1
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Malik N, Dunn KM, Cassels J, Hay J, Estell C, Sansom OJ, Michie AM. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci Rep 2019; 9:16917. [PMID: 31729420 PMCID: PMC6858379 DOI: 10.1038/s41598-019-53141-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates phosphoinositide-3-kinase (PI3K)/AKT signalling. This pathway is involved in a plethora of cellular functions including protein and lipid synthesis, cell migration, cell proliferation and apoptosis. In this study, we proposed to delineate the role of mTORC1 in haemopoietic lineage commitment using knock out (KO) mouse and cell line models. Mx1-cre and Vav-cre expression systems were used to specifically target Raptorfl/fl (mTORC1), either in all tissues upon poly(I:C) inoculation, or specifically in haemopoietic stem cells, respectively. Assessment of the role of mTORC1 during the early stages of development in Vav-cre+Raptorfl/fl mice, revealed that these mice do not survive post birth due to aberrations in erythropoiesis resulting from an arrest in development at the megakaryocyte-erythrocyte progenitor stage. Furthermore, Raptor-deficient mice exhibited a block in B cell lineage commitment. The essential role of Raptor (mTORC1) in erythrocyte and B lineage commitment was confirmed in adult Mx1-cre+Raptorfl/fl mice upon cre-recombinase induction. These studies were supported by results showing that the expression of key lineage commitment regulators, GATA1, GATA2 and PAX5 were dysregulated in the absence of mTORC1-mediated signals. The regulatory role of mTOR during erythropoiesis was confirmed in vitro by demonstrating a reduction of K562 cell differentiation towards RBCs in the presence of established mTOR inhibitors. While mTORC1 plays a fundamental role in promoting RBC development, we showed that mTORC2 has an opposing role, as Rictor-deficient progenitor cells exhibited an elevation in RBC colony formation ex vivo. Collectively, our data demonstrate a critical role played by mTORC1 in regulating the haemopoietic cell lineage commitment.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen M Dunn
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher Estell
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Breveglieri G, Salvatori F, Finotti A, Cosenza LC, Zuccato C, Bianchi N, Breda L, Rivella S, Bresciani A, Bisbocci M, Borgatti M, Gambari R. Development and characterization of cellular biosensors for HTS of erythroid differentiation inducers targeting the transcriptional activity of γ-globin and β-globin gene promoters. Anal Bioanal Chem 2019; 411:7669-7680. [PMID: 31273412 DOI: 10.1007/s00216-019-01959-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
There is a general agreement that pharmacologically mediated stimulation of human γ-globin gene expression and increase of production of fetal hemoglobin (HbF) is a potential therapeutic approach in the experimental therapy of β-thalassemia and sickle cell anemia. Here, we report the development and characterization of cellular biosensors carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and β-globin gene promoters, respectively; these dual-reporter cell lines are suitable to identify the induction ability of screened compounds on the transcription in erythroid cells of γ-globin and β-globin genes by FACS with efficiency and reproducibility. Our experimental system allows to identify (a) HbF inducers stimulating to different extent the activity of the γ-globin gene promoter and (b) molecules that stimulate also the activity of the β-globin gene promoter. A good correlation does exist between the results obtained by using the EGFP/RFP clones and experiments performed on erythroid precursor cells from β-thalassemic patients, confirming that this experimental system can be employed for high-throughput screening (HTS) analysis. Finally, we have demonstrated that this dual-reporter cell line can be used for HTS in 384-well plate, in order to identify novel HbF inducers for the therapy of β-thalassemia and sickle cell anemia. Graphical abstract.
