dramatic decrease in GST-Sre1N levels in the Δgsk3Δgsk31 or the Δssp2Δgsk3Δgsk31 cells but not in the Δssp2 cells. Altogether, our findings suggest that Gsk3/Gsk31 may regulate Sre1N degradation, while Ssp2 may regulate not only the degradation of Sre1N but also its translocation to the nucleus.
Collapse
Affiliation(s)
- Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Wen Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yujie Huo
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- * E-mail:
| |
Collapse
|
20
|
Hercyk B, Das M. Rho Family GTPases in Fission Yeast Cytokinesis. Commun Integr Biol 2019; 12:171-180. [PMID: 31666919 PMCID: PMC6802929 DOI: 10.1080/19420889.2019.1678453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
During cytokinesis, actomyosin ring constriction drives furrow formation. In animal cells, Rho GTPases drive this process through the positioning and assembly of the actomyosin ring, and through extracellular matrix remodeling within the furrow. In the fission yeast S. pombe, actomyosin ring constriction and septum formation are concurrent processes. While S. pombe is the primary source from which the mechanics of ring assembly and constriction stem, much less is known about the regulation of Rho GTPases that control these processes. Of the six Rho GTPases encoded in S. pombe, only Rho1, the RhoA homologue, has been shown to be essential for cytokinesis. While Rho3, Rho4, and Cdc42 have defined roles in cytokinesis, Rho2 and Rho5 play minor to no roles in this process. Here we review the roles of the Rho GTPases during cytokinesis, with a focus on their regulation, and discuss whether crosstalk between GTPases, as has been reported in other organisms, exists during cytokinesis in S. pombe.
Collapse
Affiliation(s)
- Brian Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Maitreyi Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
21
|
Imai Y, Shimasaki T, Enokimura C, Ohtsuka H, Tsubouchi S, Ihara K, Aiba H. gas1 mutation extends chronological lifespan via Pmk1 and Sty1 MAPKs in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2019; 84:330-337. [PMID: 31601154 DOI: 10.1080/09168451.2019.1676695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the longevity research by using yeasts, chronological lifespan is defined as the survival time after entry into stationary phase. Previously, screening for long lived mutants of Schizosaccharomyces pombe was performed to identify the novel factors involved in longevity. From this screening, one long lived mutant called as No.36 was obtained. In this study, we identified the mutation caused in gas1+, which encodes glucanosyltransferase (gas1-287 mutation) is responsible for the longevity of No.36 mutant. Through the analysis of this mutant, we found that cell wall perturbing agent micafungin also extends chronological lifespan in fission yeast. This lifespan extension depended on both Pmk1 and Sty1 MAP kinases, and longevity caused by the gas1-287 mutation also depended on these kinases. In summary, we propose that the gas1-287 mutation causes longevity as the similar mechanism as cell wall stress depending on Pmk1 and Sty1 MAPK pathways.
Collapse
Affiliation(s)
- Yuki Imai
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Chihiro Enokimura
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Satoshi Tsubouchi
- Laboratory of Molecular Microbiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
22
|
Sugiura R. [Fission Yeast as a Model System for Studying Cancer Signaling and Drug Discovery: Discovery of ACA-28 as a Novel Inducer of ERK-dependent Apoptosis Reveals a New Cancer Therapy]. YAKUGAKU ZASSHI 2019; 139:753-758. [PMID: 31061345 DOI: 10.1248/yakushi.18-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are evolutionarily conserved kinase modules that link extracellular signals to the machinery that controls fundamental cellular processes such as growth, proliferation, differentiation, and apoptosis. The Ras/Raf/MEK/ERK MAPK pathway is one of the most studied of the mammalian MAPK pathways and has attracted intense research interest because of its critical involvement in the regulation of cell proliferation. The mutational activation of upstream signaling components that constitutively activate ERK MAPKs as seen in various primary tumor samples has validated this pathway for drug discovery. The fission yeast Schizosaccharomyces pombe is an important tool for cancer research. This well-studied model organism has enabled groundbreaking, Nobel Prize-winning discoveries and has provided insights into how both normal and cancerous cells grow and divide. We performed chemical genetic screening using a fission yeast phenotypic assay and demonstrated that ACA-28, a synthetic derivative of 1'-acetoxychavicol acetate (ACA), effectively inhibited the growth of melanoma cancer cells wherein ERK MAPK signaling is hyperactivated due to mutations in the upstream activating regulators. Importantly, the growth of normal human epidermal melanocytes was less affected by ACA-28. In addition, ACA-28 specifically induced apoptosis in NIH/3T3 cells oncogenically transformed with HER2/ErbB2 but not in the parental cells. Notably, the ACA-28-induced apoptosis was abrogated when ERK activation was blocked with the specific MEK inhibitor U0126. Consistently, ACA-28 more strongly stimulated ERK phosphorylation in melanoma cells as compared with normal human epidermal melanocytes. ACA-28 might serve as a promising seed compound to combat ERK-dependent cancers by stimulating oncogenic signaling.
