1
|
Dewhurst-Maridor G, Abegg D, David FPA, Rougemont J, Scott CC, Adibekian A, Riezman H. The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae. Mol Biol Cell 2017; 28:2637-2649. [PMID: 28768829 PMCID: PMC5620372 DOI: 10.1091/mbc.e17-03-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 01/26/2023] Open
Abstract
The SAGA complex, together with transcription factors and Rvs167p, coordinates sterol-dependent transcription changes. In ergosterol mutants the SAGA complex increases its occupancy on ergosterol biosynthesis and anaerobic gene promoters, recruits the SWI/SNF complex, and binds to transcription factors and Rvs167p. Genes encoding stress proteins and basic amino acid synthesis are also affected even though promoter occupancy is not changed. Changes in cellular sterol species and concentrations can have profound effects on the transcriptional profile. In yeast, mutants defective in sterol biosynthesis show a wide range of changes in transcription, including a coinduction of anaerobic genes and ergosterol biosynthesis genes, biosynthesis of basic amino acids, and several stress genes. However the mechanisms underlying these changes are unknown. We identified mutations in the SAGA complex, a coactivator of transcription, which abrogate the ability to carry out most of these sterol-dependent transcriptional changes. In the erg3 mutant, the SAGA complex increases its occupancy time on many of the induced ergosterol and anaerobic gene promoters, increases its association with several relevant transcription factors and the SWI/SNF chromatin remodeling complex, and surprisingly, associates with an endocytic protein, Rvs167p, suggesting a moonlighting function for this protein in the sterol-regulated induction of the heat shock protein, HSP42 and HSP102, mRNAs.
Collapse
Affiliation(s)
| | - Daniel Abegg
- Department of Organic Chemistry, University of Geneva, 1205 Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Fabrice P A David
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland.,Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | - Alexander Adibekian
- Department of Organic Chemistry, University of Geneva, 1205 Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland .,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Montagna GN, Buscaglia CA, Münter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K. Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 2011; 287:2410-22. [PMID: 22139844 DOI: 10.1074/jbc.m111.302109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.
Collapse
|
3
|
Specht S, Miller SBM, Mogk A, Bukau B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011; 195:617-29. [PMID: 22065637 PMCID: PMC3257523 DOI: 10.1083/jcb.201106037] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The budding yeast heat shock protein Hsp42 coaggregates with misfolded proteins and may link those aggregates to further sorting factors. The aggregation of proteins inside cells is an organized process with cytoprotective function. In Saccharomyces cerevisiae, aggregating proteins are spatially sequestered to either juxtanuclear or peripheral sites, which target distinct quality control pathways for refolding and degradation. The cellular machinery driving the sequestration of misfolded proteins to these sites is unknown. In this paper, we show that one of the two small heat shock proteins of yeast, Hsp42, is essential for the formation of peripheral aggregates during physiological heat stress. Hsp42 preferentially localizes to peripheral aggregates but is largely absent from juxtanuclear aggregates, which still form in hsp42Δ cells. Transferring the amino-terminal domain of Hsp42 to Hsp26, which does not participate in aggregate sorting, enables Hsp26 to replace Hsp42 function. Our data suggest that Hsp42 acts via its amino-terminal domain to coaggregate with misfolded proteins and perhaps link such complexes to further sorting factors.