Collapse
Affiliation(s)
- Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, Section of Biochemistry, Molecular Biology and Medical Genetics, University of Ferrara, 44121, Ferrara, Italy
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Biotechnology Center, University of Ferrara, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Abstract
A number of pharmacological agents are currently available for the induction of the fetal hemoglobin (Hb F) to treat the patients with sickle cell disease and beta-thalassemia. In the present review, we summarized the investigation and development of these Hb F-inducing agents and introduced histone deacetylase inhibitors as the new strategy to induce Hb F to treat the hemoglobin disorders
Collapse
Affiliation(s)
- Hua Cao
- Division of Medical Genetics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
5
|
Regulation of delta-aminolevulinic acid dehydratase by krüppel-like factor 1. PLoS One 2012; 7:e46482. [PMID: 23056320 PMCID: PMC3463598 DOI: 10.1371/journal.pone.0046482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factor 1(KLF1) is a hematopoietic-specific zinc finger transcription factor essential for erythroid gene expression. In concert with the transacting factor GATA1, KLF1 modulates the coordinate expression of the genes encoding the multi-enzyme heme biosynthetic pathway during erythroid differentiation. To explore the mechanisms underpinning KLF1 action at the gene loci regulating the first 3 steps in this process, we have exploited the K1-ERp erythroid cell line, in which KLF1 translocates rapidly to the nucleus in response to treatment with 4-OH-Tamoxifen (4-OHT). KLF1 acts as a differentiation-independent transcriptional co-regulator of delta-aminolevulinic acid dehydratase (Alad), but not 5-aminolevulinate synthase gene (Alas2) or porphobilinogen deaminase (Pbgd). Similar to its role at the β-globin promoter, KLF1 induces factor recruitment and chromatin changes at the Alad1b promoter in a temporally-specific manner. In contrast to these changes, we observed a distinct mechanism of histone eviction at the Alad1b promoter. Furthermore, KLF1-dependent events were not modulated by GATA1 factor promoter co-occupancy alone. These results not only enhance our understanding of erythroid-specific modulation of heme biosynthetic regulation by KLF1, but provide a model that will facilitate the elucidation of novel KLF1-dependent events at erythroid gene loci that are independent of GATA1 activity.
Collapse
|
6
|
Recombinant erythroid Kruppel-like factor fused to GATA1 up-regulates delta- and gamma-globin expression in erythroid cells. Blood 2011; 117:3045-52. [PMID: 21220744 DOI: 10.1182/blood-2010-07-294751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The β-hemoglobinopathies sickle cell disease and β-thalassemia are among the most common human genetic disorders worldwide. Hemoglobin A2 (HbA2, α₂δ₂) and fetal hemoglobin (HbF, α₂γ₂) both inhibit the polymerization of hemoglobin S, which results in erythrocyte sickling. Expression of erythroid Kruppel-like factor (EKLF) and GATA1 is critical for transitioning hemoglobin from HbF to hemoglobin A (HbA, α₂β₂) and HbA2. The lower levels of δ-globin expression compared with β-globin expression seen in adulthood are likely due to the absence of an EKLF-binding motif in the δ-globin proximal promoter. In an effort to up-regulate δ-globin to increase HbA2 expression, we created a series of EKLF-GATA1 fusion constructs composed of the transactivation domain of EKLF and the DNA-binding domain of GATA1, and then tested their effects on hemoglobin expression. EKLF-GATA1 fusion proteins activated δ-, γ-, and β-globin promoters in K562 cells, and significantly up-regulated δ- and γ-globin RNA transcript and protein expression in K562 and/or CD34(+) cells. The binding of EKLF-GATA1 fusion proteins at the GATA1 consensus site in the δ-globin promoter was confirmed by chromatin immunoprecipitation assay. Our studies demonstrate that EKLF-GATA1 fusion proteins can enhance δ-globin expression through interaction with the δ-globin promoter, and may represent a new genetic therapeutic approach to β-hemoglobinopathies.