Collapse
Affiliation(s)
- Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
23
|
Dysfunction of Prohibitin 2 Results in Reduced Susceptibility to Multiple Antifungal Drugs via Activation of the Oxidative Stress-Responsive Transcription Factor Pap1 in Fission Yeast. Antimicrob Agents Chemother 2018; 62:AAC.00860-18. [PMID: 30181366 DOI: 10.1128/aac.00860-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2 + gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2 + gene also exhibited antifungal drug resistance. Overexpression of the phb2 + gene failed to cause drug resistance when the pap1 + gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2 + gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2 + gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.
Collapse
|
24
|
Pérez P, Cortés JC, Cansado J, Ribas JC. Fission yeast cell wall biosynthesis and cell integrity signalling. ACTA ACUST UNITED AC 2018; 4:1-9. [PMID: 32743131 PMCID: PMC7388972 DOI: 10.1016/j.tcsw.2018.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 02/02/2023]
Abstract
The cell wall is a structure external to the plasma membrane that is essential for the survival of the fungi. This polysaccharidic structure confers resistance to the cell internal turgor pressure and protection against mechanical injury. The fungal wall is also responsible for the shape of these organisms due to different structural polysaccharides, such as β-(1,3)-glucan, which form fibers and confer rigidity to the cell wall. These polysaccharides are not present in animal cells and therefore they constitute excellent targets for antifungal chemotherapies. Cell wall damage leads to the activation of MAPK signaling pathways, which respond to the damage by activating the repair of the wall and the maintenance of the cell integrity. Fission yeast Schizosaccharomyces pombe is a model organism for the study morphogenesis, cell wall, and how different inputs might regulate this structure. We present here a short overview of the fission yeast wall composition and provide information about the main biosynthetic activities that assemble this cell wall. Additionally, we comment the recent advances in the knowledge of the cell wall functions and discuss the role of the cell integrity MAPK signaling pathway in the regulation of fission yeast wall.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
- Corresponding author.
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Yang Y, Liu Q, Jiang G, Chen S, Zhou L, Sakamoto N, Kuno T, Fang Y, Yao F. Genome-wide screen reveals important roles for ESCRT proteins in drug/ion resistance of fission yeast. PLoS One 2018; 13:e0198516. [PMID: 29856841 PMCID: PMC5983419 DOI: 10.1371/journal.pone.0198516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
To study sodium homeostasis, we performed a genome-wide screen for deletion strains that show resistance to NaCl. We identified 34 NaCl-resistant strains. Among them, the largest group that consists of 10 genes related to membrane trafficking and 7 out of 10 genes are ESCRT proteins which are involved in cargo transportation into luminal vesicles within the multivesicular body. All of the ESCRT related mutants which showed sodium resistance also showed defects in vacuole fusion. To further understand the role of the ESCRT pathway in various ion homeostasis, we examined sensitivity of these ESCRT mutants to various cation salts other than NaCl, including KCl, LiCl, CaCl2, CoCl2, MgCl2, NiSO4 and MnCl2. While these ESCRT mutants showed resistance to LiCl, CoCl2 and MgCl2, they showed sensitivity to KCl, CaCl2, NiSO4 and MnCl2. Then we examined sensitivity of these ESCRT mutants to various drugs which are known to inhibit the growth of fission yeast cells. While these ESCRT mutants were more or equally sensitive to most of the drugs tested as compared to the wild-type cells, they showed resistance to some drugs such as tamoxifen, fluorouracil and amiodarone. These results suggest that the ESCRT pathway plays important roles in drug/ion resistance of fission yeast.
