1
|
Fakieh RA, Reiner DJ. RAP-2 and CNH-MAP4 Kinase MIG-15 confer resistance in bystander epithelium to cell-fate transformation by excess Ras or Notch activity. Proc Natl Acad Sci U S A 2025; 122:e2414321121. [PMID: 39739816 DOI: 10.1073/pnas.2414321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 01/02/2025] Open
Abstract
Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in Caenorhabditis elegans to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva. Conversely, 3˚ cells are relatively quiescent and nonspecialized; they divide once and fuse with the surrounding epithelium. 3˚ cells have thus been characterized as passive, uninduced, or ground state. Based on our previous studies, we hypothesized that a 3˚-promoting program would confer resistance to cell fate-transformation by inappropriately activated 1˚ and 2˚ fate-promoting LET-60/Ras and LIN-12/Notch, respectively. Deficient MIG-15/CNH-MAP4 Kinase meets the expectations of genetic interactions for a 3˚-promoting protein. Moreover, endogenous MIG-15 is required for expression of a fluorescent biomarker of 3˚ cell fate, is expressed in VPCs, and functions cell autonomously in VPCs. The Ras family small GTPase RAP-2, orthologs of which activate orthologs of MIG-15 in other systems, emulates these functions of MIG-15. However, gain of RAP-2 function has no effect on patterning, suggesting its activity is constitutive in VPCs. The 3˚ biomarker is expressed independently of the AC, raising questions about the cellular origin of 3˚-promoting activity. Activated LET-60/Ras and LIN-12/Notch repress expression of the 3˚ biomarker, suggesting that the 3˚-promoting program is both antagonized by as well as antagonizes 1˚- and 2˚- promoting programs. This study provides insight into developmental properties of cells historically considered to be nonresponding to growth factor signals.
Collapse
Affiliation(s)
- Razan A Fakieh
- Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam 34212, Kingdom of Saudi Arabia
| | - David J Reiner
- Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030
| |
Collapse
|
2
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3
|
Corchado-Sonera M, Rambani K, Navarro K, Kladney R, Dowdle J, Leone G, Chamberlin HM. Discovery of nonautonomous modulators of activated Ras. G3 GENES|GENOMES|GENETICS 2022; 12:6656354. [PMID: 35929788 PMCID: PMC9526067 DOI: 10.1093/g3journal/jkac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.
Collapse
Affiliation(s)
| | - Komal Rambani
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, Ohio State University , Columbus, OH 43210, USA
| | - Kristen Navarro
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Raleigh Kladney
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - James Dowdle
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Gustavo Leone
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| |
Collapse
|
4
|
Abstract
Ras is the most mutated oncoprotein in cancer. Among the three oncogenic effectors of Ras - Raf, PI3 Kinase and RalGEF>Ral - signalling through RalGEF>Ral (Ras-like) is by far the least well understood. A variety of signals and binding partners have been defined for Ral, yet we know little of how Ral functions in vivo. This review focuses on previous research in Drosophila that defined a function for Ral in apoptosis and established indirect relationships among Ral, the CNH-domain MAP4 Kinase misshapen, and the JNK MAP kinase basket. Most of the described signalling components are not essential in C. elegans, facilitating subsequent analysis using developmental patterning of the C. elegans vulval precursor cells (VPCs). The functions of two paralogous CNH-domain MAP4 Kinases were defined relative to Ras>Raf, Notch and Ras>RalGEF>Ral signalling in VPCs. MIG-15, the nematode ortholog of misshapen, antagonizes both the Ral-dependent and Ras>Raf-dependent developmental outcomes. In contrast, paralogous GCK-2, the C. elegans ortholog of Drosophila happyhour, propagates the 2°-promoting signal of Ral. Manipulations via CRISPR of Ral signalling through GCK-2 coupled with genetic epistasis delineated a Ras>RalGEF>Ral>Exo84>GCK-2>MAP3KMLK-1> p38PMK-1 cascade. Thus, genetic analysis using invertebrate experimental organisms defined a cascade from Ras to p38 MAP kinase.
Collapse
Affiliation(s)
| | - David J. Reiner
- Texas A&M University, Houston, TX, USA,CONTACT David J. Reiner Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX
| |
Collapse
|
5
|
Crook M, Hanna-Rose W. Overactive EGF signaling suppresses a C. elegans pnc-1 egg-laying phenotype independent of known signaling mediators. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34723146 PMCID: PMC8553428 DOI: 10.17912/micropub.biology.000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Nicotinamide recycling is critical to the development and function of Caenorhabditis elegans. Excess nicotinamide in a pnc-1 nicotinamidase mutant causes the necrosis of uv1 and OLQ cells and a highly penetrant egg laying defect. An EGF receptor (let-23) gain-of-function mutation suppresses the Egl phenotype in pnc-1 animals. However, gain-of-function mutations in either of the known downstream mediators, let-60/ Ras or itr-1, are not sufficient. Phosphatidylcholine synthesis is neither required nor sufficient, in contrast to its role in the let-23gf rescue of uv1 necrosis. The mechanism behind the let-23gf suppression of the pnc-1 Egl phenotype is unknown.
Collapse
|
6
|
Rasmussen NR, Reiner DJ. Nuclear translocation of the tagged endogenous MAPK MPK-1 denotes a subset of activation events in C. elegans development. J Cell Sci 2021; 134:272044. [PMID: 34341823 PMCID: PMC8445601 DOI: 10.1242/jcs.258456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are mitogen-activated protein kinases (MAPKs) that are utilized downstream of Ras to Raf to MEK signaling to control activation of a wide array of targets. Activation of ERKs is elevated in Ras-driven tumors and RASopathies, and thus is a target for pharmacological inhibition. Regulatory mechanisms of ERK activation have been studied extensively in vitro and in cultured cells, but little in living animals. In this study, we tagged the Caenorhabditis elegans ERK-encoding gene, mpk-1. MPK-1 is ubiquitously expressed with elevated expression in certain contexts. We detected cytosol-to-nuclear translocation of MPK-1 in maturing oocytes and hence validated nuclear translocation as a reporter of some activation events. During patterning of vulval precursor cells (VPCs), MPK-1 is necessary and sufficient for the central cell, P6.p, to assume the primary fate. Yet MPK-1 translocates to the nuclei of all six VPCs in a temporal and concentration gradient centered on P6.p. This observation contrasts with previous results using the ERK nuclear kinase translocation reporter of substrate activation, raising questions about mechanisms and indicators of MPK-1 activation. This system and reagent promise to provide critical insights into the regulation of MPK-1 activation within a complex intercellular signaling network. Summary: Tagged endogenous C. elegans MPK-1 shows activation-dependent cytosol-to-nuclear translocation. This tool provides novel insights into MPK-1 localization compared with other markers of in vivo ERK activation.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| |
Collapse
|
7
|
Duong T, Rasmussen NR, Reiner DJ. Insulated Switches: Dual-Function Protein RalGEF RGL-1 Promotes Developmental Fidelity. Int J Mol Sci 2020; 21:ijms21207610. [PMID: 33076222 PMCID: PMC7588897 DOI: 10.3390/ijms21207610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
The C. elegans vulva is an excellent model for the study of developmental biology and cell–cell signaling. The developmental induction of vulval precursor cells (VPCs) to assume the 3°-3°-2°-1°-2°-3° patterning of cell fates occurs with 99.8% accuracy. During C. elegans vulval development, an EGF signal from the anchor cell initiates the activation of RasLET-60 > RafLIN-45 > MEKMEK-2 > ERKMPK-1 signaling cascade to induce the 1° cell. The presumptive 1° cell signals its two neighboring cells via NotchLIN-12 to develop 2° cells. In addition, RasLET-60 switches effectors to RalGEFRGL-1 > RalRAL-1 to promote 2° fate. Shin et al. (2019) showed that RalGEFRGL-1 is a dual-function protein in VPCs fate patterning. RalGEFRGL-1 functions as a scaffold for PDKPDK-1 > AktAKT-1/2 modulatory signaling to promote 1° fate in addition to propagating the RasLET-60 modulatory signal through RalRAL-1 to promote 2° fate. The deletion of RalGEFRGL-1 increases the frequency of VPC patterning errors 15-fold compared to the wild-type control. We speculate that RalGEFRGL-1 represents an “insulated switch”, whereby the promotion of one signaling activity curtails the promotion of the opposing activity. This property might increase the impact of the switch on fidelity more than two separately encoded proteins could. Understanding how developmental fidelity is controlled will help us to better understand the origins of cancer and birth defects, which occur in part due to the misspecification of cell fates.