Collapse
|
7
|
Pilon AM, Nilson DG, Zhou D, Sangerman J, Townes TM, Bodine DM, Gallagher PG. Alterations in expression and chromatin configuration of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 2006; 26:4368-77. [PMID: 16705186 PMCID: PMC1489081 DOI: 10.1128/mcb.02216-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an erythroid zinc finger protein identified by its interaction with a CACCC sequence in the beta-globin promoter, where it establishes local chromatin structure permitting beta-globin gene transcription. We sought to identify other EKLF target genes and determine the chromatin status of these genes in the presence and absence of EKLF. We identified alpha hemoglobin-stabilizing protein (AHSP) by subtractive hybridization and demonstrated a 95 to 99.9% reduction in AHSP mRNA and the absence of AHSP in EKLF-deficient cells. Chromatin at the AHSP promoter from EKLF-deficient cells lacked a DNase I hypersensitive site and exhibited histone hypoacetylation across the locus compared to hyperacetylation of wild-type chromatin. Wild-type chromatin demonstrated a peak of EKLF binding over a promoter region CACCC box that differs from the EKLF consensus by a nucleotide. In mobility shift assays, the AHSP promoter CACCC site bound EKLF in a manner comparable to the beta-globin promoter CACCC site, indicating a broader recognition sequence for the EKLF consensus binding site. The AHSP promoter was transactivated by EKLF in K562 cells, which lack EKLF. These results support the hypothesis that EKLF acts as a transcription factor and a chromatin modulator for the AHSP and beta-globin genes and indicate that EKLF may play similar roles for other erythroid genes.
Collapse
Affiliation(s)
- Andre M Pilon
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Swiers G, Patient R, Loose M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 2006; 294:525-40. [PMID: 16626682 DOI: 10.1016/j.ydbio.2006.02.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/24/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
9
|
Bresnick EH, Johnson KD, Kim SI, Im H. Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:435-71. [PMID: 16891178 DOI: 10.1016/s0079-6603(06)81011-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Emery H Bresnick
- Department of Pharmacology, University of Wisconsin Medical School, 383 Medical Sciences Center, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
10
|
Omori A, Tanabe O, Engel JD, Fukamizu A, Tanimoto K. Adult stage gamma-globin silencing is mediated by a promoter direct repeat element. Mol Cell Biol 2005; 25:3443-51. [PMID: 15831451 PMCID: PMC1084292 DOI: 10.1128/mcb.25.9.3443-3451.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human beta-like globin genes (5'-epsilon-Ggamma-Agamma-delta-beta-3') are temporally expressed in sequential order from the 5' to 3' end of the locus, but the nonadult epsilon- and gamma-globin genes are autonomously silenced in adult erythroid cells. Two cis elements have been proposed to regulate definitive erythroid gamma-globin repression: the DR (direct repeat) and CCTTG elements. Since these two elements partially overlap, and since a well-characterized HPFH point mutation maps to an overlapping nucleotide, it is not clear if both or only one of the two participate in gamma-globin silencing. To evaluate the contribution of these hypothetical silencers to gamma-globin regulation, we generated point mutations that individually disrupted either the single DR or all four CCTTG elements. These two were separately incorporated into human beta-globin yeast artificial chromosomes, which were then used to generate gamma-globin mutant transgenic mice. While DR element mutation led to a dramatic increase in Agamma-globin expression only during definitive erythropoiesis, the CCTTG mutation did not affect adult stage transcription. These results demonstrate that the DR sequence element autonomously mediates definitive stage-specific gamma-globin gene silencing.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes, Artificial, Yeast/genetics
- Erythroid Cells/metabolism
- Erythropoiesis/genetics
- Erythropoiesis/physiology
- Gene Expression Regulation, Developmental
- Gene Silencing
- Globins/genetics
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Point Mutation/genetics
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Repetitive Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/physiology
- Response Elements/genetics
- Response Elements/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Akane Omori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
11
|
Basu P, Morris PE, Haar JL, Wani MA, Lingrel JB, Gaensler KML, Lloyd JA. KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo. Blood 2005; 106:2566-71. [PMID: 15947087 PMCID: PMC1895257 DOI: 10.1182/blood-2005-02-0674] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like factors (KLFs) are a family of C2/H2 zinc finger DNA-binding proteins that are important in controlling developmental programs. Erythroid Krüppel-like factor (EKLF or KLF1) positively regulates the beta-globin gene in definitive erythroid cells. KLF2 (LKLF) is closely related to EKLF and is expressed in erythroid cells. KLF2-/- mice die between embryonic day 12.5 (E12.5) and E14.5, because of severe intraembryonic hemorrhaging. They also display growth retardation and anemia. We investigated the expression of the beta-like globin genes in KLF2 knockout mice. Our results show that KLF2-/- mice have a significant reduction of murine embryonic Ey- and beta h1-globin but not zeta-globin gene expression in the E10.5 yolk sac, compared with wild-type mice. The expression of the adult beta(maj)- and beta(min)-globin genes is unaffected in the fetal livers of E12.5 embryos. In mice carrying the entire human globin locus, KLF2 also regulates the expression of the human embryonic epsilon-globin gene but not the adult beta-globin gene, suggesting that this developmental-stage-specific role is evolutionarily conserved. KLF2 also plays a role in the maturation and/or stability of erythroid cells in the yolk sac. KLF2-/- embryos have a significantly increased number of primitive erythroid cells undergoing apoptotic cell death.