Collapse
Affiliation(s)
- Yikun Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Lina Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling. Curr Genet 2017; 64:103-108. [PMID: 28799069 DOI: 10.1007/s00294-017-0732-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023]
Abstract
In eukaryotic cells, RNA binding proteins (RBPs) play critical roles in regulating almost every aspect of gene expression, often shuttling between the nucleus and the cytoplasm. They are also key determinants in cell fate via controlling the target mRNAs under the regulation of various signaling pathways in response to environmental stresses. Therefore, understanding the mechanisms that couple the location of mRNA and RBPs is a major challenge in the field of gene expression and signal responses. In fission yeast, a KH-type RBP Rnc1 negatively regulates MAPK signaling activation via mRNA stabilization of the dual-specificity MAPK phosphatase Pmp1, which dephosphorylates MAPK Pmk1. Rnc1 also serves as a target of MAPK phosphorylation, which makes a feedback loop mediated by an RBP. We recently discovered that the nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. This strongly suggested the presence of an mRNA-export system, which recognizes the mRNA/RBP complex and dictates the location and post-transcriptional regulation of mRNA cargo. Here, we briefly review the known mechanisms of general nuclear transporting systems, with an emphasis on our recent findings on the spatial regulation of Rnc1 and its impact on the regulation of the MAPK signal transduction cascade.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
27
|
Madrid M, Vázquez-Marín B, Soto T, Franco A, Gómez-Gil E, Vicente-Soler J, Gacto M, Pérez P, Cansado J. Differential functional regulation of protein kinase C (PKC) orthologs in fission yeast. J Biol Chem 2017; 292:11374-11387. [PMID: 28536259 DOI: 10.1074/jbc.m117.786087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The two PKC orthologs Pck1 and Pck2 in the fission yeast Schizosaccharomyces pombe operate in a redundant fashion to control essential functions, including morphogenesis and cell wall biosynthesis, as well as the activity of the cell integrity pathway and its core element, the MAPK Pmk1. We show here that, despite the strong structural similarity and functional redundancy of these two enzymes, the mechanisms regulating their maturation, activation, and stabilization have a remarkably distinct biological impact on both kinases. We found that, in contrast to Pck2, putative in vivo phosphorylation of Pck1 within the conserved activation loop, turn, and hydrophobic motifs is essential for Pck1 stability and biological functions. Constitutive Pck activation promoted dephosphorylation and destabilization of Pck2, whereas it enhanced Pck1 levels to interfere with proper downstream signaling to the cell integrity pathway via Pck2. Importantly, although catalytic activity was essential for Pck1 function, Pck2 remained partially functional independent of its catalytic activity. Our findings suggest that early divergence from a common ancestor in fission yeast involved important changes in the mechanisms regulating catalytic activation and stability of PKC family members to allow for flexible and dynamic control of downstream functions, including MAPK signaling.
Collapse
Affiliation(s)
- Marisa Madrid
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Beatriz Vázquez-Marín
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Teresa Soto
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Alejandro Franco
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Elisa Gómez-Gil
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Jero Vicente-Soler
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Mariano Gacto
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Pilar Pérez
- the Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Cansado
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| |
Collapse
|
28
|
Schutt KL, Moseley JB. Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 2017; 28:1804-1814. [PMID: 28515144 PMCID: PMC5491188 DOI: 10.1091/mbc.e17-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Transient activation of the cellular energy sensor AMPK during osmotic stress requires its energy-sensing subunit. Cellular ATP levels decrease during osmotic stress, which triggers energy stress, which in turn requires dynamic activation of AMPK. The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
29
|
Satoh R, Hagihara K, Matsuura K, Manse Y, Kita A, Kunoh T, Masuko T, Moriyama M, Moriyama H, Tanabe G, Muraoka O, Sugiura R. Identification of ACA-28, a 1′-acetoxychavicol acetate analogue compound, as a novel modulator of ERK MAPK signaling, which preferentially kills human melanoma cells. Genes Cells 2017; 22:608-618. [DOI: 10.1111/gtc.12499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Kazuki Matsuura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yoshiaki Manse