Collapse
Affiliation(s)
- Tam Duong
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA; (T.D.); (N.R.R.)
- Department of Translational Medical Science, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Neal R. Rasmussen
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA; (T.D.); (N.R.R.)
- Department of Translational Medical Science, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - David J. Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA; (T.D.); (N.R.R.)
- Department of Translational Medical Science, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
8
|
Mereu L, Morf MK, Spiri S, Gutierrez P, Escobar-Restrepo JM, Daube M, Walser M, Hajnal A. Polarized epidermal growth factor secretion ensures robust vulval cell fate specification in Caenorhabditis elegans. Development 2020; 147:dev175760. [PMID: 32439759 PMCID: PMC7286359 DOI: 10.1242/dev.175760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
The anchor cell (AC) in C. elegans secretes an epidermal growth factor (EGF) homolog that induces adjacent vulval precursor cells (VPCs) to differentiate. The EGF receptor in the nearest VPC sequesters the limiting EGF amounts released by the AC to prevent EGF from spreading to distal VPCs. Here, we show that not only EGFR localization in the VPCs but also EGF polarity in the AC is necessary for robust fate specification. The AC secretes EGF in a directional manner towards the nearest VPC. Loss of AC polarity causes signal spreading and, when combined with MAPK pathway hyperactivation, the ectopic induction of distal VPCs. In a screen for genes preventing distal VPC induction, we identified sra-9 and nlp-26 as genes specifically required for polarized EGF secretion. sra-9(lf) and nlp-26(lf) mutants exhibit errors in vulval fate specification, reduced precision in VPC to AC alignment and increased variability in MAPK activation. sra-9 encodes a seven-pass transmembrane receptor acting in the AC and nlp-26 a neuropeptide-like protein expressed in the VPCs. SRA-9 and NLP-26 may transduce a feedback signal to channel EGF secretion towards the nearest VPC.
Collapse
Affiliation(s)
- Louisa Mereu
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Matthias K Morf
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Peter Gutierrez
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Molecular Life Science PhD Program, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | - Juan M Escobar-Restrepo
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Daube
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Walser
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
9
|
Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 2019; 30:1-16.e13. [PMID: 31839447 DOI: 10.1016/j.cub.2019.10.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022]
Abstract
Sleep requires sleep-active neurons that depolarize to inhibit wake circuits. Sleep-active neurons are under the control of homeostatic mechanisms that determine sleep need. However, little is known about the molecular and circuit mechanisms that translate sleep need into the depolarization of sleep-active neurons. During many stages and conditions in C. elegans, sleep requires a sleep-active neuron called RIS. Here, we defined the transcriptome of RIS and discovered that genes of the epidermal growth factor receptor (EGFR) signaling pathway are expressed in RIS. Because of cellular stress, EGFR directly activates RIS. Activation of EGFR signaling in the ALA neuron has previously been suggested to promote sleep independently of RIS. Unexpectedly, we found that ALA activation promotes RIS depolarization. Our results suggest that ALA is a drowsiness neuron with two separable functions: (1) it inhibits specific behaviors, such as feeding, independently of RIS, (2) and it activates RIS. Whereas ALA plays a strong role in surviving cellular stress, surprisingly, RIS does not. In summary, EGFR signaling can depolarize RIS by an indirect mechanism through activation of the ALA neuron that acts upstream of the sleep-active RIS neuron and through a direct mechanism using EGFR signaling in RIS. ALA-dependent drowsiness, rather than RIS-dependent sleep bouts, appears to be important for increasing survival after cellular stress, suggesting that different types of behavioral inhibition play different roles in restoring health. VIDEO ABSTRACT.
Collapse
|
10
|
Webb Chasser AM, Johnson RW, Chamberlin HM. EGL-38/Pax coordinates development in the Caenhorhabditis elegans egg-laying system through EGF pathway dependent and independent functions. Mech Dev 2019; 159:103566. [PMID: 31398431 PMCID: PMC6855382 DOI: 10.1016/j.mod.2019.103566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
Paired box (Pax) proteins function as regulators of coordinated development in organogenesis by controlling factors such as cell growth and differentiation necessary to organize multiple cell types into a single, cohesive organ. Previous work has suggested that Pax transcription factors may regulate diverse cell types through participation in inductive cell-to-cell signaling, which has not been well explored. Here we show that EGL-38, a Pax2/5/8 ortholog, coordinates differentiation of the C. elegans egg-laying system through separate autonomous and non-autonomous functions synchronized by the EGF pathway. We find that EGL-38 protein is expressed at the correct times to both participate in and respond to the EGF pathway specifying uterine ventral (uv1) cell fate, and that EGL-38 is required for uv1 expression of nlp-2 and nlp-7, which are both markers of and participants in uv1 identity. Additionally, we have separated uv1 cell placement and gene expression as distinct hallmarks of uv1 identity and specification, with different dependencies on EGL-38. The parallels between EGL-38 participation in cell signaling events and previous Pax studies argue that coordination of signaling and response to an inductive pathway may be a common feature of Pax protein function.