Collapse
Affiliation(s)
- Priyadarshi Basu
- Department of Human Genetics, Virginia Commonwealth University, PO Box 980033, Richmond, VA 23298-0033, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mitsuma A, Asano H, Kinoshita T, Murate T, Saito H, Stamatoyannopoulos G, Naoe T. Transcriptional regulation of FKLF-2 (KLF13) gene in erythroid cells. ACTA ACUST UNITED AC 2005; 1727:125-33. [PMID: 15716005 PMCID: PMC2808416 DOI: 10.1016/j.bbaexp.2004.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 12/15/2004] [Accepted: 12/20/2004] [Indexed: 11/25/2022]
Abstract
FKLF-2 (KLF13) was cloned from fetal globin-expressing tissues and has been shown to be abundantly expressed in erythroid cells. In this study we examined the transcriptional regulation of the KLF13 gene. A 5.5 kb 5' flanking region cloned from mouse erythroleukemia (MEL) cell genomic DNA showed that major cis regulatory activities exist in the 550 bp sequence to the unique transcription start site, and that the promoter is more active in K562 cells than in COS-7 cells. The promoter was trans-activated by co-expressed GATA-1 through the sequence containing two CCAAT motifs, suggesting that GATA-1 is involved in the abundant expression of KLF13 mRNA in the erythroid tissue. Dual action, i.e. activating effect in COS-7 and repressive effect in K562 cell, was observed on its own promoter, suggesting a feedback mechanism for the transcriptional control of the KLF13 gene in the erythroid environment. These findings provide an insight on the mechanism of inducible mRNA expression of the KLF13 gene in erythroid cells.
Collapse
Affiliation(s)
- Ayako Mitsuma
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Haruhiko Asano
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
- Corresponding author. Tel.: +81 52 744 2158; fax: +81 52 744 2141., (H. Asano)
| | - Tomohiro Kinoshita
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Murate
- Nagoya University School of Health Sciences, Daiko-minami, 1-1-20, Higashi-ku, Nagoya, 461-8673, Japan
| | - Hidehiko Saito
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | | | - Tomoki Naoe
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
13
|
Asano H, Murate T, Naoe T, Saito H, Stamatoyannopoulos G. Molecular cloning and characterization of ZFF29: a protein containing a unique Cys2His2 zinc-finger motif. Biochem J 2005; 384:647-53. [PMID: 15344908 PMCID: PMC1134151 DOI: 10.1042/bj20040394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have cloned a gene, ZFF29 (zinc-finger protein of human fetal liver erythroid cells 29), from human fetal liver erythroid cells. Two types of mature mRNA were identified and designated ZFF29a and ZFF29b. In human genome the ZFF29 gene is on chromosome 9q, and the two forms are splice variants. There is a unique transcription start site, which predicts major mRNAs composed of 2485 bases for ZFF29a and 1801 bases for ZFF29b. The anticipated mRNAs were demonstrated in K562 cells, but not in any adult human tissues examined by Northern blotting. In the mouse, reverse transcription-PCR revealed that the ZFF29 mRNA is present in adult bone marrow and ovary at a higher level than in any other tissues examined. These findings suggest that ZFF29 proteins are expressed in embryonic/fetal erythroid tissues. The deduced polypeptide chains of ZFF29a and ZFF29b are composed of 306 and 350 amino acids respectively. A unique zinc-finger motif composed of two contiguous Cys(2)His(2)-type fingers is common to both forms of ZFF29. They are nuclear proteins and ZFF29b, but not ZFF29a, is an activator of erythroid gene promoters.