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
- Laboratory of Organic Chemistry, Department of Pharmacy; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Tatsuki Kunoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Takashi Masuko
- Cell Biology Laboratory, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Mariko Moriyama
- Pharmaceutical Research and Technology Institute; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Osamu Muraoka
- Laboratory of Organic Chemistry, Department of Pharmacy; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences; Kindai University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| |
Collapse
|
30
|
Satoh R, Matsumura Y, Tanaka A, Takada M, Ito Y, Hagihara K, Inari M, Kita A, Fukao A, Fujiwara T, Hirai S, Tani T, Sugiura R. Spatial regulation of the KH domain RNA-binding protein Rnc1 mediated by a Crm1-independent nuclear export system in Schizosaccharomyces pombe. Mol Microbiol 2017; 104:428-448. [PMID: 28142187 DOI: 10.1111/mmi.13636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional regulation of gene expression, including mRNA stability, transport and translation. Fission yeast rnc1+ encodes a K Homology (KH)-type RBP, which binds and stabilizes the Pmp1 MAPK phosphatase mRNA thereby suppressing the Cl- hypersensitivity of calcineurin deletion and MAPK signaling mutants. Here, we analyzed the spatial regulation of Rnc1 and discovered a putative nuclear export signal (NES)Rnc1 , which dictates the cytoplasmic localization of Rnc1 in a Crm1-independent manner. Notably, mutations in the NESRnc1 altered nucleocytoplasmic distribution of Rnc1 and abolished its function to suppress calcineurin deletion, although the Rnc1 NES mutant maintains the ability to bind Pmp1 mRNA. Intriguingly, the Rnc1 NES mutant destabilized Pmp1 mRNA, suggesting the functional importance of the Rnc1 cytoplasmic localization. Mutation in Rae1, but not Mex67 deletion or overproduction, induced Rnc1 accumulation in the nucleus, suggesting that Rnc1 is exported from the nucleus to the cytoplasm via the mRNA export pathway involving Rae1. Importantly, mutations in the Rnc1 KH-domains abolished the mRNA-binding ability and induced nuclear localization, suggesting that Rnc1 may be exported from the nucleus together with its target mRNAs. Collectively, the functional Rae1-dependent mRNA export system may influence the cytoplasmic localization and function of Rnc1.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yasuhiro Matsumura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akitomo Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Makoto Takada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yuna Ito
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Masahiro Inari
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Shinya Hirai
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Tokio Tani
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| |
Collapse
|
31
|
Abstract
Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.
Collapse
Affiliation(s)
- Manos A Papadakis
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | - Christopher T Workman
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| |
Collapse
|
32
|
MA YAN, KATO TOSHIAKI, FURUYASHIKI TOMOYUKI. Genetic Interactions among AMPK Catalytic Subunit Ssp2 and Glycogen Synthase Kinases Gsk3 and Gsk31 in Schizosaccharomyces Pombe. THE KOBE JOURNAL OF MEDICAL SCIENCES 2016; 62:E70-E78. [PMID: 27604537 PMCID: PMC5425143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
In Schizosaccharomyces pombe, Ssp2, an ortholog of AMP-activated protein kinase (AMPK), is critical for cell growth at restrictive temperatures and under glucose depletion as well as sexual differentiation under nitrogen depletion. To identify genes genetically related to Ssp2, we performed a genetic screening to search for the genes whose overexpression rescued the growth defects in Δssp2 cells at restrictive temperatures, and identified 35 cosmids as multicopy suppressor genes. In Southern blot analyses, 22 out of these cosmids were hybridized to an ssp2+ probe. Using nucleotide sequencing, we identified the gsk3+ gene in one of the cosmids, and the remaining 12 cosmids were hybridized to a gsk3+ probe. Overexpression of the gsk3+ gene or the gsk31+ gene, another GSK3 member, rescues defective growth of Δssp2 cells at restrictive temperatures and under glucose depletion as well as sexual differentiation under nitrogen depletion. Δgsk3Δgsk31 double knockout cells, but neither Δgsk3 nor Δgsk31 single knockout cells, phenocopy Δssp2 cells. The deletion of the gsk3+ or gsk31+ gene augments the phenotypes of Δssp2 cells. These findings suggest that Gsk3 and Gsk31 are critical and interact with Ssp2 in multiple cellular functions.