Collapse
Affiliation(s)
- Allison M Webb Chasser
- Department of Molecular Genetics, United States of America; Ohio State Biochemistry Graduate Program, United States of America
| | - Ryan W Johnson
- Department of Molecular Genetics, United States of America
| | | |
Collapse
|
11
|
Shin H, Braendle C, Monahan KB, Kaplan REW, Zand TP, Mote FS, Peters EC, Reiner DJ. Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. PLoS Genet 2019; 15:e1008056. [PMID: 31086367 PMCID: PMC6534338 DOI: 10.1371/journal.pgen.1008056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/24/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The six C. elegans vulval precursor cells (VPCs) are induced to form the 3°-3°-2°-1°-2°-3° pattern of cell fates with high fidelity. In response to EGF signal, the LET-60/Ras-LIN-45/Raf-MEK-2/MEK-MPK-1/ERK canonical MAP kinase cascade is necessary to induce 1° fate and synthesis of DSL ligands for the lateral Notch signal. In turn, LIN-12/Notch receptor is necessary to induce neighboring cells to become 2°. We previously showed that, in response to graded EGF signal, the modulatory LET-60/Ras-RGL-1/RalGEF-RAL-1/Ral signal promotes 2° fate in support of LIN-12. In this study, we identify two key differences between RGL-1 and RAL-1. First, deletion of RGL-1 confers no overt developmental defects, while previous studies showed RAL-1 to be essential for viability and fertility. From this observation, we hypothesize that the essential functions of RAL-1 are independent of upstream activation. Second, RGL-1 plays opposing and genetically separable roles in VPC fate patterning. RGL-1 promotes 2° fate via canonical GEF-dependent activation of RAL-1. Conversely, RGL-1 promotes 1° fate via a non-canonical GEF-independent activity. Our genetic epistasis experiments are consistent with RGL-1 functioning in the modulatory 1°-promoting AGE-1/PI3-Kinase-PDK-1-AKT-1 cascade. Additionally, animals lacking RGL-1 experience 15-fold higher rates of VPC patterning errors compared to the wild type. Yet VPC patterning in RGL-1 deletion mutants is not more sensitive to environmental perturbations. We propose that RGL-1 functions to orchestrate opposing 1°- and 2°-promoting modulatory cascades to decrease developmental stochasticity. We speculate that such switches are broadly conserved but mostly masked by paralog redundancy or essential functions. Developmental signals are increasingly conceptualized in the context of networks rather than linear pathways. Patterning of C. elegans vulval fates is mostly governed by two major signaling cascades that operate antagonistically to induce two cell identities. An additional pair of minor cascades support each of the major cascades. All components in this system are conserved in mammalian oncogenic signaling networks. We find that RGL-1, a component of one of the minor cascades, performs two antagonistic functions. Its deletion appears to abolish both opposing modulatory signals, resulting in a 15-fold increase in the basal error rate in development of these cells. We hypothesize that the bifunctional RGL-1 protein defines a novel mechanism by which signaling networks are interwoven to mitigate developmental errors.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | | | - Kimberly B Monahan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Rebecca E W Kaplan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Tanya P Zand
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Francisca Sefakor Mote
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | - Eldon C Peters
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
12
|
Mirth CK, Shingleton AW. Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes? Front Cell Dev Biol 2019; 7:8. [PMID: 30788342 PMCID: PMC6372504 DOI: 10.3389/fcell.2019.00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023] Open
Abstract
Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning - the process that generates distinct cell identities - remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Rasmussen NR, Dickinson DJ, Reiner DJ. Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in Caenorhabditiselegans. Genetics 2018; 210:1339-1354. [PMID: 30257933 PMCID: PMC6283165 DOI: 10.1534/genetics.118.301601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/15/2018] [Indexed: 12/15/2022] Open
Abstract
The notoriety of the small GTPase Ras as the most mutated oncoprotein has led to a well-characterized signaling network largely conserved across metazoans. Yet the role of its close relative Rap1 (Ras Proximal), which shares 100% identity between their core effector binding sequences, remains unclear. A long-standing controversy in the field is whether Rap1 also functions to activate the canonical Ras effector, the S/T kinase Raf. We used the developmentally simpler Caenorhabditis elegans, which lacks the extensive paralog redundancy of vertebrates, to examine the role of RAP-1 in two distinct LET-60/Ras-dependent cell fate patterning events: induction of 1° vulval precursor cell (VPC) fate and of the excretory duct cell. Fluorescence-tagged endogenous RAP-1 is localized to plasma membranes and is expressed ubiquitously, with even expression levels across the VPCs. RAP-1 and its activating GEF PXF-1 function cell autonomously and are necessary for maximal induction of 1° VPCs. Critically, mutationally activated endogenous RAP-1 is sufficient both to induce ectopic 1°s and duplicate excretory duct cells. Like endogenous RAP-1, before induction GFP expression from the pxf-1 promoter is uniform across VPCs. However, unlike endogenous RAP-1, after induction GFP expression is increased in presumptive 1°s and decreased in presumptive 2°s. We conclude that RAP-1 is a positive regulator that promotes Ras-dependent inductive fate decisions. We hypothesize that PXF-1 activation of RAP-1 serves as a minor parallel input into the major LET-60/Ras signal through LIN-45/Raf.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78705
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030
| |
Collapse
|
15
|
Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Cell Rep 2018; 24:2669-2681.e5. [PMID: 30184501 PMCID: PMC6484852 DOI: 10.1016/j.celrep.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
C. elegans vulval precursor cell (VPC) fates are patterned by an epidermal growth factor (EGF) gradient. High-dose EGF induces 1° VPC fate, and lower dose EGF contributes to 2° fate in support of LIN-12/Notch. We previously showed that the EGF 2°-promoting signal is mediated by LET-60/Ras switching effectors, from the canonical Raf-MEK-ERK mitogen-activated protein (MAP) kinase cascade that promotes 1° fate to the non-canonical RalGEF-Ral that promotes 2° fate. Of oncogenic Ras effectors, RalGEF-Ral is by far the least well understood. We use genetic analysis to identify an effector cascade downstream of C. elegans RAL-1/Ral, starting with an established Ral binding partner, Exo84 of the exocyst complex. Additionally, RAL-1 signals through GCK-2, a citron-N-terminal-homology-domain-containing MAP4 kinase, and PMK-1/p38 MAP kinase cascade to promote 2° fate. Our study delineates a Ral-dependent developmental signaling cascade in vivo, thus providing the mechanism by which lower EGF dose is transduced.
Collapse
Affiliation(s)
- Hanna Shin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Rebecca E W Kaplan
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Razan Fakieh
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans. PLoS One 2018; 13:e0194451. [PMID: 29547664 PMCID: PMC5856429 DOI: 10.1371/journal.pone.0194451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
P5B ATPases are present in the genomes of diverse unicellular and multicellular eukaryotes, indicating that they have an ancient origin, and that they are important for cellular fitness. Inactivation of ATP13A2, one of the four human P5B ATPases, leads to early-onset Parkinson's disease (Kufor-Rakeb Syndrome). The presence of an invariant PPALP motif within the putative substrate interaction pocket of transmembrane segment M4 suggests that all P5B ATPases might have similar transport specificity; however, the identity of the transport substrate(s) remains unknown. Nematodes of the genus Caenorhabditis possess three paralogous P5B ATPase genes, catp-5, catp-6 and catp-7, which probably originated from a single ancestral gene around the time of origin of the Caenorhabditid clade. By using CRISPR/Cas9, we have systematically investigated the expression patterns, subcellular localization and biological functions of each of the P5B ATPases of C. elegans. We find that each gene has a unique expression pattern, and that some tissues express more than one P5B. In some tissues where their expression patterns overlap, different P5Bs are targeted to different subcellular compartments (e.g., early endosomes vs. plasma membrane), whereas in other tissues they localize to the same compartment (plasma membrane). We observed lysosomal co-localization between CATP-6::GFP and LMP-1::RFP in transgenic animals; however, this was an artifact of the tagged LMP-1 protein, since anti-LMP-1 antibody staining of native protein revealed that LMP-1 and CATP-6::GFP occupy different compartments. The nematode P5Bs are at least partially redundant, since we observed synthetic sterility in catp-5(0); catp-6(0) and catp-6(0) catp-7(0) double mutants. The double mutants exhibit defects in distal tip cell migration that resemble those of ina-1 (alpha integrin ortholog) and vab-3 (Pax6 ortholog) mutants, suggesting that the nematode P5Bs are required for ina-1and/or vab-3 function. This is potentially a conserved regulatory interaction, since mammalian ATP13A2, alpha integrin and Pax6 are all required for proper dopaminergic neuron function.
Collapse
|
17
|
A novel, somatic, transforming mutation in the extracellular domain of Epidermal Growth Factor Receptor identified in myeloproliferative neoplasm. Sci Rep 2017; 7:2467. [PMID: 28550306 PMCID: PMC5446393 DOI: 10.1038/s41598-017-02655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
We describe a novel ERBB1/EGFR somatic mutation (p. C329R; c.985 T > C) identified in a patient with JAK2V617F Polycythaemia Vera (PV). This substitution affects a conserved cysteine residue in EGFR domain 2 and leads to the formation of a ligand-independent covalent receptor dimer, associated with increased transforming potential. Aberrant signalling from the EGFRC329R receptor is cell type-dependent and in the TF1.8 erythroid cell line expression of this mutant suppresses EPO-induced differentiation. Clonal analysis shows that the dominant JAK2V617F-positive clone in this PV patient harbors EGFRC329R, thus this mutation may contribute to clonal expansion. Somatic mutations affecting other ERBB and related receptor tyrosine kinases are observed in myeloproliferative neoplasms (MPN), and we show elevated EGFR levels in MPN samples, consistent with previous reports. Thus activation of this group of receptors, via multiple mechanisms, may contribute to clonal growth and survival of the JAK2V617F disease clone in MPN.