Collapse
Affiliation(s)
- Sebastian Specht
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
4
|
Oxidative stress induced by HIV-1 F34IVpr in Schizosaccharomyces pombe is one of its multiple functions. Exp Mol Pathol 2010; 88:38-44. [DOI: 10.1016/j.yexmp.2009.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 11/17/2022]
|
5
|
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res 2009; 7:178-83. [PMID: 19275587 DOI: 10.2174/157016209787581436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is engaged in dynamic and antagonistic interactions with host cells. Once infected by HIV-1, host cells initiate various antiviral strategies, such as innate antiviral defense mechanisms, to counteract viral invasion. In contrast, the virus has different strategies to suppress these host responses to infection. The final balance between these interactions determines the outcome of the viral infection and disease progression. Recent findings suggest that HIV-1 viral protein R (Vpr) interacts with some of the host innate antiviral factors, such as heat shock proteins, and plays an active role as a viral pathogenic factor. Cellular heat stress response factors counteract Vpr activities and inhibit HIV replication. However, Vpr overcomes these heat-stress-like responses by preventing heat shock factor-1 (HSF-1)-mediated activation of heat shock proteins. In this review, we will focus on the virus-host interactions involving Vpr. In addition to heat stress response proteins, we will discuss interactions of Vpr with other proteins, such as EF2 and Skp1/GSK3, their involvements in cellular responses to Vpr, as well as strategies to develop novel antiviral therapies aimed at enhancing anti-Vpr responses of the host cell.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
6
|
Afanasiev SA, Falaleeva LP, Rebrova TU, Suslova TE, Popov SV, Karpov RS. Effect of stress-proteins on survival of bone marrow mesenchymal stem cells after intramyocardial transplantation against the background of postinfarction heart remodeling. Bull Exp Biol Med 2009; 146:111-5. [PMID: 19145366 DOI: 10.1007/s10517-008-0215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We studied the presence of colony-forming cells in cell culture from rat heart 40 days after experimental myocardial infraction. The mean cellularity in this pathology was 12+/-8 cell/cm2, which is 20-fold lower than in intact myocardium. Transplantation of mesenchymal stem cells into the remodeling myocardium restored the pool of colony-forming cells. This effect depended on the state of transplanted cells. After transplantation of mesenchymal stem cells with low content of stress proteins, 6+/-2 colonies were detected, while after transplantation of cells with high content of hsp70 and hsp60 stress proteins (modified mesenchymal stem cells) 18+/-5 colonies were found, the mean cellularity of the corresponding cultured being 946+/-267 and 1926+/-123 cell/cm2. The positive effect of modified mesenchymal stem cells was observed on days 4 and 7 after transplantation. We conclude that postinfarction remodeling mobilized the total pool of regional stem cells; mesenchymal stem cells with high content of hsp70 and hsp60 demonstrated highest survival rate after intramyocardial transplantation.
Collapse
Affiliation(s)
- S A Afanasiev
- Institute of Cardiology, Tomsk Research Center, Siberian Division of Russian Academy of Medical Sciences, Russia
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Transgenic mouse models of HIV-associated nephropathy (HIVAN) show that expression of HIV-1 genes in kidney cells produces collapsing focal segmental glomerulosclerosis and microcystic tubular disease typical of the human disease. HIV-1 vpr plays an important role in the glomerulosclerosis of HIVAN, especially when it is associated with nef expression in podocytes. Further, Vpr is reported to exacerbate tubular pathology. Here we determined effects of vpr expression on renal tubular epithelial cell function by transducing them with a pseudotyped lentivirus vector carrying HIV-1 vpr and control genes. Vpr expression in the cultured cells impaired cytokinesis causing cell enlargement and multinucleation. This profound in vitro phenotype caused us to reexamine the HIVAN mouse model and human HIVAN biopsies to see if similar changes occur in vivo. Both showed abundant hypertrophic tubule cells similar to the in vitro finding that represents a previously unappreciated aspect of the human disease. Additionally, multinucleated tubular cells were identified in the murine HIVAN model and increased chromosome number was detected in tubular cells of human HIVAN biopsies. Our study provides evidence of a new clinical phenotype in HIVAN that may result from the ability of Vpr to impair cytokinesis.
