1
|
Sun Y, Bock R, Li Z. A hidden intrinsic ability of bicistronic expression based on a novel translation reinitiation mechanism in yeast. Nucleic Acids Res 2025; 53:gkaf220. [PMID: 40156854 PMCID: PMC11952965 DOI: 10.1093/nar/gkaf220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Gene organization in operons and co-expression as polycistronic transcripts is characteristic of prokaryotes. With the evolution of the eukaryotic translation machinery, operon structure and expression of polycistrons were largely abandoned. Whether eukaryotes still possess the ability to express polycistrons, and how they functionally activate bacterial operons acquired by horizontal DNA transfer is unknown. Here, we demonstrate that a polycistron can be rapidly activated in yeast by induction of bicistronic expression under selection. We show that induced translation of the downstream cistron in a bicistronic transcript is based on a novel type of reinitiation mediated by the 80S ribosome and triggered by inefficient stop codon recognition, and that induced bicistronic expression is stable and independent of cis-elements. These results provide key insights into the epigenetic mechanism of the pathway of activation. We also developed a yeast strain that efficiently expresses bicistronic constructs, but does not carry any genomic DNA sequence change, and utilized this strain to synthesize a high-value metabolite from a bicistronic expression construct. Together, our results reveal the capacity of yeast to express bicistrons in a previously unrecognized pathway. While this capacity is normally hidden, it can be rapidly induced by selection to improve fitness.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Ros-Carrero C, Spiridon-Bodi M, Igual JC, Gomar-Alba M. The CDK Pho85 inhibits Whi7 Start repressor to promote cell cycle entry in budding yeast. EMBO Rep 2024; 25:745-769. [PMID: 38233717 PMCID: PMC10897450 DOI: 10.1038/s44319-023-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Pho85 is a multifunctional CDK that signals to the cell when environmental conditions are favorable. It has been connected to cell cycle control, mainly in Start where it promotes the G1/S transition. Here we describe that the Start repressor Whi7 is a key target of Pho85 in the regulation of cell cycle entry. The phosphorylation of Whi7 by Pho85 inhibits the repressor and explains most of the contribution of the CDK in the activation of Start. Mechanistically, Pho85 downregulates Whi7 protein levels through the control of Whi7 protein stability and WHI7 gene transcription. Whi7 phosphorylation by Pho85 also restrains the intrinsic ability of Whi7 to associate with promoters. Furthermore, although Whi5 is the main Start repressor in normal cycling cells, in the absence of Pho85, Whi7 becomes the major repressor leading to G1 arrest. Overall, our results reveal a novel mechanism by which Pho85 promotes Start through the regulation of the Whi7 repressor at multiple levels, which may confer to Whi7 a functional specialization to connect the response to adverse conditions with the cell cycle control.
Collapse
Affiliation(s)
- Cristina Ros-Carrero
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - Mihai Spiridon-Bodi
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| | - Mercè Gomar-Alba
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Kempen RP, Dabas P, Ansari AZ. The Phantom Mark: Enigmatic roles of phospho-Threonine 4 modification of the C-terminal domain of RNA polymerase II. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1771. [PMID: 36606410 PMCID: PMC10323045 DOI: 10.1002/wrna.1771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
The largest subunit of RNA polymerase II (Pol II) has an unusual carboxyl-terminal domain (CTD). This domain is composed of a tandemly repeating heptapeptide, Y1 S2 P3 T4 S5 P6 S7 , that has multiple roles in regulating Pol II function and processing newly synthesized RNA. Transient phosphorylation of Ser2 and Ser5 of the YS2 PTS5 PS repeat have well-defined roles in recruiting different protein complexes and coordinating sequential steps in gene transcription. As such, these phospho-marks encipher a molecular recognition code, colloquially termed the CTD code. In contrast, the contribution of phospho-Threonine 4 (pThr4/pT4) to the CTD code remains opaque and contentious. Fuelling the debate on the relevance of this mark to gene expression are the findings that replacing Thr4 with a valine or alanine has varied impact on cellular function in different species and independent proteomic analyses disagree on the relative abundance of pThr4 marks. Yet, substitution with negatively charged residues is lethal and even benign mutations selectively disrupt synthesis and 3' processing of distinct sets of coding and non-coding transcripts. Suggestive of non-canonical roles, pThr4 marked Pol II regulates distinct gene classes in a species- and signal-responsive manner. Hinting at undiscovered roles of this elusive mark, multiple signal-responsive kinases phosphorylate Thr4 at target genes. Here, we focus on this under-explored residue and postulate that the pThr4 mark is superimposed on the canonical CTD code to selectively regulate expression of targeted genes without perturbing genome-wide transcriptional processes. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Processing of Small RNAs RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Ryan P Kempen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Preeti Dabas
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aseem Z Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
6
|
Campanella JEM, Candido TDS, Barbosa LCB, Gomes AAS, Leite CA, Higashi ES, Barbugli PA, Fontes MRDM, Bertolini MC. The Neurospora crassa PCL-1 cyclin is a PHO85-1 (PGOV) kinase partner that directs the complex to glycogen metabolism and is involved in calcium metabolism regulation. Front Microbiol 2022; 13:1078972. [PMID: 36620034 PMCID: PMC9815767 DOI: 10.3389/fmicb.2022.1078972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclins are a family of proteins characterized by possessing a cyclin box domain that mediates binding to cyclin dependent kinases (CDKs) partners. In this study, the search for a partner cyclin of the PHO85-1 CDK retrieved PCL-1 an ortholog of yeast Pcls (for Pho85 cyclins) that performs functions common to Pcls belonging to different cyclin families. We show here that PCL-1, as a typical cyclin, is involved in cell cycle control and cell progression. In addition, PCL-1 regulates glycogen metabolism; Δpcl-1 cells accumulate higher glycogen levels than wild-type cells and the glycogen synthase (GSN) enzyme is less phosphorylated and, therefore, more active in the mutant cells. Together with PHO85-1, PCL-1 phosphorylates in vitro GSN at the Ser636 amino acid residue. Modeling studies identified PHO85-1 and PCL-1 as a CDK/cyclin complex, with a conserved intermolecular region stabilized by hydrophobic and polar interactions. PCL-1 is also involved in calcium and NaCl stress response. Δpcl-1 cells are sensitive to high NaCl concentration; on the contrary, they grow better and overexpress calcium responsive genes under high calcium chloride concentration compared to the wild-type strain. The expression of the calcium-responsive CRZ-1 transcription factor is modulated by PCL-1, and this transcription factor seems to be less phosphorylated in Δpcl-1 cells since exhibits nuclear location in these cells in the absence of calcium. Our results show that PCL-1 locates at different cell regions suggesting that it may determine its activity by controlling its intracellular location and reveal an interesting functional divergence between yeast and filamentous fungus cyclins.