Collapse
|
18
|
Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis. G3-GENES GENOMES GENETICS 2016; 6:3533-3540. [PMID: 27605519 PMCID: PMC5100852 DOI: 10.1534/g3.116.034850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.
Collapse
|
19
|
Flibotte S, Kim BR, Van de Laar E, Brown L, Moghal N. The SWI/SNF chromatin remodeling complex exerts both negative and positive control over LET-23/EGFR-dependent vulval induction in Caenorhabditis elegans. Dev Biol 2016; 415:46-63. [PMID: 27207389 DOI: 10.1016/j.ydbio.2016.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022]
Abstract
Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.
Collapse
Affiliation(s)
- Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | - Bo Ram Kim
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Emily Van de Laar
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | - Louise Brown
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | - Nadeem Moghal
- Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| |
Collapse
|
20
|
Schmid T, Snoek LB, Fröhli E, van der Bent ML, Kammenga J, Hajnal A. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA. PLoS Genet 2015; 11:e1005236. [PMID: 25978500 PMCID: PMC4433219 DOI: 10.1371/journal.pgen.1005236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.
Collapse
Affiliation(s)
- Tobias Schmid
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
- PhD Program in Molecular Life Sciences, University and ETH Zurich, Zurich, Switzerland
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Erika Fröhli
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | | | - Jan Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Alex Hajnal
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
21
|
Reiner DJ. Ras effector switching as a developmental strategy. Small GTPases 2014; 2:109-112. [PMID: 21776412 DOI: 10.4161/sgtp.2.2.15775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/28/2022] Open
Abstract
Organisms pattern and specify cell fates with remarkably high fidelity and robustness, and cancer may be considered in part to be a disease of fate specification gone awry. During C. elegans vulval development an initial EGF signal prompts Ras to activate its canonical effector pathway, Raf-MEK-ERK, to induce a primary cell, which subsequently signals its 2 neighbors via Notch to develop as secondary cells. We have shown that Ras signaling through an alternate effector pathway, RalGEF-Ral, antagonizes Ras-Raf pro-primary signaling. Ras-RalGEF-Ral instead promotes secondary fate in support of Notch. We validated a previous model that EGF can also contribute to secondary fate, and argue that Ras-RalGEF-Ral mediates this EGF pro-secondary activity. Ras-Raf-MEK-ERK signaling was previously shown to be extinguished from secondary cells by secondary-specific expression of MAP kinase phosphatase, and we found that Ral expression is transcriptionally restricted to secondary cells. Thus during vulval development Ras switches effectors from Raf to RalGEF to promote divergent and mutually antagonistic cell fates, perhaps mirroring divergent effector usage in Ras-dependent tumors with differential pharmacological responsiveness.
Collapse
Affiliation(s)
- David J Reiner
- Department of Pharmacology and Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
22
|
Sun CY, Young GH, Hsieh YT, Chen YH, Wu MS, Wu VC, Lee JH, Lee CC. Protein-bound uremic toxins induce tissue remodeling by targeting the EGF receptor. J Am Soc Nephrol 2014; 26:281-90. [PMID: 25012179 DOI: 10.1681/asn.2014010021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Indoxyl sulfate and p-cresol sulfate have been suggested to induce kidney tissue remodeling. This study aimed to clarify the molecular mechanisms underlying this tissue remodeling using cultured human proximal renal tubular cells and half-nephrectomized mice treated with indoxyl sulfate or p-cresol sulfate as study models. Molecular docking results suggested that indoxyl sulfate and p-cresol sulfate dock on a putative interdomain pocket of the extracellular EGF receptor. In vitro spectrophotometric analysis revealed that the presence of a synthetic EGF receptor peptide significantly decreased the spectrophotometric absorption of indoxyl sulfate and p-cresol sulfate. In cultured cells, indoxyl sulfate and p-cresol sulfate activated the EGF receptor and downstream signaling by enhancing receptor dimerization, and increased expression of matrix metalloproteinases 2 and 9 in an EGF receptor-dependent manner. Treatment of mice with indoxyl sulfate or p-cresol sulfate significantly activated the renal EGF receptor and increased the tubulointerstitial expression of matrix metalloproteinases 2 and 9. In conclusion, indoxyl sulfate and p-cresol sulfate may induce kidney tissue remodeling through direct binding and activation of the renal EGF receptor.
Collapse
Affiliation(s)
- Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | - Yu-Ting Hsieh
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan; and
| | - Vin-Cent Wu
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Hung Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans. Dev Biol 2014; 392:266-82. [PMID: 24882710 DOI: 10.1016/j.ydbio.2014.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
Abstract
Chromatin regulators contribute to the developmental control of gene expression. In the nematode Caenorhabditis elegans, the roles of chromatin regulation in development have been explored in several contexts, including vulval differentiation. The synthetic multivulva (synMuv) genes are regulators of vulval development in C. elegans and the proteins encoded by these genes include components of several histone modification and chromatin remodelling complexes. By inhibiting ectopic expression of the epidermal growth factor (LIN-3) in the nematode hypodermis, the synMuv genes prevent inappropriate vulval induction. In a forward genetic screen for modifiers of the expression of a hypodermal reporter gene, we identified a mutation that results in increased expression of the reporter. This mutation also suppresses ectopic vulval induction in synMuv mutants and we have consequently named the affected gene suppressor of synthetic multivulva-1 (sumv-1). We show that SUMV-1 is required in the hypodermis for the synMuv phenotype and that loss of sumv-1 function suppresses ectopic expression of lin-3 in synMuv mutant animals. In yeast two-hybrid assays SUMV-1 physically interacts with SUMV-2, and reduction of sumv-2 function also suppresses the synMuv phenotype. We identified similarities between SUMV-1 and SUMV-2 and mammalian proteins KAT8 NSL2 and KAT8 NSL3, respectively, which are components of the KAT8/MOF histone acetyltransferase complex. Reduction of function of mys-2, which encodes the enzymatic component of the KAT8/MOF complex, also suppresses the synMuv phenotype, and MYS-2 physically interacts with SUMV-2 in yeast two-hybrid assays. Together these observations suggest that SUMV-1 and SUMV-2 may function together with MYS-2 in a nematode KAT8/MOF-like complex to antagonise the activity of the synMuv genes.
Collapse
|
24
|
Weinstein N, Mendoza L. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front Genet 2013; 4:112. [PMID: 23785384 PMCID: PMC3682179 DOI: 10.3389/fgene.2013.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 01/21/2023] Open
Abstract
The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, México
| |
Collapse
|
25
|
Rongo C. Epidermal growth factor and aging: a signaling molecule reveals a new eye opening function. Aging (Albany NY) 2012; 3:896-905. [PMID: 21931179 PMCID: PMC3227454 DOI: 10.18632/aging.100384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epidermal Growth Factor (EGF) is known for its role in promoting cell division and cellular differentiation in developing animals, but we know surprising little about what EGF does in vivo in mature adult animals. Here I review EGF signaling, emphasizing several recent studies that uncovered an unexpected role for EGF in promoting longevity and healthspan in mature adult C. elegans. EGF, acting through phospholipase Cγ and the IP3 receptor signaling, maintains pharyngeal and body wall muscle function in aging adults, and delays the accumulation of lipofuscin-enriched aging pigments within intestinal cells. EGF also acts through the Ras/ERK pathway to regulate protein homeostasis by promoting the expression of antioxidant genes, stimulating the activity of the Ubiquitin Proteasome System (UPS), and repressing the expression of small heat shock protein chaperones. The effects of EGF signaling on lifespan are largely independent of Insulin/IGF-like Signaling (IIS), as the effects of EGF signaling mutants on lifespan and heathspan are not affected by mutations in the DAF-2 insulin receptor or the DAF-16 FOXO transcription factor. Nevertheless, these two signal pathways have multiple points of overlap, coordination, and cross regulation. I propose that the IIS and EGF signaling pathways respond to environment and to developmental timing, respectively, so as to coordinate the appropriate physiological strategy that cells use to maintain protein homeostasis.