Collapse
|
8
|
Andersen JL, Le Rouzic E, Planelles V. HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 2008; 85:2-10. [PMID: 18514189 DOI: 10.1016/j.yexmp.2008.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/04/2008] [Indexed: 02/05/2023]
Abstract
Since the first isolation of HIV-1 from a patient with generalized lymphadenopathy in 1983, great progress has been made in understanding the viral life cycle and the functional nuances of each of the nine genes encoded by HIV-1. Considerable attention has been paid to four small HIV-1 open reading frames, vif, vpr, vpu and nef. These genes were originally termed "accessory" because their deletion failed to completely disable viral replication in vitro. More than twenty years after the cloning and sequencing of HIV-1, a great deal of information is available regarding the multiple functions of the accessory proteins and it is well accepted that, collectively, these gene products modulate the host cell biology to favor viral replication, and that they are largely responsible for the pathogenesis of HIV-1. Expression of Vpr, in particular, leads to cell cycle arrest in G(2), followed by apoptosis. Here we summarize our current understanding of Vpr biology with a focus on Vpr-induced G(2) arrest and apoptosis.
Collapse
Affiliation(s)
- Joshua L Andersen
- Center for the Study of Aging and Human Development, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
9
|
Montero-Barrientos M, Cardoza RE, Gutiérrez S, Monte E, Hermosa R. The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum. Curr Genet 2007; 52:45-53. [PMID: 17581753 DOI: 10.1007/s00294-007-0140-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
An EST showing high values of identity with genes coding for small heat shock proteins (sHSPs) was selected from an EST library collection of Trichoderma virens T59. The cDNA gene (hsp23) with a sequence size of 645 bp long was amplified by PCR. The expression of this gene was evaluated in cultures grown at temperatures ranging from 4 to 41 degrees C. An increased level of expression was detected when the fungus was grown at extreme temperatures (4, 10 or 41 degrees C). A high-expression level was also observed when the fungus was grown in 10% ethanol for 4 h. The hsp23 gene was present as a unique copy in the T. virens genome, and a homologous gene was also present in other five investigated Trichoderma species. Strain T. harzianum T34 was transformed with the hsp23 gene from T. virens T59 under the control of the pki (pyruvate kinase) promoter from T. reesei and the ble (phleomycin resistance) gene as selection marker. Statistically significant differences were detected between the strains T34 and two selected transformants in the biomass quantities obtained after heat shock treatment and in the colony diameters after incubation at 4 degrees C for 2 months.
Collapse
Affiliation(s)
- Marta Montero-Barrientos
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
10
|
Benko Z, Liang D, Agbottah E, Hou J, Taricani L, Young PG, Bukrinsky M, Zhao RY. Antagonistic interaction of HIV-1 Vpr with Hsf-mediated cellular heat shock response and Hsp16 in fission yeast (Schizosaccharomyces pombe). Retrovirology 2007; 4:16. [PMID: 17341318 PMCID: PMC1828740 DOI: 10.1186/1742-4690-4-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/07/2007] [Indexed: 01/08/2023] Open
Abstract
Background Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. Results We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. Conclusion These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.
Collapse
Affiliation(s)
- Zsigmond Benko
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dong Liang
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel Agbottah
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jason Hou
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorena Taricani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael Bukrinsky
- Department of Microbiology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Richard Y Zhao
- Children's Memorial Research Center, Departments of Pediatrics, Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Departments of Pathology, Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Nakazawa J, Watanabe N, Imoto M, Osada H. Mutational analysis of growth arrest and cellular localization of human immunodeficiency virus type 1 Vpr in the budding yeast, Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2005; 51:245-56. [PMID: 16205032 DOI: 10.2323/jgam.51.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viral protein R (Vpr), one of the accessory gene products of human immunodeficiency virus type 1 (HIV-1), is responsible for the incorporation of a viral genome into the nucleus upon infection. Vpr also arrests the cell cycle and induces apoptosis in infected cells. Similarly, in yeast, Vpr localizes in the nucleus and shows growth inhibitory activity; however, the molecular mechanism of growth inhibition remains unknown. To elucidate this mechanism, several point mutations of Vpr, which are known to perturb several phenotypes of Vpr in mammalian cells, were introduced in the budding yeast, Saccharomyces cerevisiae. For the first time, we found that growth inhibition by Vpr occurred independently of intracellular localization in yeast, as has previously been reported in mammals. We also identified several amino acid residues, the mutation of which cancels growth inhibitory activity, and/or alters localization, both in yeast and mammalian cells, suggesting the importance of these residues for the phenotypes.