Collapse
Affiliation(s)
- Jonatas Erick Maimoni Campanella
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Thiago de Souza Candido
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Luiz Carlos Bertucci Barbosa
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Antoniel Augusto Severo Gomes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Carla Andréa Leite
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Erika Silva Higashi
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Departamento de Materiais Dentários e Prótese, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marcos Roberto de Matos Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Rudzińska I, Płonka M, Armatowska A, Turowski TW, Boguta M. Rbs1 protein, involved in RNA polymerase III complex assembly in the yeast Saccharomyces cerevisiae, induces a Gcn4 response and forms aggregates when overproduced. Gene 2022; 809:146034. [PMID: 34688816 DOI: 10.1016/j.gene.2021.146034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
We previously reported the function of Rbs1 protein in RNA polymerase III complex assembly via interactions with both, proteins and mRNAs. Rbs1 is a poly(A)-binding protein. The R3H domain in Rbs1 is required for mRNA interactions. The present study utilized the results of a genome-wide analysis of RNA binding by Rbs1 to show a direct interaction between Rbs1 with the 5'-untranslated region (5'-UTR) in PCL5 mRNA. By examining Pcl5 protein levels, we found that Rbs1 overproduction inhibited the translation of PCL5 mRNA. Pcl5 is a cyclin that is associated with Pho85 kinase, which is involved in the degradation of Gcn4 transcription factor. Consequently, lower levels of Pcl5 that resulted from Rbs1 overproduction increased the Gcn4 response. The functional R3H domain in Rbs1 was required for the downregulation of Pcl5 translation and increase in the Gcn4 response, thus validating a regulatory mechanism that relies on the interaction between Rbs1 and the 5'-UTR in PCL5 mRNA. Rbs1 protein was further characterized by microscopy, which identified single Rbs1 assemblies in part of the cell population. The presence of Rbs1 aggregates was confirmed by the fractionation of cellular extracts. Altogether, our results suggest a more general role of Rbs1 in regulating cellular metabolism beyond the assembly of RNA polymerase III.
Collapse
Affiliation(s)
- Izabela Rudzińska
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Marta Płonka
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Armatowska
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Tomasz W Turowski
- Laboratory of Transcription Mechanisms, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Fu C, Davy A, Holmes S, Sun S, Yadav V, Gusa A, Coelho MA, Heitman J. Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLoS Genet 2021; 17:e1009935. [PMID: 34843473 PMCID: PMC8670703 DOI: 10.1371/journal.pgen.1009935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications. Ploidy is an intrinsic fundamental feature of all eukaryotic organisms, and ploidy variation and maintenance are critical to the organism survival and evolution. Fungi exhibit exquisite plasticity in ploidy variation in adaptation to various environmental stresses. For example, the haploid opportunistic human fungal pathogen C. deneoformans can generate diploid blastospores during unisexual reproduction and also forms polyploid titan cells during host infection; however, the mechanisms underlying these ploidy transitions are largely unknown. In this study, we elucidated the genetic regulatory circuitry governing ploidy duplication during C. deneoformans unisexual reproduction through the identification and characterization of cell cycle regulators that are differentially expressed during unisexual reproduction. We showed that four cyclin and two cyclin-dependent kinase regulator genes function in concert to orchestrate ploidy transition during unisexual reproduction. To trace and track ploidy transition events, we also generated a ploidy reporter and revealed the formation of segmental aneuploidy in addition to diploidization, illustrating the diverse mechanisms of genome plasticity in C. deneoformans.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Aaliyah Davy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Simeon Holmes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Asiya Gusa
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ebrahimi M, Habernig L, Broeskamp F, Aufschnaiter A, Diessl J, Atienza I, Matz S, Ruiz FA, Büttner S. Phosphate Restriction Promotes Longevity via Activation of Autophagy and the Multivesicular Body Pathway. Cells 2021; 10:3161. [PMID: 34831384 PMCID: PMC8620443 DOI: 10.3390/cells10113161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Nutrient limitation results in an activation of autophagy in organisms ranging from yeast, nematodes and flies to mammals. Several evolutionary conserved nutrient-sensing kinases are critical for efficient adaptation of yeast cells to glucose, nitrogen or phosphate depletion, subsequent cell-cycle exit and the regulation of autophagy. Here, we demonstrate that phosphate restriction results in a prominent extension of yeast lifespan that requires the coordinated activity of autophagy and the multivesicular body pathway, enabling efficient turnover of cytoplasmic and plasma membrane cargo. While the multivesicular body pathway was essential during the early days of aging, autophagy contributed to long-term survival at later days. The cyclin-dependent kinase Pho85 was critical for phosphate restriction-induced autophagy and full lifespan extension. In contrast, when cell-cycle exit was triggered by exhaustion of glucose instead of phosphate, Pho85 and its cyclin, Pho80, functioned as negative regulators of autophagy and lifespan. The storage of phosphate in form of polyphosphate was completely dispensable to in sustaining viability under phosphate restriction. Collectively, our results identify the multifunctional, nutrient-sensing kinase Pho85 as critical modulator of longevity that differentially coordinates the autophagic response to distinct kinds of starvation.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Isabel Atienza
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), University of Cadiz, 11001 Cadiz, Spain; (I.A.); (F.A.R.)
| | - Steffen Matz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
| | - Felix A. Ruiz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), University of Cadiz, 11001 Cadiz, Spain; (I.A.); (F.A.R.)
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (M.E.); (L.H.); (F.B.); (J.D.); (S.M.)
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Phylogenetic analysis of cell-cycle regulatory proteins within the Symbiodiniaceae. Sci Rep 2020; 10:20473. [PMID: 33235281 PMCID: PMC7686383 DOI: 10.1038/s41598-020-76621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
In oligotrophic waters, cnidarian hosts rely on symbiosis with their photosynthetic dinoflagellate partners (family Symbiodiniaceae) to obtain the nutrients they need to grow, reproduce and survive. For this symbiosis to persist, the host must regulate the growth and proliferation of its symbionts. One of the proposed regulatory mechanisms is arrest of the symbiont cell cycle in the G1 phase, though the cellular mechanisms involved remain unknown. Cell-cycle progression in eukaryotes is controlled by the conserved family of cyclin-dependent kinases (CDKs) and their partner cyclins. We identified CDKs and cyclins in different Symbiodiniaceae species and examined their relationship to homologs in other eukaryotes. Cyclin proteins related to eumetazoan cell-cycle-related cyclins A, B, D, G/I and Y, and transcriptional cyclin L, were identified in the Symbiodiniaceae, alongside several alveolate-specific cyclin A/B proteins, and proteins related to protist P/U-type cyclins and apicomplexan cyclins. The largest expansion of Symbiodiniaceae cyclins was in the P/U-type cyclin groups. Proteins related to eumetazoan cell-cycle-related CDKs (CDK1) were identified as well as transcription-related CDKs. The largest expansion of CDK groups was, however, in alveolate-specific groups which comprised 11 distinct CDK groups (CDKA-J) with CDKB being the most widely distributed CDK protein. As a result of its phylogenetic position, conservation across Symbiodiniaceae species, and the presence of the canonical CDK motif, CDKB emerged as a likely candidate for a Saccharomyces cerevisiae Cdc28/Pho85-like homolog in Symbiodiniaceae. Similar to cyclins, two CDK-groups found in Symbiodiniaceae species were solely associated with apicomplexan taxa. A comparison of Breviolum minutum CDK and cyclin gene expression between free-living and symbiotic states showed that several alveolate-specific CDKs and two P/U-type cyclins exhibited altered expression in hospite, suggesting that symbiosis influences the cell cycle of symbionts on a molecular level. These results highlight the divergence of Symbiodiniaceae cell-cycle proteins across species. These results have important implications for host control of the symbiont cell cycle in novel cnidarian–dinoflagellate symbioses.