Collapse
Affiliation(s)
- Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
26
|
Saffer AM, Kim DH, van Oudenaarden A, Horvitz HR. The Caenorhabditis elegans synthetic multivulva genes prevent ras pathway activation by tightly repressing global ectopic expression of lin-3 EGF. PLoS Genet 2011; 7:e1002418. [PMID: 22242000 PMCID: PMC3248470 DOI: 10.1371/journal.pgen.1002418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022] Open
Abstract
The Caenorhabditis elegans class A and B synthetic multivulva (synMuv) genes redundantly antagonize an EGF/Ras pathway to prevent ectopic vulval induction. We identify a class A synMuv mutation in the promoter of the lin-3 EGF gene, establishing that lin-3 is the key biological target of the class A synMuv genes in vulval development and that the repressive activities of the class A and B synMuv pathways are integrated at the level of lin-3 expression. Using FISH with single mRNA molecule resolution, we find that lin-3 EGF expression is tightly restricted to only a few tissues in wild-type animals, including the germline. In synMuv double mutants, lin-3 EGF is ectopically expressed at low levels throughout the animal. Our findings reveal that the widespread ectopic expression of a growth factor mRNA at concentrations much lower than that in the normal domain of expression can abnormally activate the Ras pathway and alter cell fates. These results suggest hypotheses for the mechanistic basis of the functional redundancy between the tumor-suppressor-like class A and B synMuv genes: the class A synMuv genes either directly or indirectly specifically repress ectopic lin-3 expression; while the class B synMuv genes might function similarly, but alternatively might act to repress lin-3 as a consequence of their role in preventing cells from adopting a germline-like fate. Analogous genes in mammals might function as tumor suppressors by preventing broad ectopic expression of EGF-like ligands. Extracellular signals that drive cells to divide must be carefully restricted so that only the correct cells receive those signals. Failure to properly control the expression of signaling molecules can lead to aberrant development and cancer. Studies of vulval development in the nematode Caenorhabditis elegans have helped define various multi-step signaling pathways involved in cancer. Here we report that two groups of proteins that control the EGF/Ras/MAP kinase pathway of vulval development act by tightly repressing the spatial expression of the gene lin-3, which encodes an EGF-like signaling molecule. Using a technique that detects single mRNA molecules, we show that inactivation of these proteins causes a low ectopic expression of lin-3 in many cells. In response, the EGF/Ras/MAP kinase pathway is activated in cells normally not exposed to the lin-3 signal, and vulval development is abnormal. This process is analogous to the cancerous growth that occurs in humans when mutations cause both tumor cells and the microenvironment surrounding the tumor cells to ectopically express factors that drive cellular proliferation. We propose that mammalian genes analogous to those that repress lin-3 expression in C. elegans vulval development act as tumor suppressors by preventing broad ectopic expression of EGF-like ligands.
Collapse
Affiliation(s)
- Adam M. Saffer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dong Hyun Kim
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexander van Oudenaarden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - H. Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Liu G, Rogers J, Murphy CT, Rongo C. EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J 2011; 30:2990-3003. [PMID: 21673654 PMCID: PMC3160178 DOI: 10.1038/emboj.2011.195] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022] Open
Abstract
Epidermal growth factor (EGF) signalling regulates growth and differentiation. Here, we examine the function of EGF signalling in Caenorhabditis elegans lifespan. We find that EGF signalling regulates lifespan via the Ras-MAPK pathway and the PLZF transcription factors EOR-1 and EOR-2. As animals enter adulthood, EGF signalling upregulates the expression of genes involved in the ubiquitin proteasome system (UPS), including the Skp1-like protein SKR-5, while downregulating the expression of HSP16-type chaperones. Using reporters for global UPS activity, protein aggregation, and oxidative stress, we find that EGF signalling alters protein homoeostasis in adults by increasing UPS activity and polyubiquitination, while decreasing protein aggregation. We show that SKR-5 and the E3/E4 ligases that comprise the ubiquitin fusion degradation (UFD) complex are required for the increase in UPS activity observed in adults, and that animals that lack SKR-5 or the UFD have reduced lifespans and indications of oxidative stress. We propose that as animals enter fertile adulthood, EGF signalling switches the mechanism for maintaining protein homoeostasis from a chaperone-based approach to an approach involving protein elimination via augmented UPS activity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Genetics, The Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Jason Rogers
- Department of Molecular Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
28
|
Zand TP, Reiner DJ, Der CJ. Ras effector switching promotes divergent cell fates in C. elegans vulval patterning. Dev Cell 2011; 20:84-96. [PMID: 21238927 PMCID: PMC3028984 DOI: 10.1016/j.devcel.2010.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 10/21/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022]
Abstract
The C. elegans vulva is patterned by epidermal growth factor (EGF) activation of Ras to control 1° fate, and 1° fate induces antagonistic Notch-dependent 2° fate. Furthermore, a spatial EGF gradient, in addition to inducing 1° fate, directly contributes to 2° fate via an unknown pathway. We find that in addition to its canonical effector, Raf, vulval Ras utilizes an exchange factor for the Ral small GTPase (RalGEF), such that Ras-RalGEF-Ral antagonizes Ras-Raf pro-1° fate activity. Consistent with its restricted expression pattern, Ral participates in EGF pro-2° activity. Thus, we have delineated a Ras effector-switching mechanism whereby position within the morphogen gradient dictates that Ras effector usage is switched to RalGEF from Raf to promote 2° instead of 1° fate. Our observations define the utility of Ras effector switching during normal development and may provide a possible mechanistic basis for cell and cancer-type differences in effector dependency and activation.
Collapse
Affiliation(s)
- Tanya P. Zand
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, U.S.A
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - David J. Reiner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, U.S.A
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, U.S.A
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
29
|
The LIN-15A and LIN-56 transcriptional regulators interact to negatively regulate EGF/Ras signaling in Caenorhabditis elegans vulval cell-fate determination. Genetics 2010; 187:803-15. [PMID: 21196525 DOI: 10.1534/genetics.110.124487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The restricted expression of epidermal growth factor (EGF) family ligands is important for proper development and for preventing cancerous growth in mammals. In Caenorhabditis elegans, the class A and B synthetic multivulva (synMuv) genes redundantly repress expression of lin-3 EGF to negatively regulate Ras-mediated vulval development. The class B synMuv genes encode proteins homologous to components of the NuRD and Myb-MuvB/dREAM transcriptional repressor complexes, indicating that they likely silence lin-3 EGF through chromatin remodeling. The two class A synMuv genes cloned thus far, lin-8 and lin-15A, both encode novel proteins. The LIN-8 protein is nuclear. We have characterized the class A synMuv gene lin-56 and found it to encode a novel protein that shares a THAP-like C(2)CH motif with LIN-15A. Both the LIN-56 and LIN-15A proteins localize to nuclei. Wild-type levels of LIN-56 require LIN-15A, and wild-type levels and/or localization of LIN-15A requires LIN-56. Furthermore, LIN-56 and LIN-15A interact in the yeast two-hybrid system. We propose that LIN-56 and LIN-15A associate in a nuclear complex that inhibits vulval specification by repressing lin-3 EGF expression.