Collapse
Affiliation(s)
- Junko Nakazawa
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | |
Collapse
|
12
|
Yao XJ, Rougeau N, Duisit G, Lemay J, Cohen ÉA. Analysis of HIV-1 Vpr determinants responsible for cell growth arrest in Saccharomyces cerevisiae. Retrovirology 2004; 1:21. [PMID: 15312229 PMCID: PMC516023 DOI: 10.1186/1742-4690-1-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 08/16/2004] [Indexed: 11/22/2022] Open
Abstract
Background The HIV-1 genome encodes a well-conserved accessory gene product, Vpr, that serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest, and the modulation of HIV-1-induced apoptosis. We previously reported the genetic selection of a panel of di-tryptophan (W)-containing peptides capable of interacting with HIV-1 Vpr and inhibiting its cytostatic activity in Saccharomyces cerevisiae (Yao, X.-J., J. Lemay, N. Rougeau, M. Clément, S. Kurtz, P. Belhumeur, and E. A. Cohen, J. Biol. Chem. v. 277, p. 48816–48826, 2002). In this study, we performed a mutagenic analysis of Vpr to identify sequence and/or structural determinants implicated in the interaction with di-W-containing peptides and assessed the effect of mutations on Vpr-induced cytostatic activity in S. cerevisiae. Results Our data clearly shows that integrity of N-terminal α-helix I (17–33) and α-helix III (53–83) is crucial for Vpr interaction with di-W-containing peptides as well as for the protein-induced cytostatic effect in budding yeast. Interestingly, several Vpr mutants, mainly in the N- and C-terminal domains, which were previously reported to be defective for cell-cycle arrest or apoptosis in human cells, still displayed a cytostatic activity in S. cerevisiae and remained sensitive to the inhibitory effect of di-W-containing peptides. Conclusions Vpr-induced growth arrest in budding yeast can be effectively inhibited by GST-fused di-W peptide through a specific interaction of di-W peptide with Vpr functional domain, which includes α-helix I (17–33) and α-helix III (53–83). Furthermore, the mechanism(s) underlying Vpr-induced cytostatic effect in budding yeast are likely to be distinct from those implicated in cell-cycle alteration and apoptosis in human cells.
Collapse
Affiliation(s)
- Xiao-Jian Yao
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Current address : Dept. of Medical Microbiology, University of Manitoba, Basic Medical Sciences Building, 730 William Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Nicole Rougeau
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Ghislaine Duisit
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Lemay
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Éric A Cohen
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 2004; 322:69-81. [PMID: 15063118 DOI: 10.1016/j.virol.2004.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/16/2003] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[DeltaVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene.
Collapse
Affiliation(s)
- Peter Dickie
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biologia Molecular Severo Ochoa Consejo Superior Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
15
|
Yao XJ, Lemay J, Rougeau N, Clément M, Kurtz S, Belhumeur P, Cohen EA. Genetic selection of peptide inhibitors of human immunodeficiency virus type 1 Vpr. J Biol Chem 2002; 277:48816-26. [PMID: 12379652 DOI: 10.1074/jbc.m207982200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) encodes a gene product, Vpr, that facilitates the nuclear uptake of the viral pre-integration complex in non-dividing cells and causes infected cells to arrest in the G(2) phase of the cell cycle. Vpr was also shown to cause mitochondrial dysfunction in human cells and budding yeasts, an effect that was proposed to lead to growth arrest and cell killing in budding yeasts and apoptosis in human cells. In this study, we used a genetic selection in Saccharomyces cerevisiae to identify hexameric peptides that suppress the growth arrest phenotype mediated by Vpr. Fifteen selected glutathione S-transferase (GST)-fused peptides were found to overcome to different extents Vpr-mediated growth arrest. Amino acid analysis of the inhibitory peptide sequences revealed the conservation of a di-tryptophan (diW) motif. DiW-containing GST-peptides interacted with Vpr in GST pull-down assays, and their level of interaction correlated with their ability to overcome Vpr-mediated growth arrest. Importantly, Vpr-binding GST-peptides were also found to alleviate Vpr-mediated apoptosis and G(2) arrest in HIV-1-producing CD4(+) T cell lines. Furthermore, they co-localized with Vpr and interfered with its nuclear translocation. Overall, this study defines a class of diW-containing peptides that inhibit HIV-1 Vpr biological activities most likely by interacting with Vpr and interfering with critical protein interactions.