Collapse
|
11
|
The RNA fold interactome of evolutionary conserved RNA structures in S. cerevisiae. Nat Commun 2020; 11:2789. [PMID: 32493961 PMCID: PMC7270185 DOI: 10.1038/s41467-020-16555-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins play key roles in regulation of gene expression via recognition of structural features in RNA molecules. Here we apply a quantitative RNA pull-down approach to 186 evolutionary conserved RNA structures and report 162 interacting proteins. Unlike global RNA interactome capture, we associate individual RNA structures within messenger RNA with their interacting proteins. Of our binders 69% are known RNA-binding proteins, whereas some are previously unrelated to RNA binding and do not harbor canonical RNA-binding domains. While current knowledge about RNA-binding proteins relates to their functions at 5′ or 3′-UTRs, we report a significant number of them binding to RNA folds in the coding regions of mRNAs. Using an in vivo reporter screen and pulsed SILAC, we characterize a subset of mRNA-RBP pairs and thus connect structural RNA features to functionality. Ultimately, we here present a generic, scalable approach to interrogate the increasing number of RNA structural motifs. Previous study identified in vivo structured mRNA regions in Saccharomyces cerevisiae by dimethyl sulfate-sequencing. Here the authors use quantitative proteomics to identify protein interactors of 186 RNA folds in S. cerevisiae, providing functional links between RNA binding proteins and distinct mRNA fold.
Collapse
|
12
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Nakajima T, Maruhashi T, Morimatsu T, Mukai Y. Cyclin-dependent kinase Pho85p and its cyclins are involved in replicative lifespan through multiple pathways in yeast. FEBS Lett 2019; 594:1166-1175. [PMID: 31797348 DOI: 10.1002/1873-3468.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
Abstract
Lifespan is determined by genetic factors and influenced by environmental factors. Here, we find that the phosphate signal transduction (PHO) pathway is involved in the determination of replicative lifespan in budding yeast. Extracellular phosphate does not affect the lifespan. However, deletion of PHO80 (cyclin) and PHO85 (cyclin-dependent kinase) genes, that is, negative regulators of the PHO pathway, shortens the lifespan, which is restored by further deletion of PHO4 (transcriptional activator). Four of the other nine Pho85p cyclin genes are also required to maintain normal lifespan. The short-lived mutants show a metabolic profile that is similar to strains with normal lifespan. Thus, Pho85p kinase genetically determines replicative lifespan in combination with relevant cyclins. Our findings uncover novel cellular signals in longevity regulation.
Collapse
Affiliation(s)
- Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Tsubasa Maruhashi
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Takaaki Morimatsu
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
14
|
Bardetti P, Castanheira SM, Valerius O, Braus GH, Pérez-Martín J. Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. eLife 2019; 8:e48943. [PMID: 31621584 PMCID: PMC6887120 DOI: 10.7554/elife.48943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
In the fungus Ustilago maydis, sexual pheromones elicit mating resulting in an infective filament able to infect corn plants. Along this process a G2 cell cycle arrest is mandatory. Such as cell cycle arrest is initiated upon the pheromone recognition in each mating partner, and sustained once cell fusion occurred until the fungus enter the plant tissue. We describe that the initial cell cycle arrest resulted from inhibition of the nuclear transport of the mitotic inducer Cdc25 by targeting its importin, Kap123. Near cell fusion to take place, the increase on pheromone signaling promotes Cdc25 degradation, which seems to be important to ensure the maintenance of the G2 cell cycle arrest to lead the formation of the infective filament. This way, premating cell cycle arrest is linked to the subsequent steps required for establishment of the infection. Disabling this connection resulted in the inability of fungal cells to infect plants.
Collapse
Affiliation(s)
- Paola Bardetti
- Instituto de Biología Funcional y Genómica (CSIC)SalamancaSpain
| | | | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsGeorg-August-UniversityGöttingenGermany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsGeorg-August-UniversityGöttingenGermany
| | | |
Collapse
|
15
|
Baile MG, Guiney EL, Sanford EJ, MacGurn JA, Smolka MB, Emr SD. Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Mol Biol Cell 2019; 30:3057-3072. [PMID: 31618110 PMCID: PMC6880881 DOI: 10.1091/mbc.e19-08-0451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins, which in the yeast Saccharomyces cerevisiae is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin-related trafficking (ART) adaptors. Here, we provide evidence that the ART protein family members are composed of an arrestin fold with interspersed disordered loops. Using Art1 as a model, we show that these loop and tail regions, while not strictly required for function, regulate its activity through two separate mechanisms. Disruption of one loop mediates Art1 substrate specificity. Other loops are subjected to phosphorylation in a manner dependent on the Pho85 cyclins Clg1 and Pho80. Phosphorylation of the loops controls Art1’s localization to the plasma membrane, which promotes cargo ubiquitylation and endocytosis, demonstrating a mechanism through which Art1 activity is regulated.
Collapse
Affiliation(s)
- Matthew G Baile
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Evan L Guiney
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Ethan J Sanford
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Bállega E, Carballar R, Samper B, Ricco N, Ribeiro MP, Bru S, Jiménez J, Clotet J. Comprehensive and quantitative analysis of G1 cyclins. A tool for studying the cell cycle. PLoS One 2019; 14:e0218531. [PMID: 31237904 PMCID: PMC6592645 DOI: 10.1371/journal.pone.0218531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the cell cycle is driven by the actions of several cyclin dependent kinases (CDKs) and an array of regulatory proteins called cyclins, due to the cyclical expression patterns of the latter. In yeast, the accepted pattern of cyclin waves is based on qualitative studies performed by different laboratories using different strain backgrounds, different growing conditions and media, and different kinds of genetic manipulation. Additionally, only the subset of cyclins regulating Cdc28 was included, while the Pho85 cyclins were excluded. We describe a comprehensive, quantitative and accurate blueprint of G1 cyclins in the yeast Saccharomyces cerevisiae that, in addition to validating previous conclusions, yields new findings and establishes an accurate G1 cyclin blueprint. For the purposes of this research, we produced a collection of strains with all G1 cyclins identically tagged using the same and most respectful procedure possible. We report the contribution of each G1 cyclin for a broad array of growing and stress conditions, describe an unknown role for Pcl2 in heat-stress conditions and demonstrate the importance of maintaining the 3’UTR sequence of cyclins untouched during the tagging process.