Collapse
|
30
|
Simms CL, Baillie DL. A strawberry notch homolog, let-765/nsh-1, positively regulates lin-3/egf expression to promote RAS-dependent vulval induction in C. elegans. Dev Biol 2010; 341:472-85. [DOI: 10.1016/j.ydbio.2010.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 12/26/2022]
|
31
|
Abstract
Structural studies have provided important new insights into how ligand binding promotes homodimerization and activation of the EGF receptor and the other members of the ErbB family of receptor tyrosine kinases. These structures have also suggested possible explanations for the unique properties of ErbB2, which has no known ligand and can cause cell transformation (and tumorigenesis) by simple overexpression. In parallel with these advances, studies of the EGF receptor at the cell surface increasingly argue that the structural studies are missing key mechanistic components. This is particularly evident in the structural prediction that EGF binding linked to receptor dimerization should be positively cooperative, whereas cell-surface EGF-binding studies suggest negative cooperativity. In this review, I summarize studies of ErbB receptor extracellular regions in solution and of intact receptors at the cell surface, and attempt to reconcile the differences suggested by the two approaches. By combining results obtained with receptor 'parts', it is qualitatively possible to explain some models for the properties of the whole receptor. These considerations underline the need to consider the intact ErbB receptors as intact allosterically regulated enzymes, and to combine cellular and structural studies into a complete picture.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
32
|
Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ, Wani K, Boxem M, Hart AC. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol 2008; 6:e196. [PMID: 18700817 PMCID: PMC2504490 DOI: 10.1371/journal.pbio.0060196] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/26/2008] [Indexed: 01/06/2023] Open
Abstract
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Y Chao
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Jonah Larkins-Ford
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Mark E Corkins
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Gerard A Somers
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Tim Tucey
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Heather M Dionne
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Jamie Q White
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khursheed Wani
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
| | - Mike Boxem
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anne C Hart
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Abstract
High-resolution X-ray crystal structures determined in the past six years dramatically influence our view of ligand-induced activation of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. Ligand binding to the extracellular region of EGFR promotes a major domain reorganization, plus local conformational changes, that are required to generate an entirely receptor-mediated dimer. In this activated complex the intracellular kinase domains associate to form an asymmetric dimer that supports the allosteric activation of one kinase. These models are discussed with emphasis on recent studies that add details or bolster the generality of this view of activation of this family of receptors. The EGFR family is implicated in several disease states, perhaps most notably in cancers. Activating tumor mutations have been identified in the intracellular and extracellular regions of EGFR. The impact of these tumor mutations on the understanding of EGFR activation and of its inhibition is discussed.
Collapse
Affiliation(s)
- Kathryn M Ferguson
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
34
|
Abstract
The human RAS genes constitute the most frequently mutated oncogenes in human cancers, and the critical role of aberrant Ras protein function in oncogenesis is well established. Consequently, considerable effort has been devoted to the development of anti-Ras inhibitors for cancer treatment. An important facet of molecularly targeted cancer drug discovery is the validation of a target-based mechanism of action, as well as the identification of potential off-target effects. This chapter describes the use of the nematode worm Caenorhabditis elegans for simple, inexpensive pharmacogenetic analysis of candidate molecularly targeted inhibitors of mutationally activated Ras, with a focus on the Ras>Raf>MEK>ERK mitogen-activated protein kinase pathway. This protein kinase cascade is well conserved from worms to humans and is well established as a critical player in the signaling events leading to vulval formation in C. elegans. Excess activity results in the development of a multivulva (Muv) phenotype, whose inhibition by test compounds can be characterized genetically as to the specific step of the pathway that is blocked. In addition, off-target activities can also be identified and characterized further using different strains of mutant worms. This chapter presents proof-of-principle analyses using the well-characterized MEK inhibitor U0126 to block the Muv phenotype caused by the constitutively activated Ras homolog C. elegans LET-60. It also provides a detailed description of protocols and reagents that will enable researchers to analyze on- and off-target effects of other candidate anti-Ras inhibitors using this system.
Collapse
|
35
|
Dawson JP, Bu Z, Lemmon MA. Ligand-Induced Structural Transitions in ErbB Receptor Extracellular Domains. Structure 2007; 15:942-54. [PMID: 17697999 DOI: 10.1016/j.str.2007.06.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/05/2007] [Accepted: 06/19/2007] [Indexed: 11/16/2022]
Abstract
Crystallographic studies showed that epidermal growth factor (EGF) receptor activation involves major domain rearrangements. Without bound ligand, the extracellular region of the receptor (sEGFR) adopts a "tethered" configuration with its dimerization site occluded by apparently autoinhibitory intramolecular interactions. Ligand binding causes the receptor to become "extended," breaking the tether and exposing the dimerization site. Using small-angle X-ray scattering (SAXS), we confirm that the tethered and extended conformations are also adopted in solution, and we describe low-resolution molecular envelopes for an intact sEGFR dimer. We also use SAXS to monitor directly the transition from a tethered to extended configuration in the monomeric extracellular regions of ErbB3 and a dimerization-defective EGFR mutant. Finally, we show that mutating every intramolecular tether interaction in sEGFR does not greatly alter its conformation. These findings explain why tether mutants fail to activate EGF receptor and provide new insight into regulation of ErbB receptor conformation.
Collapse
Affiliation(s)
- Jessica P Dawson
- Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
36
|
Modzelewska K, Elgort MG, Huang J, Jongeward G, Lauritzen A, Yoon CH, Sternberg PW, Moghal N. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. Mol Cell Biol 2007; 27:3695-707. [PMID: 17339331 PMCID: PMC1899997 DOI: 10.1128/mcb.01630-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 3242, Salt Lake City, UT 84112-5550, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rajakumar V, Chamberlin HM. The Pax2/5/8 gene egl-38 coordinates organogenesis of the C. elegansegg-laying system. Dev Biol 2007; 301:240-53. [PMID: 17020758 DOI: 10.1016/j.ydbio.2006.08.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/23/2006] [Accepted: 08/30/2006] [Indexed: 01/03/2023]
Abstract
Organogenesis requires coordinated development between different tissues and cells. The Pax family of transcription factors coordinates multiple developmental events in organs including the kidney, thyroid and the eye. Studying Pax factors in different organisms should identify unifying characteristics of organ development with implications to both development and disease. Here we investigate the function of the Pax2/5/8 transcription factor EGL-38 in coordinating development of the C. elegans egg-laying system. A functional egg-laying system requires cell fate specification events in the epithelial cells of the vulva as well as the mesodermal cells in the uterus of the somatic gonad. Using gene expression studies, genetic mutant analysis and genetic mosaics, we show that egl-38 has functions in both tissues of the organ to promote its development. We incorporate these results together with previous results to propose that EGL-38 plays multiple roles in the development of the egg-laying system, acting to both promote cell fate and to coordinate the development between different cell types. As the Pax2 gene performs similar roles in the development of the mammalian kidney, we show that coordinating organogenesis is a conserved function for Pax2/5/8 transcription factors.