Collapse
Affiliation(s)
- Xiao-Jian Yao
- Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Van Montfort R, Slingsby C, Vierling E. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:105-56. [PMID: 11868270 DOI: 10.1016/s0065-3233(01)59004-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R Van Montfort
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | |
Collapse
|
17
|
Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M. Subcellular localization of the yeast proteome. Genes Dev 2002; 16:707-19. [PMID: 11914276 PMCID: PMC155358 DOI: 10.1101/gad.970902] [Citation(s) in RCA: 558] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass approximately 5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability--a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 399] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
19
|
Mouland AJ, Coady M, Yao XJ, Cohen EA. Hypophosphorylation of poly(A) polymerase and increased polyadenylation activity are associated with human immunodeficiency virus type 1 Vpr expression. Virology 2002; 292:321-30. [PMID: 11878934 DOI: 10.1006/viro.2001.1261] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 encoded accessory protein, viral protein R (Vpr) is responsible for several biological effects in HIV-1-infected cells including nuclear transport of the preintegration complex, activation of long terminal repeat (LTR)-mediated transcription, and the induction of cell-cycle arrest and apoptosis. Vpr's ability to arrest cells at the G2 phase of the cell cycle is due to the inactivation of p34(cdc2) cyclin B complex, resulting in hypophosphorylation of substrates involved in cell-cycle progression from G2 to mitosis (M). Poly(A) polymerase (PAP), the enzyme responsible for poly(A) addition to primary transcripts, contains multiple consensus phosphorylation sites for p34(cdc2) cyclin B kinase that regulates its catalytic activity. We investigated the effects of Vpr on the activity of PAP in Jurkat cells using a superinfection system. Superinfection of cells using Vpr+ vesicular stomatitis virus G protein (VSV-G)-pseudotyped virus caused a complete dephosphorylation of PAP. Cotransfection studies in 293T cells and Xenopus oocyte RNA injection experiments mirrored these effects. Vpr's dramatic effect on PAP dephosphorylation was reflected in enhanced polyadenylation activity in PAP activity assays. HIV-1 Vpr appears to enhance processes that are coupled to transcription such as polyadenylation and could ultimately prove to optimize HIV-1 replication and contribute to HIV-1 pathogenesis. (C)2002 Elsevier Science.
Collapse
Affiliation(s)
- Andrew J Mouland
- Department of Medicine, McGill University, Lady Davis Institute-Sir Mortimer B Davis Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | |
Collapse
|
20
|
de Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 2001; 18:1413-28. [PMID: 11746603 DOI: 10.1002/yea.793] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exposure of Saccharomyces cerevisiae to 0.9 mM sorbic acid at pH 4.5 resulted in the upregulation of 10 proteins; Hsp42, Atp2, Hsp26, Ssa1 or Ssa2, Ssb1 or Ssb2, Ssc1, Ssa4, Ach1, Zwf1 and Tdh1; and the downregulation of three proteins; Ade16, Adh3 and Eno2. In parallel, of 6144 ORFs, 94 (1.53%) showed greater than a 1.4-fold increase in transcript level after exposure to sorbic acid and five of these were increased greater than two-fold; MFA1, AGA2, HSP26, SIP18 and YDR533C. Similarly, of 6144 ORFs, 72 (1.17%) showed greater than a 1.4-fold decrease in transcript level and only one of these, PCK1, was decreased greater than two-fold Functional categories of genes that were induced by sorbic acid stress included cell stress (particularly oxidative stress), transposon function, mating response and energy generation. We found that proteomic analysis yielded distinct information from transcript analysis. Only the upregulation of Hsp26 was detected by both methods. Subsequently, we demonstrated that a deletion mutant of Hsp26 was sensitive to sorbic acid. Thus, the induction of Hsp26, which occurs during adaptation to sorbic acid, confers resistance to the inhibitory effects of this compound.