Collapse
Affiliation(s)
- Haruhiko Asano
- Department of Hematology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Japan 466-8550.
| | | | | | | | | |
Collapse
|
14
|
Porcu S, Poddie D, Melis M, Cao A, Ristaldi MS. β-Minor globin gene expression is preferentially reduced in EKLF Knock-Out mice. Gene 2005; 351:11-7. [PMID: 15847847 DOI: 10.1016/j.gene.2005.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 01/26/2005] [Accepted: 03/01/2005] [Indexed: 11/28/2022]
Abstract
The CACCC box is duplicated in the beta-globin gene promoter of humans and other mammals. While the function of the proximal element as a binding site for EKLF has already been well established, the role of the distal element remains unclear. Mice present two adult beta-globin genes, beta-major and beta-minor, bearing a single CACCC box, the consensus sequence of which is identical to that of the proximal or distal human element, respectively. In the present study we analyzed the mRNA expression of beta-minor and beta-major in EKLF Knock-Out (KO) mice in comparison to wild-type (wt) littermates. The murine early fetal liver up to day 13/14 post coitum (pc) expresses mainly beta-minor globin chains. Nevertheless, expression of the beta-minor globin gene in EKLF KO mice has not been assessed to date. We provide evidence that expression of the beta-minor globin gene is dependent upon EKLF and is more affected by EKLF deprivation than the beta-major gene. The results obtained support a general role of EKLF in beta-globin gene activation and are in agreement with models involving an advantage of the LCR proximal respect to distal gene.
Collapse
Affiliation(s)
- Susanna Porcu
- Istituto di Neurogenetica e Neurofarmacologia (INN) del Consiglio Nazionale delle Ricerche (CNR), Selargius (CA), Cagliari, Sardinia, Italy
| | | | | | | | | |
Collapse
|
15
|
Zoueva OP, Rodgers GP. Inhibition of β protein 1 expression enhances β-globin promoter activity and β-globin mRNA levels in the human erythroleukemia (K562) cell line. Exp Hematol 2004; 32:700-8. [PMID: 15308321 DOI: 10.1016/j.exphem.2004.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/10/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In this paper, we report new observations related to the mechanism of the negative regulation of the important adult beta-globin gene in the erythroid cells at the embryonic-fetal stage of their development. We focused on the role of the silencer II region located upstream of the beta-globin gene, which along with its cognate binding protein BP1, negatively regulates beta-globin transcription. MATERIALS AND METHODS We prepared plasmid constructs containing the wild-type silencer II sequence, a mutated silencer II sequence, or a mutated control sequence in the beta-globin promoter 690-bp insert, which in turn was linked to an enhanced green fluorescent protein (EGFP) reporter gene. A human erythroleukemia cell line (K562) with embryonic-fetal phenotype was transfected with these EGFP constructs. RESULTS Flow cytometry and fluorescence digital imaging showed about threefold increase in the beta-globin promoter activity of the mutated silencer II construct. Introduction of a small interfering RNA (siRNA) complementary to BP1 into the cells caused a 75% decrease in BP1 expression and a simultaneous approximately 40% elevation of beta-globin promoter activity as well as an increase in beta-globin mRNA levels, as compared with controls. We detected no changes in the mRNA levels of positive regulators of hemoglobin transcription such as EKLF and GATA-1. CONCLUSION Our results support the involvement of BP1 in the mechanism of the negative regulation of beta-globin transcription. A better understanding of this mechanism may lay the groundwork for novel gene therapy approaches to inhibit the expression of abnormal structural variants of adult beta globin, such as sickle hemoglobin.