Collapse
Affiliation(s)
- Vandana Rajakumar
- Department of Molecular Genetics, Ohio State University, 938 Biological Sciences Building, Columbus, OH 43210, USA
| | | |
Collapse
|
38
|
Huang L, Hanna-Rose W. EGF signaling overcomes a uterine cell death associated with temporal mis-coordination of organogenesis within the C. elegans egg-laying apparatus. Dev Biol 2006; 300:599-611. [PMID: 16963018 DOI: 10.1016/j.ydbio.2006.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 07/26/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
We isolated cog-3(ku212) as a C. elegans egg-laying defective mutant that is associated with a connection-of-gonad defective phenotype. cog-3(ku212) mutants appear to have no connection between the vulval and the uterine lumens at the appropriate stage because the uterine lumen develops with a temporal delay relative to the vulva and, thus, is not present when the connection normally forms. The lack of temporal synchronization between the vulva and the uterus is not due to precocious or accelerated vulval development. Instead, global gonadogenesis is mildly delayed relative to development of extra-gonadal tissue. cog-3(ku212) mutants also have a specific uterine fate defect. Normally, four cells of the uterine pi lineage respond via their LET-23 epidermal growth factor-like receptors to a vulval-derived LIN-3 EGF signal and adopt the uterine vulval 1 (uv1) fate. In cog-3(ku212) mutants, these four pi progeny cells are set aside as a pre-uv1 population but undergo necrosis prior to full differentiation. A gain-of-function mutation in LET-23 EGF receptor and ectopic expression of LIN-3 EGF within the proper temporal constraints can rescue the uv1 defect, suggesting that a signaling defect, perhaps due to the temporal delay, is at fault. In support of this model, we demonstrate that lack of vulval-uterine coordination due to precocious vulval development also leads to uv1 cell differentiation defects.
Collapse
Affiliation(s)
- Li Huang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
39
|
Andersen EC, Lu X, Horvitz HR. C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Development 2006; 133:2695-704. [PMID: 16774993 DOI: 10.1242/dev.02444] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate chromatin and influence transcription in other organisms similar to members of the Myb-MuvB/dREAM, NuRD and Tip60/NuA4 complexes. To determine how these chromatin-remodeling activities negatively regulate the vulval cell-fate decision, we isolated a suppressor of the synMuv phenotype and found that the suppressor gene encodes the C. elegans homolog of Drosophila melanogaster ISWI. The C. elegans ISW-1 protein likely acts as part of a Nucleosome Remodeling Factor (NURF) complex with NURF-1, a nematode ortholog of NURF301, to promote the synMuv phenotype. isw-1 and nurf-1 mutations suppress both the synMuv phenotype and the multivulva phenotype caused by overactivation of the Ras pathway. Our data suggest that a NURF-like complex promotes the expression of vulval cell fates by antagonizing the transcriptional and chromatin-remodeling activities of complexes similar to Myb-MuvB/dREAM, NuRD and Tip60/NuA4. Because the phenotypes caused by a null mutation in the tumor-suppressor and class B synMuv gene lin-35 Rb and a gain-of-function mutation in let-60 Ras are suppressed by reduction of isw-1 function, NURF complex proteins might be effective targets for cancer therapy.
Collapse
Affiliation(s)
- Erik C Andersen
- Howard Hughes Medical Institute, Department of Biology, Room 68-425, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
40
|
Smith MM, Levitan DJ. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation. Dev Biol 2004; 266:151-60. [PMID: 14729485 DOI: 10.1016/j.ydbio.2003.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer.
Collapse
Affiliation(s)
- Marsha M Smith
- Department of Functional Genomics/Discovery Technologies, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
41
|
Moghal N, Garcia LR, Khan LA, Iwasaki K, Sternberg PW. Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans. Development 2003; 130:4553-66. [PMID: 12925583 DOI: 10.1242/dev.00670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extent to which excitable cells and behavior modulate animal development has not been examined in detail. Here, we demonstrate the existence of a novel pathway for promoting vulval fates in C. elegans that involves activation of the heterotrimeric Galphaq protein, EGL-30. EGL-30 acts with muscle-expressed EGL-19 L-type voltage-gated calcium channels to promote vulva development, and acts downstream or parallel to LET-60 (RAS). This pathway is not essential for vulval induction on standard Petri plates, but can be stimulated by expression of activated EGL-30 in neurons, or by an EGL-30-dependent change in behavior that occurs in a liquid environment. Our results indicate that excitable cells and animal behavior can provide modulatory inputs into the effects of growth factor signaling on cell fates, and suggest that communication between these cell populations is important for normal development to occur under certain environmental conditions.
Collapse
Affiliation(s)
- Nadeem Moghal
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
42
|
Moghal N, Sternberg PW. Extracellular domain determinants of LET-23 (EGF) receptor tyrosine kinase activity in Caenorhabditis elegans. Oncogene 2003; 22:5471-80. [PMID: 12934107 DOI: 10.1038/sj.onc.1206648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Negative regulation of ErbB/EGFR signalling pathways is important for normal development and the prevention of cancer. In a genetic screen to uncover mechanisms that negatively regulate ErbB signalling in Caenorhabditis elegans, we isolated a second-site mutation (sy621) that promotes the activity of a gain-of-function allele (sa62gf) of the let-23 (EGF) receptor tyrosine kinase. We show that activation by the sa62 mutation (C359Y) likely results from a break in the conserved disulphide-bonded eighth module at the junction of CR1 and L2. The sy621 mutation causes a G270E change in the third disulphide-bonded module of CR1, and causes no phenotype on its own, but cooperates with the sa62 mutation to promote receptor activity. Although both sa62 single- and double-mutant receptors can function in the absence of ligand, they can be further activated by ligand. Our results support the current model for ligand-induced dimerization based on the recent crystal structures of HER3 and the EGFR, and provide more evidence for the generation of distinctly activated ErbB family members through mutation.
Collapse
Affiliation(s)
- Nadeem Moghal
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
43
|
Moghal N, Sternberg PW. A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans. Development 2003; 130:57-69. [PMID: 12441291 DOI: 10.1242/dev.00189] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Negative regulation of receptor tyrosine kinase (RTK)/RAS signaling pathways is important for normal development and the prevention of disease in humans. We have used a genetic screen in C. elegans to identify genes that antagonize the activity of activated LET-23, a member of the EGFR family of RTKs. We identified two loss-of-function mutations in dpy-22, previously cloned as sop-1, that promote the ability of activated LET-23 to induce ectopic vulval fates. DPY-22 is a glutamine-rich protein that is most similar to human TRAP230, a component of a transcriptional mediator complex. DPY-22 has previously been shown to regulate WNT responses through inhibition of the beta-catenin-like protein BAR-1. We provide evidence that DPY-22 also inhibits RAS-dependent vulval fate specification independently of BAR-1, and probably regulates the activities of multiple transcription factors during development. Furthermore, we demonstrate that although inhibition of BAR-1-dependent gene expression has been shown to require the C-terminal glutamine-rich region, this region is dispensable for inhibition of RAS-dependent cell differentiation. Thus, the glutamine-rich region contributes to specificity of this class of mediator protein.
Collapse
Affiliation(s)
- Nadeem Moghal
- Howard Hughes Medical Institute, and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
44
|
Wellbrock C, Gómez A, Schartl M. Melanoma development and pigment cell transformation in xiphophorus. Microsc Res Tech 2002; 58:456-63. [PMID: 12242702 DOI: 10.1002/jemt.10163] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As early as 1927, it was recognised that hybridisation of platyfish (Xiphophorus maculatus) and swordtails (Xiphophorus helleri) results in offspring that develop tumours according to Mendelian laws. Most obviously, the primary event, namely the cell lineage-specific overexpression of a structurally altered receptor tyrosine kinase, finds its parallel in many tumours of birds and mammals. Once expressed at high levels, this receptor, the Xiphophorus melanoma inducing receptor kinase Xmrk, shows constitutive activation. By using different pathways, Xmrk induces both proliferative as well as anti-apoptotic signalling in pigment cells finally leading to cell transformation, tumour induction, and progression. Analyses of the different signalling cascades induced by the Xmrk-receptor led to the identification of the src-kinase Fyn, the MAP kinases ERK1 and ERK2, the "Signal Transducer and Activator of Transcription" STAT5, and the PI3-kinase as its major downstream substrates. This review describes some of the genetic findings, as well as the results from the recent molecular analyses of the factors involved in the initiation and manifestation of pigment cell transformation and melanoma development in Xiphophorus.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Physiologische Chemie I, Biozentrum der Universität Würzburg, Germany.