Collapse
Affiliation(s)
- H de Nobel
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Bellí G, Garí E, Aldea M, Herrero E. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 2001; 39:1022-35. [PMID: 11251821 DOI: 10.1046/j.1365-2958.2001.02297.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Moderate hyperosmotic stress on Saccharomyces cerevisiae cells produces a temporary delay at the G1 stage of the cell cycle. This is accompanied by transitory downregulation of CLN1, CLN2 and CLB5 transcript levels, although not of CLN3, which codes for the most upstream activator of the G1/S transition. Osmotic shock to cells synchronized in early G1, when Cln3 is the only cyclin present, causes a delay in cell cycle resumption. This points to Cln3 as being a key cell cycle target for osmotic stress. We have observed that osmotic shock causes downregulation of the kinase activity of Cln3-Cdc28 complexes. This is concomitant with a temporary accumulation of Cln3 protein as a result of increased stability. The effects of the osmotic stress in G1 are not suppressed in CLN3-1 cells with increased kinase activity, as the Cln3-Cdc28 activity in this mutant is still affected by the shock. Although Hog1 is not required for the observed cell cycle arrest in hyperosmotic conditions, it is necessary to resume the cell cycle at KCl concentrations higher than 0.4 M.
Collapse
Affiliation(s)
- G Bellí
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198 Lleida, Spain
| | | | | | | |
Collapse
|
22
|
Watts NR, Sackett DL, Ward RD, Miller MW, Wingfield PT, Stahl SS, Steven AC. HIV-1 rev depolymerizes microtubules to form stable bilayered rings. J Cell Biol 2000; 150:349-60. [PMID: 10908577 PMCID: PMC2180222 DOI: 10.1083/jcb.150.2.349] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 06/09/2000] [Indexed: 02/03/2023] Open
Abstract
We describe a novel interaction between HIV-1 Rev and microtubules (MTs) that results in the formation of bilayered rings that are 44-49 nm in external diameter, 3.4-4.2 MD (megadaltons) in mass, and have 28-, 30-, or 32-fold symmetry. Ring formation is not sensitive to taxol, colchicine, or microtubule-associated proteins, but requires Mg(2+) and is inhibited by maytansine. The interaction involves the NH(2)-terminal domain of Rev and the face of tubulin exposed on the exterior of the MTs. The NH(2)-terminal half of Rev has unexpected sequence similarity to the tubulin-binding portion of the catalytic/motor domains of the microtubule-destabilizing Kin I kinesins. We propose a model wherein binding of Rev dimers to MTs at their ends causes segments of two neighboring protofilaments to peel off and close into rings, circumferentially containing 14, 15, or 16 tubulin heterodimers, with Rev bound on the inside. Rev has a strong inhibitory effect on aster formation in Xenopus egg extracts, demonstrating that it can interact with tubulin in the presence of normal levels of cellular constituents. These results suggest that Rev may interact with MTs to induce their destabilization, a proposition consistent with the previously described disruption of MTs after HIV-1 infection.