Collapse
Affiliation(s)
- Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariana P. Ribeiro
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| |
Collapse
|
17
|
Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26. PLoS One 2019; 14:e0215064. [PMID: 30973945 PMCID: PMC6459547 DOI: 10.1371/journal.pone.0215064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
The S. cerevisiae Pop2 protein is an exonuclease in the Ccr4-Not complex that is a conserved regulator of gene expression. Pop2 regulates gene expression post-transcriptionally by shortening the poly(A) tail of mRNA. A previous study has shown that Pop2 is phosphorylated at threonine 97 (T97) by Yak1 protein kinase in response to glucose limitation. However, the physiological importance of Pop2 phosphorylation remains unknown. In this study, we found that Pop2 is phosphorylated at serine 39 (S39) under unstressed conditions. The dephosphorylation of S39 was occurred rapidly after glucose depletion, and the addition of glucose to the glucose-deprived culture recovered this phosphorylation, suggesting that Pop2 phosphorylation at S39 is regulated by glucose. This glucose-regulated phosphorylation of Pop2 at S39 is dependent on Pho85 kinase. We previously reported that Pop2 takes a part in the cell wall integrity pathway by regulating LRG1 mRNA; however, S39 phosphorylation of Pop2 is not involved in LRG1 expression. On the other hand, Pop2 phosphorylation at S39 is involved in the expression of HSP12 and HSP26, which encode a small heat shock protein. In the medium supplemented with glucose, Pop2 might be phosphorylated at S39 by Pho85 kinase, and this phosphorylation contributes to repress the expression of HSP12 and HSP26. Glucose starvation inactivated Pho85, which resulted in the derepression of HSP12 and HSP26, together with other glucose sensing mechanisms. Our results suggest that Pho85-dependent phosphorylation of Pop2 is a part of the glucose sensing system in yeast.
Collapse
|
18
|
Nemec CM, Singh AK, Ali A, Tseng SC, Syal K, Ringelberg KJ, Ho YH, Hintermair C, Ahmad MF, Kar RK, Gasch AP, Akhtar MS, Eick D, Ansari AZ. Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. Nat Chem Biol 2018; 15:123-131. [PMID: 30598543 PMCID: PMC6339578 DOI: 10.1038/s41589-018-0194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) governs stage-specific interactions with different cellular machines. The CTD consists of Y1S2P3T4S5P6S7 heptad repeats, and sequential phosphorylations of Ser7, Ser5 and Ser2 occur universally across Pol II-transcribed genes. Phosphorylation of Thr4, however, appears to selectively modulate transcription of specific classes of genes. Here, we identify 10 new Thr4 kinases from different kinase structural groups. Irreversible chemical inhibition of the most active Thr4 kinase, Hrr25, reveals a novel role for this kinase in transcription termination of specific class of noncoding snoRNA genes. Genome-wide profiles of Hrr25 reveal a selective enrichment at 3ʹ regions of noncoding genes that display termination defects. Importantly, phospho-Thr4 marks placed by Hrr25 are recognized by Rtt103, a key component of the termination machinery. Our results suggest that these uncommon CTD kinases selectively place phospho-Thr4 marks to regulate expression of targeted genes.
Collapse
Affiliation(s)
- Corey M Nemec
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amit K Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India
| | - Asfa Ali
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandra C Tseng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kirtimaan Syal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yi-Hsuan Ho
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Mohammad Faiz Ahmad
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajesh Kumar Kar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Paolillo V, Jenkinson C, Horio T, Oakley B. Cyclins in aspergilli: Phylogenetic and functional analyses of group I cyclins. Stud Mycol 2018; 91:1-22. [PMID: 30104814 PMCID: PMC6078057 DOI: 10.1016/j.simyco.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified the cyclin domain-containing proteins encoded by the genomes of 17 species of Aspergillus as well as 15 members of other genera of filamentous ascomycetes. Phylogenetic analyses reveal that the cyclins fall into three groups, as in other eukaryotic phyla, and, more significantly, that they are remarkably conserved in these fungi. All 32 species examined, for example, have three group I cyclins, cyclins that are particularly important because they regulate the cell cycle, and these are highly conserved. Within the group I cyclins there are three distinct clades, and each fungus has a single member of each clade. These findings are in marked contrast to the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans, which have more numerous group I cyclins. These results indicate that findings on cyclin function made with a model Aspergillus species, such as A. nidulans, are likely to apply to other Aspergilli and be informative for a broad range of filamentous ascomycetes. In this regard, we note that the functions of only one Aspergillus group I cyclin have been analysed (NimECyclin B of A. nidulans). We have consequently carried out an analysis of the members of the other two clades using A. nidulans as our model. We have found that one of these cyclins, PucA, is essential, but deletion of PucA in a strain carrying a deletion of CdhA, an activator of the anaphase promoting complex/cyclosome (APC/C), is not lethal. These data, coupled with data from heterokaryon rescue experiments, indicate that PucA is an essential G1/S cyclin that is required for the inactivation of the APC/C-CdhA, which, in turn, allows the initiation of the S phase of the cell cycle. Our data also reveal that PucA has additional, non-essential, roles in the cell cycle in interphase. The A. nidulans member of the third clade (AN2137) has not previously been named or analyzed. We designate this gene clbA. ClbA localizes to kinetochores from mid G2 until just prior to chromosomal condensation. Deletion of clbA does not affect viability. However, by using a regulatable promoter system new to Aspergillus, we have found that expression of a version of ClbA in which the destruction box sequences have been removed is lethal and causes a mitotic arrest and a high frequency of non-disjunction. Thus, although ClbA is not essential, its timely destruction is essential for viability, chromosomal disjunction, and successful completion of mitosis.