Collapse
Affiliation(s)
- YAN MA
- Correspondence author: Phone: +81-78-382-5441, Fax: +81-78-382-5459, E-mail:
| | | | | |
Collapse
|
33
|
Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L, Poon J, Rimmer SR, Khachatourians GG, Hegedus DD. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Can J Microbiol 2016; 62:836-850. [PMID: 27503454 DOI: 10.1139/cjm-2016-0091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a central role in transferring signals and regulating gene expression in response to extracellular stimuli. An ortholog of the Saccharomyces cerevisiae cell wall integrity MAPK was identified in the phytopathogenic fungus Sclerotinia sclerotiorum. Disruption of the S. sclerotiorum Smk3 gene severely reduced virulence on intact host plant leaves but not on leaves stripped of cuticle wax. This was attributed to alterations in hyphal apical dominance leading to the inability to aggregate and form infection cushions. The mutation also caused loss of the ability to produce sclerotia, increased aerial hyphae formation, and altered hyphal hydrophobicity and cell wall integrity. Mutants had slower radial expansion rates on solid media but more tolerance to elevated temperatures. Loss of the SMK3 cell wall integrity MAPK appears to have impaired the ability of S. sclerotiorum to sense its surrounding environment, leading to misregulation of a variety of functions. Many of the phenotypes were similar to those observed in S. sclerotiorum adenylate cyclase and SMK1 MAPK mutants, suggesting that these signaling pathways co-regulate aspects of fungal growth, physiology, and pathogenicity.
Collapse
Affiliation(s)
- Zafer Dallal Bashi
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.,b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sanjaya Gyawali
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Diana Bekkaoui
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Cathy Coutu
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Leora Lee
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Jenny Poon
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - S Roger Rimmer
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - George G Khachatourians
- b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Dwayne D Hegedus
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.,b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
34
|
Hu L, Yao F, Ma Y, Liu Q, Chen S, Hayafuji T, Kuno T, Fang Y. Genetic evidence for involvement of membrane trafficking in the action of 5-fluorouracil. Fungal Genet Biol 2016; 93:17-24. [PMID: 27255861 DOI: 10.1016/j.fgb.2016.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
To identify novel genes that mediate cellular sensitivity and resistance to 5-fluorouracil (5-FU), we performed a genome-wide genetic screening to identify altered susceptibility to 5-FU by Schizosaccharomyces pombe haploid nonessential gene deletion library containing 3004 deletion mutants. We identified 50 hypersensitive and 12 resistant mutants to this drug. Mutants sensitive or resistant to 5-FU were classified into various categories based on their putative functions. The largest group of the genes whose disruption renders cells altered susceptibility to 5-FU is involved in nucleic acid metabolism, but to our surprise, the second largest group is involved in membrane trafficking. In addition, several other membrane traffic mutants examined including gdi1-i11, ypt3-i5, Δryh1, Δric1, and Δaps1 exhibited hypersensitivity to 5-FU. Furthermore, we found that 5-FU in low concentration that generally do not affect cell growth altered the localization of Syb1, a secretory vesicle SNARE synaptobrevin which is cycled between the plasma membrane and the endocytic pathway. Notably, 5-FU at such low concentration also significantly inhibited the secretion of acid phosphatase. Altogether, our findings revealed the first evidence that 5-FU influences membrane trafficking as the potential underlying mechanism of the drug action.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Tsutomu Hayafuji
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China.
| |
Collapse
|
35
|
Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS One 2016; 11:e0156239. [PMID: 27227887 PMCID: PMC4881991 DOI: 10.1371/journal.pone.0156239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the loss of Lam2 (SPBC1778.05c), a homolog of a Ragulator component LAMTOR2, as well as the loss of Gtr1 or Gtr2 phenocopies the loss of Npr2 or Npr3, homologs of GATOR components Nprl2 or Nprl3, respectively. These phenotypes were rescued by TORC1 inhibition using pharmacological or genetic means, and the loss of Lam2, Gtr1, Gtr2, Npr2 or Npr3 disinhibited TORC1 activity under nitrogen depletion, as measured by Rps6 phosphorylation. Consistently, overexpression of GDP-locked Gtr1S20L or GTP-locked Gtr2Q60L, which suppress TORC1 activity in budding yeast, rescued the growth defect of Δgtr1 cells or Δgtr2 cells, respectively, and the loss of Lam2, Npr2 or Npr3 similarly diminished the vacuolar localization and the protein levels of Gtr1 and Gtr2. Furthermore, Lam2 physically interacted with Npr2 and Gtr1. These findings suggest that Lam2 and Npr2-Npr3 function together as a tether for GDP-bound Gtr1 to the vacuolar membrane, thereby suppressing TORC1 activity for multiple cellular functions.