Collapse
Affiliation(s)
- Norman R. Watts
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development
| | - Rita D. Ward
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Mill W. Miller
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Stephen S. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| |
Collapse
|
23
|
Elder RT, Yu M, Chen M, Edelson S, Zhao Y. Cell cycle G2 arrest induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of cell death and early genes in the DNA damage checkpoint. Virus Res 2000; 68:161-73. [PMID: 10958988 DOI: 10.1016/s0168-1702(00)00167-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Vpr induces cell cycle G2 arrest, morphological changes and cell death in human and fission yeast cells. The cellular targets for G2 arrest were expected to be the inhibitory phosphorylation sites of Cdc2, as G2 arrest correlates with hyperphosphorylation and decreased activity of Cdc2 in both human and fission yeast cells. In this study, we present direct evidence of genetic suppression of Vpr-induced G2 arrest by cdc2 mutations. Mutations in cdc2 (cdc2-1w and cdc2-3w) reduce the ability of Vpr to induce G2 arrest. A strain with a mutation changing the Tyr15 of Cdc2 to the non-phosphorylated Phe (Y15F) eliminated Vpr-induced G2 arrest indicating that Tyr15 of Cdc2 is the sole target for induction of G2 arrest by Vpr. Although the G2 arrest induced by DNA damage also proceeds through phosphorylation of Tyr15, the rad1, rad3, rad9 and rad17 mutations, which eliminate the G2 checkpoint for DNA damage, did not block the G2 arrest induced by Vpr. Furthermore, Vpr expression did not alter sensitivity of these rad mutants to UV radiation. Thus, the pathways for the induction of G2 arrest by DNA damage and Vpr are not identical. Interestingly, Vpr still induces cell death and morphological changes in the Y15F Cdc2 strain indicating that G2 arrest is not required for morphological changes and cell death. This conclusion was further supported by the observation that mutations in Vpr, which have lost their ability to induce G2 arrest, retained the ability to kill cells.
Collapse
Affiliation(s)
- R T Elder
- Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
24
|
Shimura M, Zhou Y, Asada Y, Yoshikawa T, Hatake K, Takaku F, Ishizaka Y. Inhibition of Vpr-induced cell cycle abnormality by quercetin: a novel strategy for searching compounds targeting Vpr. Biochem Biophys Res Commun 1999; 261:308-16. [PMID: 10425183 DOI: 10.1006/bbrc.1999.0994] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vpr, an accessory gene product of HIV-1 which induces cell cycle abnormality leading to the increased HIV replication, is supposed to be a possible target for anti-AIDS drugs. We recently established a cell line (MIT-23) in which Vpr-induced cell cycle perturbation could be manipulated by a tetracycline promoter. Here, we screened anti-Vpr activity in 27 kinds of herb drugs using MIT-23 cells. One of the extracts prepared from Houttuyniae herba showed an inhibitory activity. Quercetin (QCT), a compound of this crude drug, efficiently inhibited Vpr function without affecting its expression. Furthermore, data suggested that Vpr-induced transcription from HIV-LTR was considerably abrogated by QCT. These data indicate that QCT, a flavonoid previously reported to inhibit HIV replication, also targets Vpr, implicating that MIT-23 cell provides a novel strategy for screening compounds possessing anti-Vpr activity which would be in turn utilized for clarifying the mechanism of Vpr function.
Collapse
Affiliation(s)
- M Shimura
- Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Shimura M, Tanaka Y, Nakamura S, Minemoto Y, Yamashita K, Hatake K, Takaku F, Ishizaka Y. Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. FASEB J 1999; 13:621-37. [PMID: 10094923 DOI: 10.1096/fasebj.13.6.621] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vpr, an accessory gene of HIV-1, induces cell cycle abnormality with accumulation at G2/M phase and increased ploidy. Since abnormality of mitotic checkpoint control provides a molecular basis of genomic instability, we studied the effects of Vpr on genetic integrity using a stable clone, named MIT-23, in which Vpr expression is controlled by the tetracycline-responsive promoter. Treatment of MIT-23 cells with doxycycline (DOX) induced Vpr expression with a giant multinuclear cell formation. Increased micronuclei (MIN) formation was also detected in these cells. Abolishment of Vpr expression by DOX removal induced numerous asynchronous cytokinesis in the multinuclear cells with leaving MIN in cytoplasm, suggesting that the transient Vpr expression could cause genetic unbalance. Consistent with this expectation, MIT-23 cells, originally pseudodiploid cells, became aneuploid after repeated expression of Vpr. Experiments using deletion mutants of Vpr revealed that the domain inducing MIN formation as well as multinucleation was located in the carboxy-terminal region of Vpr protein. These results suggest that Vpr induces genomic instability, implicating the possible role in the development of AIDS-related malignancies.