Collapse
Affiliation(s)
- V. Paolillo
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - C.B. Jenkinson
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - T. Horio
- Department of Natural Sciences, Nippon Sport Science University, Yokohama, Japan
| | - B.R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
20
|
Schoeters F, Munro CA, d'Enfert C, Van Dijck P. A High-Throughput Candida albicans Two-Hybrid System. mSphere 2018; 3:e00391-18. [PMID: 30135223 PMCID: PMC6106057 DOI: 10.1128/msphere.00391-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a human fungal pathogen that does not follow the universal codon usage, as it translates the CUG codon into serine rather than leucine. This makes it difficult to study protein-protein interactions using the standard yeast two-hybrid (Y2H) system in the model organism Saccharomyces cerevisiae Due to the lack of adapted tools, only a small number of protein-protein interactions (PPIs) have been detected or studied using C. albicans-optimized tools despite the importance of PPIs to understand cell biology. However, with the sequencing of the whole genome of C. albicans, the availability of an ORFeome collection containing 5,099 open reading frames (ORFs) in Gateway-adapted donor vectors, and the creation of a Gateway-compatible C. albicans-specific two-hybrid (C2H) system, it became possible to study protein-protein interactions on a larger scale using C. albicans itself as the model organism. Erroneous translations are hereby eliminated compared to using the S. cerevisiae Y2H system. Here, we describe the technical adaptations and the first application of the C2H system for a high-throughput screen, thus making it possible to screen thousands of PPIs at once in C. albicans itself. This first, small-scale high-throughput screen, using Pho85 as a bait protein against 1,646 random prey proteins, yielded one interacting partner (Pcl5). The interaction found with the high-throughput setup was further confirmed with a low-throughput C2H experiment and with a coimmunoprecipitation (co-IP) experiment.IMPORTANCECandida albicans is a major fungal pathogen, and due to the rise of fungal infections and emerging resistance to the limited antifungals available, it is important to develop novel and more specific antifungals. Protein-protein interactions (PPIs) can be applied as very specific drug targets. However, because of the aberrant codon usage of C. albicans, the traditional yeast two-hybrid system in Saccharomyces cerevisiae is difficult to use, and only a limited number of PPIs have been described in C. albicans To overcome this, a C. albicans two-hybrid (C2H) system was developed in 2010. The current work describes, for the first time, the application of the C2H system in a high-throughput setup. We hereby show the usefulness of the C2H system to investigate and detect PPIs in C. albicans, making it possible to further elucidate protein networks in C. albicans, which has the potential to lead to the development of novel antifungals which specifically disrupt PPIs important for virulence.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Carol A Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
21
|
Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet Biol 2018; 115:20-32. [PMID: 29627365 DOI: 10.1016/j.fgb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.
Collapse
|
22
|
González B, Mas A, Beltran G, Cullen PJ, Torija MJ. Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Front Physiol 2017; 8:148. [PMID: 28424625 PMCID: PMC5372830 DOI: 10.3389/fphys.2017.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
In yeast, ethanol is produced as a by-product of fermentation through glycolysis. Ethanol also stimulates a developmental foraging response called filamentous growth and is thought to act as a quorum-sensing molecule. Ethanol-inducible filamentous growth was examined in a small collection of wine/European strains, which validated ethanol as an inducer of filamentous growth. Wine strains also showed variability in their filamentation responses, which illustrates the striking phenotypic differences that can occur among individuals. Ethanol-inducible filamentous growth in Σ1278b strains was independent of several of the major filamentation regulatory pathways [including fMAPK, RAS-cAMP, Snf1, Rpd3(L), and Rim101] but required the mitochondrial retrograde (RTG) pathway, an inter-organellar signaling pathway that controls the nuclear response to defects in mitochondrial function. The RTG pathway regulated ethanol-dependent filamentous growth by maintaining flux through the TCA cycle. The ethanol-dependent invasive growth response required the polarisome and transcriptional induction of the cell adhesion molecule Flo11p. Our results validate established stimuli that trigger filamentous growth and show how stimuli can trigger highly specific responses among individuals. Our results also connect an inter-organellar pathway to a quorum sensing response in fungi.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at BuffaloBuffalo, NY, USA
| | - María Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
23
|
Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z. Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:e02319-16. [PMID: 27793829 PMCID: PMC5165106 DOI: 10.1128/aem.02319-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023] Open
Abstract
The heavy metal cadmium is widely used and released into the environment, posing a severe threat to crops and humans. Saccharomyces cerevisiae is one of the most commonly used organisms in the investigation of environmental metal toxicity. We investigated cadmium stress and the adaptive mechanisms of yeast by screening a genome-wide essential gene overexpression library. A candidate gene, OLE1, encodes a delta-9 desaturase and was associated with high anti-cadmium-stress activity. The results demonstrated that the expression of OLE1 was positively correlated with cadmium stress tolerance and induction was independent of Mga2p and Spt23p (important regulatory factors for OLE1). Moreover, in response to cadmium stress, cellular levels of monounsaturated fatty acids were increased. The addition of exogenous unsaturated fatty acids simulated overexpression of OLE1, leading to cadmium resistance. Such regulation of OLE1 in the synthesis of unsaturated fatty acids may serve as a positive feedback mechanism to help cells counter the lipid peroxidation and cytoplasmic membrane damage caused by cadmium. IMPORTANCE A S. cerevisiae gene encoding a delta-9 desaturase, OLE1, was associated with high anti-cadmium-stress activity. The data suggest that the regulation of OLE1 in the synthesis of unsaturated fatty acids may serve as a positive feedback mechanism to help yeast cells counter the lipid peroxidation and cytoplasmic membrane damage caused by cadmium. The discovery of OLE1 involvement in membrane stability may indicate a novel defense strategy against cadmium stress.
Collapse
Affiliation(s)
- Zhijia Fang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhongxiang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuhu Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Youshang Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
24
|
Kliewe F, Kumme J, Grigat M, Hintze S, Schüller HJ. Opi1 mediates repression of phospholipid biosynthesis by phosphate limitation in the yeast Saccharomyces cerevisiae. Yeast 2016; 34:67-81. [PMID: 27743455 DOI: 10.1002/yea.3215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/14/2023] Open
Abstract
Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are transcribed when precursor molecules inositol and choline (IC) are limiting. Gene expression is stimulated by the heterodimeric activator Ino2/Ino4, which binds to ICRE (inositol/choline-responsive element) promoter sequences. Activation is prevented by repressor Opi1, counteracting Ino2 when high concentrations of IC are available. Here we show that ICRE-dependent gene activation is repressed not only by an excess of IC but also under conditions of phosphate starvation. While PHO5 is activated by phosphate limitation, INO1 expression is repressed about 10-fold. Repression of ICRE-dependent genes by low phosphate is no longer observed in an opi1 mutant while repression is still effective in mutants of the PHO regulon (pho4, pho80, pho81 and pho85). In contrast, gene expression with high phosphate is reduced in the absence of pleiotropic sensor protein kinase Pho85. We could demonstrate that Pho85 binds to Opi1 in vitro and in vivo and that this interaction is increased in the presence of high concentrations of phosphate. Interestingly, Pho85 binds to two separate domains of Opi1 which have been previously shown to recruit pleiotropic corepressor Sin3 and activator Ino2, respectively. We postulate that Pho85 positively influences ICRE-dependent gene expression by phosphorylation-dependent weakening of Opi1 repressor, affecting its functional domains required for promoter recruitment and corepressor interaction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Felix Kliewe
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487, Greifswald, Germany
| | - Jacqueline Kumme
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487, Greifswald, Germany
| | - Mathias Grigat
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487, Greifswald, Germany
| | - Stefan Hintze
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr. 15a, D-17487, Greifswald, Germany
| |
Collapse
|
25
|
He F, Nie WC, Tong Z, Yuan SM, Gong T, Liao Y, Bi E, Gao XD. The GTPase-activating protein Rga1 interacts with Rho3 GTPase and may regulate its function in polarized growth in budding yeast. PLoS One 2015; 10:e0123326. [PMID: 25860339 PMCID: PMC4393305 DOI: 10.1371/journal.pone.0123326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/03/2015] [Indexed: 12/02/2022] Open
Abstract
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3’s function in polarized bud growth.