Collapse
Affiliation(s)
- Ning Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yan Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
- * E-mail:
| | | | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
36
|
Nguyen TTT, Lim YJ, Fan MHM, Jackson RA, Lim KK, Ang WH, Ban KHK, Chen ES. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells. Genes Cells 2016; 21:226-40. [DOI: 10.1111/gtc.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/29/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Thi Thuy Trang Nguyen
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Ying Jun Lim
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Melanie Hui Min Fan
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Rebecca A. Jackson
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Kim Kiat Lim
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Wee Han Ang
- Department of Chemistry; Faculty of Science; National University of Singapore; Singapore
| | - Kenneth Hon Kim Ban
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Ee Sin Chen
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
- NUS Graduate School of Science & Engineering; National University of Singapore; Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; Singapore
| |
Collapse
|
37
|
Kanda Y, Satoh R, Matsumoto S, Ikeda C, Inutsuka N, Hagihara K, Matzno S, Tsujimoto S, Kita A, Sugiura R. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of Mkh1 MAPKKK. J Cell Sci 2016; 129:3189-202. [DOI: 10.1242/jcs.188854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The MAPK cascade is a highly conserved signaling module composed of MAPK/MAPKK/MAPKKK. MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast. Our genetic screen for regulators of Pmk1 signaling identified Skb5 (Shk1 kinase binding protein 5), an SH3 domain-containing adaptor protein. Here, we showed that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips via its interaction with the SH3 domain. Consistently, the Mkh13PA mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as Mkh1/Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Altogether, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1 and Skb5 spatially regulates this process.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Saki Matsumoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Chisato Ikeda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Natsumi Inutsuka
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Sumio Matzno
- Division of Pharmaceutical Education, Faculty of Pharmacy, Kinki University, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| |
Collapse
|
38
|
Ma Y, Ma N, Liu Q, Qi Y, Manabe RI, Furuyashiki T. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast. PLoS One 2015; 10:e0144677. [PMID: 26689777 PMCID: PMC4686964 DOI: 10.1371/journal.pone.0144677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 01/17/2023] Open
Abstract
In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability.
Collapse
Affiliation(s)
- Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| | - Ning Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Qingbin Liu
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yao Qi
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ri-ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
39
|
Liu Q, Ma Y, Zhou X, Furuyashiki T. Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast. PLoS One 2015; 10:e0139045. [PMID: 26447710 PMCID: PMC4598100 DOI: 10.1371/journal.pone.0139045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
Amino acid transporters are located at specific subcellular compartments, and their localizations are regulated by the extracellular availability of amino acids. In yeast, target of rapamycin (TOR) activation induces the internalization of amino acid transporters located at the plasma membrane. However, whether and how TOR signaling regulates other amino acid transporters located at intracellular compartments remains unknown. Here, we demonstrate that in the fission yeast, the TOR inhibitor Torin-1 induces the transfer of several yellow fluorescent protein (YFP)-fused intracellular amino acid transporters, including Agp3, Isp5, Aat1, and Put4, from trans-Golgi/endosomes into the vacuoles. By contrast, the localizations of YFP-fused Can1, Fnx1, and Fnx2 transporter proteins were unaffected upon Torin-1 treatment. There are two TOR isoforms in fission yeast, Tor1 and Tor2. Whereas tor1 deletion did not affect the Torin-1-induced transfer of Agp3-YFP, Tor2 inhibition using a temperature-sensitive mutant induced the transfer of Agp3-YFP to the vacuolar lumen, similar to the effects of Torin-1 treatment. Tor2 inhibition also induced the transfer of the YFP-fused Isp5, Aat1, and Put4 transporter proteins to the vacuoles, although only partial transfer of the latter two transporters was observed. Under nitrogen depletion accompanied by reduced Tor2 activity, Agp3-YFP was transferred from the trans-Golgi/endosomes to the plasma membrane and then to the vacuoles, where it was degraded by the vacuolar proteases Isp6 and Psp3. Mutants with constitutively active Tor2 showed delayed transfer of Agp3-YFP to the plasma membrane upon nitrogen depletion. Cells lacking Tsc2, a negative regulator of Tor2, also showed a delay in this process in a Tor2-dependent manner. Taken together, these findings suggest that constitutive Tor2 activity is critical for the retention of amino acid transporters at trans-Golgi/endosomes. Moreover, nitrogen depletion suppresses Tor2 activity through Tsc2, thereby promoting the surface expression of these transporters.