| | | | | |
Collapse
|
45
|
Szewczyk NJ, Peterson BK, Jacobson LA. Activation of Ras and the mitogen-activated protein kinase pathway promotes protein degradation in muscle cells of Caenorhabditis elegans. Mol Cell Biol 2002; 22:4181-8. [PMID: 12024031 PMCID: PMC133852 DOI: 10.1128/mcb.22.12.4181-4188.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To discover and study intracellular signals that regulate proteolysis in muscle, we have employed transgenic strains of Caenorhabditis elegans that produce a soluble LacZ reporter protein limited to body-wall and vulval muscles. This reporter protein is stable in well-fed wild-type animals, but its degradation is triggered upon a shift to 25 degrees C in a strain carrying a temperature-sensitive activating mutation in the Ras oncogene homologue let-60. These mutants are not physiologically starved, inasmuch as growth rates are normal at 25 degrees C. Ras-induced degradation is not prevented by the presence of cycloheximide added at or before the temperature shift and thus uses preexisting proteolytic systems and signaling components. Furthermore, degradation is triggered when adult animals are shifted to conditions of 25 degrees C, confirming that Ras acutely promotes protein degradation in muscles whose developmental history is normal. Reduction-of-function mutations in the downstream protein kinase Raf (lin-45), MEK (mek-2), or mitogen-activated protein kinase (MAPK) (mpk-1) prevent Ras-induced protein degradation, whereas activated MPK-1 is sufficient to trigger degradation, indicating that this kinase cascade is the principal route by which Ras signaling triggers protein degradation in muscle. This pathway is activated in hypodermal cells by the LET-23 epidermal growth factor receptor homologue, but an activating mutation in let-23 does not promote proteolysis in muscle. Starvation-induced LacZ reporter degradation is unaffected by reduction-of-function mutations in Ras, Raf, MEK, or MAPK, implying that Ras activation and starvation trigger proteolysis by mechanisms that are at least partially independent. This is the first evidence that Ras-Raf-MEK-MAPK signaling activates protein degradation in differentiated muscle.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
46
|
Bui YK, Sternberg PW. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 2002; 13:1641-51. [PMID: 12006659 PMCID: PMC111133 DOI: 10.1091/mbc.02-01-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.
Collapse
Affiliation(s)
- Yen Kim Bui
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
47
|
Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K. Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2002; 2:567-78. [PMID: 12015965 DOI: 10.1016/s1534-5807(02)00151-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C. elegans cdf-1 was identified in a genetic screen for regulators of Ras-mediated signaling. CDF-1 is a cation diffusion facilitator protein that is structurally and functionally similar to vertebrate ZnT-1. These proteins have an evolutionarily conserved function as positive regulators of the Ras pathway, and the Ras pathway has an evolutionarily conserved ability to respond to CDF proteins. CDF proteins regulate Ras-mediated signaling by promoting Zn(2+) efflux and reducing the concentration of cytosolic Zn(2+), and cytosolic Zn(2+) negatively regulates Ras-mediated signaling. Physiological concentrations of Zn(2+) cause a significant inhibition of Ras-mediated signaling. These findings suggest that Zn(2+) negatively regulates a conserved element of the signaling pathway and that Zn(2+) regulation is important for maintaining the inactive state of the Ras pathway.
Collapse
Affiliation(s)
- Janelle J Bruinsma
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
Jiang H, Movsesyan V, Liu XW, Katagiri Y, Monshipoyri M, Lazarovici P. A double cysteine trkA mutant exhibiting reduced NGF binding and delayed Erk signaling. J Mol Neurosci 2001; 17:293-302. [PMID: 11859925 DOI: 10.1385/jmn:17:3:293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The NGF receptor trkA is a tyrosine kinase receptor comprising an extracellular domain with a ligand-binding site, a transmembrane-spanning domain (TMD), and an intracellular domain composed of a juxtamembrane region (JMR), a tyrosine kinase domain, and a short carboxy-terminal tail. Nerve growth factor (NGF) binds and activates this receptor, leading to phosphorylation of signaling substrates involved in neuronal proliferation, differentiation, and survival. Human trkA contains one cysteine residue in the TMD (C423) and another, separated by 12 residues, in the JMR (C436). We hypothesized that the removal of one or both of the cysteines would affect NGF-induced signaling of the trkA receptor. Here we show that NGF induces rapid receptor autophosphorylation in a wild-type, trkA-expressing clone (WT11), in a single cysteine trkA mutants (C423T or C436A), but lower autophosphorylation activity in a double-cysteine trkA mutant (C423T/C436A). WT11 and SM cells had similar binding affinity, but that of DM cells was lower, according to the NGF radioreceptor assay. NGF-induced Erk phosphorylation was rapid in WT11 and C423T cells, but delayed in C436A and C423T/C436A cells. NGF induced [3H]thymidine incorporation into WT11 and SM cells, but had no effect on DM cells. However, basic fibroblast growth factor (bFGF) induced rapid phosphorylation of Erk1/2, and [3H]thymidine incorporation in NIH3T3, WT11, single mutant (SM), and double mutant (DM) cells, suggesting that the impaired NGF-induced Erk phosphorylation and thymidine incorporation observed in DM cells are due to the double-cysteine mutations in the trkA receptor. Cumulatively, our findings support a model in which Cys436 of the trkA is responsible for the rapid transfer of the transmembrane occupancy signal to the SHC adaptor protein for activation of the Ras-Erk pathway and DNA synthesis.
Collapse
Affiliation(s)
- H Jiang
- William T. Gossett Neurology Laboratories, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Studies of C. elegans vulval development provide insights into the process of pattern formation during animal development. The invariant pattern of vulval precursor cell fates is specified by the integration of at least two signaling systems. Recent findings suggest that multiple, partially redundant mechanisms are involved in patterning the vulval precursor cells. The inductive signal activates the LET-60/RAS signaling pathway and induces the 1 degree fate, whereas the lateral signal mediated by LIN-12/Notch is required for specification of the 2 degrees fate. Several regulatory pathways antagonize the RAS signaling pathway and specify the non-vulval 3 degrees fate in the absence of induction. The temporal and spatial regulation of VPC competence and production of the inductive and the lateral signal are precisely coordinated to ensure the wild-type vulval pattern.
Collapse
Affiliation(s)
- M Wang
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
50
|
Gómez A, Wellbrock C, Gutbrod H, Dimitrijevic N, Schartl M. Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J Biol Chem 2001; 276:3333-40. [PMID: 11038352 DOI: 10.1074/jbc.m006574200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the oncogenic receptor tyrosine kinase ONC-Xmrk is the first step in the development of hereditary malignant melanoma in the fish Xiphophorus. However, overexpression of its proto-oncogene counterpart (INV-Xmrk) is not sufficient for the oncogenic function of the receptor. Compared with INV-Xmrk, the ONC-Xmrk receptor displays 14 amino acid changes, suggesting the presence of activating mutations. To identify such activating mutations, a series of chimeric and mutant receptors were studied. None of the mutations present in the intracellular domain was found to be involved in receptor activation. In the extracellular domain, we found two mutations responsible for activation of the receptor. One is the substitution of a conserved cysteine (C578S) involved in intramolecular disulfide bonding. The other is a glycine to arginine exchange (G359R) in subdomain III. Either mutation leads to constitutive dimer formation and thereby to activation of the ONC-Xmrk receptor. Besides, the presence of these mutations slows down the processing of the Xmrk receptor in the endoplasmic reticulum, which is apparent as an incomplete glycosylation.
Collapse
Affiliation(s)
- A Gómez
- Physiological Chemistry I, Biocenter (Theodor Boveri Institute), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|