Collapse
Affiliation(s)
- Fei He
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Chao Nie
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zongtian Tong
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Si-Min Yuan
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Gong
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liao
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xiang-Dong Gao
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
- * E-mail:
| |
Collapse
|
26
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Abstract
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.
Collapse
|
28
|
Peng L, Skylar A, Chang PL, Bisova K, Wu X. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Dev Biol 2014; 393:160-70. [PMID: 24951878 DOI: 10.1016/j.ydbio.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
Abstract
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
Collapse
Affiliation(s)
- Linda Peng
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter L Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Katerina Bisova
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Xuelin Wu
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Yu Z, Cai M, Hu W, Zhang Y, Zhou J, Zhou X, Zhang Y. A cyclin-like protein, ClgA, regulates development in Aspergillus nidulans. Res Microbiol 2014; 165:462-7. [PMID: 24794637 DOI: 10.1016/j.resmic.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
A cyclin-like protein from Aspergillus nidulans, ClgA, was identified. Its cyclin-like subunit shares 28.3% identity to Saccharomyces cerevisiae Clg1. Deletion of clgA slightly influenced fungal growth, but repressed asexual development and made it more sensitive to temperature variations. It also downregulated expression of brlA, abaA and wetA, which are critically responsible for asexual development. Sexual development was impaired in the ΔclgA mutant. Its related genes, veA and nosA, were expressed weakly in the ΔclgA mutant, while nsdD expression showed the opposite behavior. Generally, ClgA functioned differently from other reported cyclins in development of A. nidulans.
Collapse
Affiliation(s)
- Zhenzhong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wei Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Ying Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jiao Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
30
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
31
|
O'Meara TR, Cowen LE. Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 2014; 16:473-81. [PMID: 24438186 DOI: 10.1111/cmi.12266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
|
33
|
Jiménez J, Ricco N, Grijota-Martínez C, Fadó R, Clotet J. Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:140-149. [PMID: 24049669 PMCID: PMC3776146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and "core" mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.
Collapse
Affiliation(s)
- Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
34
|
Simon E, Gildor T, Kornitzer D. Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate. J Mol Biol 2013; 425:3151-65. [PMID: 23763991 DOI: 10.1016/j.jmb.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
The Candida albicans cyclin CaPcl5 activates the cyclin-dependent kinase Pho85 and induces phosphorylation of the transcription factor CaGcn4, leading to its degradation. The high substrate specificity of the CaPcl5/Pho85 complex provides the opportunity to study the determinants of substrate selectivity of cyclins. Mutational analysis of CaPcl5 suggests that residues in a predicted α-helix at the N-terminal end of the cyclin box, as well as in helix I of the cyclin box, play a role in specific substrate recognition. Similar to Saccharomyces cerevisiae Pcl5, we show here that CaPcl5 induces its own phosphorylation at two adjacent sites in the N-terminal region of the protein and that this phosphorylation causes degradation of the cyclin in vivo via the SCF(CDC4) ubiquitin ligase. Remarkably, however, in vitro studies reveal that this phosphorylation also results in a loss of specific substrate recognition, thereby providing an additional novel mechanism for limiting cyclin activity.
Collapse
Affiliation(s)
- Einav Simon
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
35
|
Chen BR, Li Y, Eisenstatt JR, Runge KW. Identification of a lifespan extending mutation in the Schizosaccharomyces pombe cyclin gene clg1+ by direct selection of long-lived mutants. PLoS One 2013; 8:e69084. [PMID: 23874875 PMCID: PMC3711543 DOI: 10.1371/journal.pone.0069084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 06/12/2013] [Indexed: 11/30/2022] Open
Abstract
Model organisms such as budding yeast, worms and flies have proven instrumental
in the discovery of genetic determinants of aging, and the fission yeast
Schizosaccharomyces
pombe is a promising new system for these
studies. We devised an approach to directly select for long-lived
S.
pombe mutants from a random DNA insertion
library. Each insertion mutation bears a unique sequence tag called a bar code
that allows one to determine the proportion of an individual mutant in a culture
containing thousands of different mutants. Aging these mutants in culture
allowed identification of a long-lived mutant bearing an insertion mutation in
the cyclin gene clg1+. Clg1p, like
Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We
identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or
Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate
that Pef1p controls lifespan through the downstream protein kinase Cek1p. While
Pef1p is conserved as Pho85p in Saccharomyces
cerevisiae, and as cdk5 in humans, genome-wide
searches for lifespan regulators in S. cerevisiae have
never identified Pho85p. Thus, the S. pombe system
can be used to identify novel, evolutionarily conserved lifespan extending
mutations, and our results suggest a potential role for mammalian cdk5 as a
lifespan regulator.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- Department of Biochemistry, Case Western Reserve University School of
Medicine, Cleveland, Ohio, United States of America
| | - Yanhui Li
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
| | - Jessica R. Eisenstatt
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Biochemistry, Case Western Reserve University School of
Medicine, Cleveland, Ohio, United States of America
| | - Kurt W. Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of
Medicine at Case Western Reserve University, Cleveland, Ohio,
USA
- Department of Genetics and Genome Sciences, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
36
|
Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H, Perrett S, Prodromou C, Jones GW, Kron SJ. CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell 2013; 151:1308-18. [PMID: 23217712 PMCID: PMC3778871 DOI: 10.1016/j.cell.2012.10.051] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/07/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022]
Abstract
In budding yeast, the essential functions of Hsp70 chaperones Ssa1–4 are regulated through expression level, isoform specificity, and cochaperone activity. Suggesting a novel regulatory paradigm, we find that phosphorylation of Ssa1 T36 within a cyclin-dependent kinase (CDK) consensus site conserved among Hsp70 proteins alters cochaperone and client interactions. T36 phosphorylation triggers displacement of Ydj1, allowing Ssa1 to bind the G1 cyclin Cln3 and promote its degradation. The stress CDK Pho85 phosphorylates T36 upon nitrogen starvation or pheromone stimulation, destabilizing Cln3 to delay onset of S phase. In turn, the mitotic CDK Cdk1 phosphorylates T36 to block Cln3 accumulation in G2/M. Suggesting broad conservation from yeast to human, CDK-dependent phosphorylation of Hsc70 T38 similarly regulates Cyclin D1 binding and stability. These results establish an active role for Hsp70 chaperones as signal transducers mediating growth control of G1 cyclin abundance and activity.