Collapse
Affiliation(s)
- Qingbin Liu
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| | - Xin Zhou
- Department of Oncology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
40
|
Vázquez B, Soto T, del Dedo JE, Franco A, Vicente J, Hidalgo E, Gacto M, Cansado J, Madrid M. Distinct biological activity of threonine monophosphorylated MAPK isoforms during the stress response in fission yeast. Cell Signal 2015; 27:2534-42. [PMID: 26432170 DOI: 10.1016/j.cellsig.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) define a specific group of eukaryotic protein kinases which regulate a number of cellular functions by transducing extracellular signals to intracellular responses. Unlike other protein kinases, catalytic activation of MAPKs by MAPKKs depends on dual phosphorylation at two tyrosine and threonine residues within the conserved TXY motif, and this has been proposed to occur in an ordered fashion, where the initial phosphorylation on tyrosine is followed by phosphorylation at the threonine residue. However, monophosphorylated MAPKs also exist in vivo, and although threonine phosphorylated isoforms retain some catalytic activity, their functional significance remains to be further elucidated. In the fission yeast Schizosaccharomyces pombe MAPKs Sty1 and Pmk1 control multiple aspects of fission yeast life cycle, including morphogenesis, cell cycle, and cellular response to a variety of stressful situations. In this work we show that a trapping mechanism increases MAPKK binding and tyrosine phosphorylation of both Sty1 and Pmk1 when subsequent phosphorylation at threonine is hampered, indicating that a sequential and likely processive mechanism might be responsible for MAPK activation in this simple organism. Whereas threonine-monophosphorylated Sty1 showed a limited biological activity particularly at the transcriptional level, threonine-monophosphorylated Pmk1 was able to execute most of the biological functions of the dually phosphorylated kinase. Thus, threonine monophosphorylated MAPKs might display distinct functional relevance among eukaryotes.
Collapse
Affiliation(s)
- Beatriz Vázquez
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Javier Encinar del Dedo
- Oxidative Stress and Cell Cycle Research Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Jero Vicente
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Research Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain.
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain.
| |
Collapse
|
41
|
Mechanics and morphogenesis of fission yeast cells. Curr Opin Microbiol 2015; 28:36-45. [PMID: 26291501 DOI: 10.1016/j.mib.2015.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.
Collapse
|
42
|
Doi A, Kita A, Kanda Y, Uno T, Asami K, Satoh R, Nakano K, Sugiura R. Geranylgeranyltransferase Cwg2-Rho4/Rho5 module is implicated in the Pmk1 MAP kinase-mediated cell wall integrity pathway in fission yeast. Genes Cells 2015; 20:310-23. [DOI: 10.1111/gtc.12222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Akira Doi
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
- Japan Society for the Promotion of Science; 1-8 Chiyoda-ku Tokyo 102-8472 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yuki Kanda
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Takaya Uno
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Keita Asami
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Kentaro Nakano
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| |
Collapse
|
43
|
Kita A, Higa M, Doi A, Satoh R, Sugiura R. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast. Biochem Biophys Res Commun 2015; 457:273-9. [PMID: 25580011 DOI: 10.1016/j.bbrc.2014.12.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Abstract
Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2(+) gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity.
Collapse
Affiliation(s)
- Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Mari Higa
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Akira Doi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
44
|
Higa M, Kita A, Hagihara K, Kitai Y, Doi A, Nagasoko R, Satoh R, Sugiura R. Spatial control of calcineurin in response to heat shock in fission yeast. Genes Cells 2014; 20:95-107. [DOI: 10.1111/gtc.12203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mari Higa
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yuki Kitai
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Akira Doi
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Rie Nagasoko
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
45
|
Rho2 palmitoylation is required for plasma membrane localization and proper signaling to the fission yeast cell integrity mitogen- activated protein kinase pathway. Mol Cell Biol 2014; 34:2745-59. [PMID: 24820419 DOI: 10.1128/mcb.01515-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade.
Collapse
|
46
|
Hasan A, Cotobal C, Duncan CDS, Mata J. Systematic analysis of the role of RNA-binding proteins in the regulation of RNA stability. PLoS Genet 2014; 10:e1004684. [PMID: 25375137 PMCID: PMC4222612 DOI: 10.1371/journal.pgen.1004684] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023] Open
Abstract
mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.