Collapse
Affiliation(s)
- M Shimura
- Department of Intractable Diseases, International Medical Center of Japan, Shinjuku-ku, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao Y, Yu M, Chen M, Elder RT, Yamamoto A, Cao J. Pleiotropic effects of HIV-1 protein R (Vpr) on morphogenesis and cell survival in fission yeast and antagonism by pentoxifylline. Virology 1998; 246:266-76. [PMID: 9657945 DOI: 10.1006/viro.1998.9208] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of HIV-1 Vpr causes cell cycle G2 arrest, change in cell shape, and cell death over a large evolutionary distance ranging from human to yeast cells. As a step toward understanding these highly conserved Vpr functions, we have examined the effect of Vpr on cytoskeletal elements and the viability of fission yeast. We demonstrate that the changes in cell morphology induced by Vpr in fission yeast are caused by several underlying cellular abnormalities, including increased biosynthesis of chitin in the cell wall, disruption of the actin cytoskeleton, and altered polarity for cell growth. The extent of these cellular alterations and cell survival correlates with the level of vpr expression. Accompanying cell death, Vpr induces aberrant nuclear morphologies in fission yeast which are similar to those found during the apoptosis induced by Vpr in mammalian cells. The Vpr-induced cytopathic effects and cell death can be suppressed by treatment with pentoxifylline, a compound that inhibits HIV-1 viral replication and suppresses Vpr-induced cell cycle G2 arrest in human and fission yeast cells. The results presented here suggest that pentoxifylline suppresses the effects of Vpr by blocking interactions of Vpr with cellular proteins. Given that pentoxifylline has potential therapeutic value in blocking the effects of Vpr in HIV-infected patients, understanding the molecular mechanisms by which pentoxifylline antagonizes Vpr may have general implications for HIV therapy.
Collapse
Affiliation(s)
- Y Zhao
- Division of Infectious Diseases, Children's Memorial Hospital, Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Vodicka MA, Koepp DM, Silver PA, Emerman M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 1998; 12:175-85. [PMID: 9436978 PMCID: PMC316441 DOI: 10.1101/gad.12.2.175] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Accepted: 11/11/1997] [Indexed: 02/05/2023]
Abstract
HIV-1 Vpr promotes nuclear entry of viral nucleic acids in nondividing macrophages and also causes a G2 cell-cycle arrest. Consistent with its role in nuclear transport, we show Vpr localizes to the nuclear envelope in both human and yeast cells. Like the importin-beta subunit of the nuclear import receptor, Vpr also interacts with the yeast importin-alpha subunit and nucleoporins. Moreover, overexpression of either Vpr or importin-beta in yeast blocks nuclear transport of mRNAs. A mutant form of Vpr (Vpr F34I) that does not localize at the nuclear envelope, or bind to importin-alpha and nucleoporins, renders HIV-1 incapable of infecting macrophages efficiently. Vpr F34I, however, still causes a G2 arrest, demonstrating that the dual functions of Vpr are genetically separable. Our data suggest Vpr functionally resembles importin-beta in nuclear import of the HIV-1 pre-integration complex and this function is essential for the role of Vpr in macrophage infection, but not G2 arrest.
Collapse
Affiliation(s)
- M A Vodicka
- Divisions of Molecular Medicine and Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 USA
| | | | | | | |
Collapse
|