Collapse
Affiliation(s)
- Andrew W Truman
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma Z, Wu Y, Jin J, Yan J, Kuang S, Zhou M, Zhang Y, Guo AY. Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes. Mol Phylogenet Evol 2012; 66:1002-10. [PMID: 23261709 DOI: 10.1016/j.ympev.2012.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 12/14/2022]
Abstract
Cyclins are a family of diverse proteins that play fundamental roles in regulating cell cycle progression in Eukaryotes. Cyclins have been identified from protists to higher Eukaryotes, while its evolution remains vague and the findings turn out controversial. Current classification of cyclins is mainly based on their functions, which may not be appropriate for the systematic evolutionary analysis. In this work, we performed comparative and phylogenetic analysis of cyclins to investigate their classification, origin and evolution. Cyclins originated in early Eukaryotes and evolved from protists to plants, fungi and animals. Based on the phylogenetic tree, cyclins can be divided into three major groups designated as the group I, II and III with different functions and features. Group I plays key roles in cell cycle, group II varied in actions are kingdom (plant, fungi and animal) specific, and group III functions in transcription regulation. Our results showed that the dominating cyclins (group I) diverged from protists to plants, fungi and animals, while divergence of the other cyclins (groups II and III) has occurred in protists. We also discussed the evolutionary relationships between cyclins and cyclin-dependent kinases (CDKs) and found that the cyclins have undergone divergence in protists before the divergence of animal CDKs. This reclassification and evolutionary analysis of cyclins might facilitate understanding eukaryotic cell cycle control.
Collapse
Affiliation(s)
- Zhaowu Ma
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Goel A, Wilkins MR. Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners. PLoS One 2012; 7:e48209. [PMID: 23118954 PMCID: PMC3485199 DOI: 10.1371/journal.pone.0048209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/26/2012] [Indexed: 11/18/2022] Open
Abstract
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.
Collapse
Affiliation(s)
- Apurv Goel
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
39
|
Evidence that two Pcl-like cyclins control Cdk9 activity during cell differentiation in Aspergillus nidulans asexual development. EUKARYOTIC CELL 2012; 12:23-36. [PMID: 23104571 DOI: 10.1128/ec.00181-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are usually involved in cell cycle regulation. However, Cdk9 is an exception and promotes RNA synthesis through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII). The CTD is comprised of repeating heptapeptides, in which serine residues at positions 2, 5, and 7 are of crucial importance. Ser5 phosphorylation causes transcription initiation and promoter escape. However, RNAPII pauses 20 to 50 bp downstream from the transcription start site, until Cdk9 phosphorylates Ser2. This event relieves the checkpoint and promotes the processivity of elongation. Here we present evidence that in the filamentous fungus Aspergillus nidulans, a Cdk9 homologue, PtkA, serves specific functions in conidiophore development. It was previously shown that PtkA interacts with two cyclins, PclA and the T cyclin PchA. Using yeast two-hybrid screens, we identified a third cyclin, PclB, and a kinase, PipA(Bud32). Both proteins were expressed in hyphae and in conidiophores, but interaction between each protein and PtkA was restricted to the conidiophores. Deletion of pchA caused a severe growth defect, and deletion of pipA was lethal, suggesting basic functions in PtkA-dependent gene transcription. In contrast, deletion of pclB in combination with deletion of pclA essentially caused a block in spore formation. We present evidence that the phosphorylation status of the CTD of RNA polymerase II in the conidiophore changes upon deletion of pclA or pclB. Our results suggest that tissue-specific modulation of Cdk9 activity by PclA and PclB is required for proper differentiation.
Collapse
|
40
|
Abstract
For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided insights into the essence of these metabolic changes at unprecedented temporal resolution. Some of these mechanisms by which cell growth and proliferation are coordinated with metabolism are likely to be conserved in multicellular organisms. An improved understanding of the metabolic basis of cell cycle control promises to reveal fundamental principles governing tumorigenesis, metazoan development, niche expansion, and many additional aspects of cell and organismal growth control.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
| | | |
Collapse
|
41
|
Pultz D, Bennetzen MV, Rødkær SV, Zimmermann C, Enserink JM, Andersen JS, Færgeman NJ. Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2012; 8:796-803. [PMID: 22218487 DOI: 10.1039/c2mb05356j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis, degradation, and metabolism of fatty acids are strictly coordinated to meet the nutritional and energetic needs of cells and organisms. In the absence of exogenous fatty acids, proliferation and growth of the yeast Saccharomyces cerevisiae depends on endogenous synthesis of fatty acids, which is catalysed by fatty acid synthase. In the present study, we have used quantitative proteomics to examine the cellular response to inhibition of fatty acid synthesis in Saccharomyces cerevisiae. We have identified approximately 2000 phosphorylation sites of which more than 400 have been identified as being regulated in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By bioinformatic analysis of these phosphorylation events, we have identified the cell cycle kinases Cdc28 and Pho85, the PAK kinase Ste20 as well as the protein kinase Sch9 as central mediators of the cellular response to inhibition of fatty acid synthesis.
Collapse
Affiliation(s)
- Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
42
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
43
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities. Subcell Biochem 2011; 57:291-314. [PMID: 22094427 DOI: 10.1007/978-94-007-2561-4_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Yeasts are powerful model systems to examine the evolutionarily conserved aspects of eukaryotic aging because they maintain many of the same core cellular signaling pathways and essential organelles as human cells. We constructed a strain of the budding yeast Saccharomyces cerevisiae that could monitor the distribution of proteins involved in heterochromatic silencing and aging, and isolated mutants that alter this distribution. The largest class of such mutants cause defects in mitochondrial function, and appear to cause changes in nuclear silencing separate from the well-known Rtg2p-dependent pathway that alters nuclear transcription in response to the loss of the mitochondrial genome. Mutants that inactivate the ATP2 gene, which encodes the ATPase subunit of the mitochondrial F(1)F(0)-ATPase, were isolated twice in our screen and identify a lifespan extending pathway in a gene that is conserved in both prokaryotes and eukaryotes. The budding yeast S. cerevisiae S. cerevisiae has been used with great success to identify other lifespan-extending pathways in screens using surrogate phenotypes such as stress resistance or silencing to identify random mutants, or in high throughput screens that utilize the deletion strain set resource. However, the direct selection of long-lived mutants from a pool of random mutants is more challenging. We have established a new chronological aging assay for the evolutionarily distant fission yeast Schizosaccharomyces pombe that recapitulates aspects of aging conserved in all eukaryotes. We have constructed a novel S. pombe S. pombe DNA insertion mutant bank, and used it to show that we can directly select for a long-lived mutant. The use of both the budding and fission yeast systems should continue to facilitate the identification and validation of lifespan extending pathways that are conserved in humans.