Collapse
Affiliation(s)
- Ayesha Hasan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Caia D. S. Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Hagihara K, Mizukura A, Kitai Y, Yao M, Ishida K, Kita A, Kunoh T, Masuko T, Matzno S, Chiba K, Sugiura R. FTY720 stimulated ROS generation and the Sty1/Atf1 signaling pathway in the fission yeast Schizosaccharomyces pombe. Genes Cells 2014; 19:325-37. [PMID: 24506481 DOI: 10.1111/gtc.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
Fingolimod hydrochloride (FTY720) is the first-in-class immune modulator known as sphingosine 1-phosphate (S1P) receptor agonists. FTY720 has also been reported to exert a variety of physiological functions such as antitumor effect, angiogenesis inhibition, and Ca2+ mobilization. Here, we show that FTY720 treatment induced reactive oxygen species (ROS) accumulation, and investigated the effect of FTY720 on the stress-activated MAP kinase Spc1/Sty1, a functional homologue of p38 MAPK, using a Renilla luciferase reporter construct fused to the CRE, which gives an accurate measure of the transcriptional activity of Atf1 and thus serves as a faithful readout of the Spc1/Sty1 MAPK signaling in response to oxidative stresses. FTY720 stimulated the CRE responses in a concentration-dependent manner, which was markedly reduced by deletion of the components of the Spc1/Sty1 MAPK pathway. The blockade of ROS production by NAC (N-acetyl-L-cysteine) significantly reversed the FTY720-induced ROS accumulation, subsequent activation of the Spc1/Sty1 MAPK pathway, and inhibition of cell proliferation. Cells lacking the components of the Spc1/Sty1 MAPK exhibited higher sensitivity to FTY720 and higher ROS levels upon FTY720 treatment than in wild-type cells. Thus, our results demonstrate the usefulness of fission yeast for elucidating the FTY720-mediated signaling pathways involving ROS.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo, 102-8472, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sánchez-Mir L, Soto T, Franco A, Madrid M, Viana RA, Vicente J, Gacto M, Pérez P, Cansado J. Rho1 GTPase and PKC ortholog Pck1 are upstream activators of the cell integrity MAPK pathway in fission yeast. PLoS One 2014; 9:e88020. [PMID: 24498240 PMCID: PMC3909290 DOI: 10.1371/journal.pone.0088020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Raúl A. Viana
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Jero Vicente
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
49
|
Sacristán-Reviriego A, Madrid M, Cansado J, Martín H, Molina M. A conserved non-canonical docking mechanism regulates the binding of dual specificity phosphatases to cell integrity mitogen-activated protein kinases (MAPKs) in budding and fission yeasts. PLoS One 2014; 9:e85390. [PMID: 24465549 PMCID: PMC3898958 DOI: 10.1371/journal.pone.0085390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/03/2013] [Indexed: 11/26/2022] Open
Abstract
Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi.
Collapse
Affiliation(s)
- Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
- * E-mail:
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| |
Collapse
|
50
|
E3 ubiquitin ligase Pub1 is implicated in endocytosis of a GPI-anchored protein Ecm33 in fission yeast. PLoS One 2014; 9:e85238. [PMID: 24454826 PMCID: PMC3891804 DOI: 10.1371/journal.pone.0085238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/30/2013] [Indexed: 12/03/2022] Open
Abstract
We previously identified three glycosylphosphatidylinositol (GPI)-anchored proteins including Ecm33, as multicopy suppressors of the phenotypes of a mutant allele of cis4+ that encodes a zinc transporter in fission yeast. Here, we further identified two multicopy suppressor genes, ubi1+ and ubc4+, encoding ubiquitin-ribosomal fusion protein and ubiquitin conjugating enzyme E2, respectively. In addition, Ubi1 or Ubc4 overexpression failed to suppress the phenotypes of the double deletion of cis4+ and pub1+ gene, which encodes a HECT-type ubiquitin ligase E3. During exponential phase GFP-Ecm33 localized at the growing cell tips of the cell surface and the medial region in wild-type cells. Notably, during the post-exponential and stationary phase, GFP-Ecm33 in wild-type cells was internalized and mostly localized to the Golgi/endosomes, but it was still stably localized at the cell surface in Δpub1 cells. The Δpub1 cells showed osomoremedial phenotypes to various drugs indicating their defects in cell wall integrity. Altogether, our findings reveal a novel role for Pub1 in endocytosis of Ecm33 and regulation of cell wall integrity in fission yeast.
Collapse
|