Collapse
|
46
|
Mazanka E, Weiss EL. Sequential counteracting kinases restrict an asymmetric gene expression program to early G1. Mol Biol Cell 2010; 21:2809-20. [PMID: 20573982 PMCID: PMC2921117 DOI: 10.1091/mbc.e10-02-0174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The activity of a daughter cell specific transcription factor is restricted to early G1 by the sequential action of opposing cell cycle–regulated kinases. Gene expression is restricted to specific times in cell division and differentiation through close control of both activation and inactivation of transcription. In budding yeast, strict spatiotemporal regulation of the transcription factor Ace2 ensures that it acts only once in a cell's lifetime: at the M-to-G1 transition in newborn daughter cells. The Ndr/LATS family kinase Cbk1, functioning in a system similar to metazoan hippo signaling pathways, activates Ace2 and drives its accumulation in daughter cell nuclei, but the mechanism of this transcription factor's inactivation is unknown. We found that Ace2's nuclear localization is maintained by continuous Cbk1 activity and that inhibition of the kinase leads to immediate loss of phosphorylation and export to the cytoplasm. Once exported, Ace2 cannot re-enter nuclei for the remainder of the cell cycle. Two separate mechanisms enforce Ace2's cytoplasmic sequestration: 1) phosphorylation of CDK consensus sites in Ace2 by the G1 CDKs Pho85 and Cdc28/CDK1 and 2) an unknown mechanism mediated by Pho85 that is independent of its kinase activity. Direct phosphorylation of CDK consensus sites is not necessary for Ace2's cytoplasmic retention, indicating that these mechanisms function redundantly. Overall, these findings show how sequential opposing kinases limit a daughter cell specific transcriptional program to a brief period during the cell cycle and suggest that CDKs may function as cytoplasmic sequestration factors.
Collapse
Affiliation(s)
- Emily Mazanka
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
47
|
Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell 2010; 38:250-64. [PMID: 20417603 PMCID: PMC2861662 DOI: 10.1016/j.molcel.2010.02.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/28/2009] [Accepted: 02/16/2010] [Indexed: 12/26/2022]
Abstract
As a major intracellular degradation pathway, autophagy is tightly regulated to prevent cellular dysfunction in all eukaryotic cells. The rapamycin-sensitive Tor kinase complex 1 is a major regulator of autophagy. Several other nutrient-sensory kinases also play critical roles to precisely modulate autophagy; however, the network of regulatory mechanisms remains largely elusive. We used genetic analyses to elucidate the mechanism by which the stress-responsive, cyclin-dependent kinase Pho85 and its corresponding cyclin complexes antagonistically modulate autophagy in Saccharomyces cerevisiae. When complexed with cyclins Pho80 and Pcl5, Pho85 negatively regulates autophagy through downregulating the protein kinase Rim15 and the transcription factors Pho4 and Gcn4. The cyclins Clg1, Pcl1, and Pho80, in concert with Pho85, positively regulate autophagy through promoting the degradation of Sic1, a negative regulator of autophagy that targets Rim15. Our results suggest a model in which Pho85 and its cyclin complexes have opposing roles in autophagy regulation.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Jiefei Geng
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Wei-Lien Yen
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Ke Wang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| |
Collapse
|
48
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
49
|
Pho85 kinase, a cyclin-dependent kinase, regulates nuclear accumulation of the Rim101 transcription factor in the stress response of Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:943-51. [PMID: 20382759 DOI: 10.1128/ec.00247-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to changing environmental conditions. The Pho85 kinase, one of the yeast cyclin-dependent kinases (CDK), is known to play an important role in the cellular response to alterations in parameters such as nutrient levels and salinity. Several genes whose expression is regulated, either directly or indirectly, by the Rim101 transcription factor become constitutively activated when Pho85 function is absent. Because Rim101 is responsible for adaptation to alkaline conditions, this observation suggests an interaction between Pho85 and Rim101 in the response to alkaline stress. We have found that Pho85 affects neither RIM101 transcription, the proteolytic processing that is required for Rim101 activation, nor Rim101 stability. Rather, Pho85 regulates the nuclear accumulation of active Rim101, possibly via phosphorylation. Additionally, we report that Pho85 and the transcription factor Pho4 are necessary for adaptation to alkaline conditions and that PTK2 activation by Pho4 is involved in this process. These findings illustrate novel roles for the regulators of the PHO system when yeast cells cope with various environmental stresses potentially threatening their survival.
Collapse
|
50
|
Knoblach B, Rachubinski RA. Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance. J Biol Chem 2009; 285:6670-80. [PMID: 20028986 DOI: 10.1074/jbc.m109.094805] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peroxisomes are dynamic organelles that divide continuously in growing cell cultures and expand extensively in lipid-rich medium. Peroxisome population control is achieved in part by Pex11p-dependent regulation of peroxisome size and number. Although the production of Pex11p in yeast is tightly linked to peroxisome biogenesis by transcriptional regulation of the PEX11 gene, it remains unclear if and how Pex11p activity could be modulated by rapid signaling. We report the reversible phosphorylation of Saccharomyces cerevisiae Pex11p in response to nutritional cues and delineate a mechanism for phosphorylation-dependent activation of Pex11p through the analysis of phosphomimicking mutants. Peroxisomal phenotypes in the PEX11-A and PEX11-D strains expressing constitutively dephosphorylated and phosphorylated forms of Pex11p resemble those of PEX11 gene knock-out and overexpression mutants, although PEX11 transcript and Pex11 protein levels remain unchanged. We demonstrate functional inequality and differences in subcellular localization of the Pex11p forms. Pex11Dp promotes peroxisome fragmentation when reexpressed in cells containing induced peroxisomes. Pex11p translocates between endoplasmic reticulum and peroxisomes in a phosphorylation-dependent manner, whereas Pex11Ap and Pex11Dp are impaired in trafficking and constitutively associated with mature and proliferating peroxisomes, respectively. Overexpression of cyclin-dependent kinase Pho85p results in hyperphosphorylation of Pex11p and peroxisome proliferation. This study provides the first evidence for control of peroxisome dynamics by phosphorylation-dependent regulation of a peroxin.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|