Collapse
Affiliation(s)
- Olga P Zoueva
- Molecular and Clinical Hematology Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Ji XJ, Liu DP, Xu DD, Li L, Liang CC. Effect of fetal hemoglobin-stimulating medicines on the interaction of DNA and protein of important erythroid regulatory elements. Biochem Cell Biol 2003; 81:297-305. [PMID: 14569302 DOI: 10.1139/o03-058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-Thalassemia is the most common single gene disorder in the world, which is caused by the imbalance between α-globin chain and β-globin chain synthesis. Several medicines, such as 5-azacytidine, hydroxyurea, cytarabine, vinblatine, butyrate, and myleran, have been shown to be able to reactivate γ-globin chain synthesis during the adult stage, and some of them (5-azacytidine, hydroxyurea, myleran, and butyrate) have been used clinically to treat thalas semia and sickle cell disease. Much research efforts are focusing on the determination of the underlying mechanisms of medicine action. In this experiment, as an effort to probe the underlying mechanism of medicine action, we used ligation-mediated polymerase chain reaction and in vivo footprinting methods to study the DNA-protein interaction at critical erythroid regulatory elements after hydroxyurea or myleran administration to mice. Our results showed that the patterns of in vivo footprints at both the hypersensitive site 2 of the locus control region and the β-globin gene promoter were changed after medicine treatment. We proposed based on these results that the medicines' administration might result in a change in the interaction between trans-acting factors and cis-acting elements at these regions. These changes might influence the assembly of the transcription complex and, lastly, influence the expression of the β-globin gene.Key words: hydroxyurea, in vivo footprinting, ligation-mediated PCR, LCR, β-globin.
Collapse
Affiliation(s)
- Xin-Jun Ji
- National Library of Medicine Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Faculty of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | | | | | | | | |
Collapse
|
17
|
Abstract
The human globin gene cluster, which represents a prototypical eukaryotic multigene locus, has been investigated for more than two decades and is classic model for coordinate control of tissue-specific gene expression. It is well known that globin gene expression is restricted to specific tissues and that globin genes are sequentially switched on during development. What intricate regulatory mechanisms account for tissue-specific transcriptional control of globin gene expression? Previous studies have focused on the interactions of trans-acting factors and cis-acting elements including the locus control region (LCR), which is considered a potent enhancer in globin gene switching. More recent studies have not only focused on the local DNA regulatory elements but also on remodelling of chromatin and transcription at the globin gene cluster within the native genomic context. Moreover, several studies have presented extensive data that address whether the LCR is required to open the chromatin. Although there is increased insight into the regulation of the beta-globin gene switching, many aspects relating to the developmental activation of distinct globin genes remain elusive.
Collapse
Affiliation(s)
- W Shen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | |
Collapse
|
18
|
Abstract
The a- and b-globin gene clusters are subject to several levels of regulation. They are expressed exclusively in the erythroid cells, only during defined periods of development and in a perfectly tuned way, assuring, at any stage of ontogeny, a correct balance in the availability of a- and b-globin chains for hemoglobin assembling. Such a tight control is dependent on regulatory regions of DNA located either in proximity or at great distances from the globin genes in a region characterized by the presence of several DNAse I hypersensitive sites and known as the Locus Control Region. All these sequences exert stimulatory, inhibitory or more complex activities by interacting with transcription factors that bridge these regions of DNA to the RNA polymerase machinery. Many of these factors have now been cloned and the corresponding mouse genes inactivated, shading new light on the metabolic pathways they control. It is increasingly recognized that such factors are organized into hierarchies according to the number of genes and circuits they regulate. Some genes such as GATA-1 and 2 are master regulators that act on large numbers of genes at early stage of differentiation whereas others, like EKLF, stand on the lowest step and control only single or limited number of genes at late stages of differentiation. We will review recent data gathered from expression studies in cell cultures, in transgenic or K.O. murine models as well as from a clinical settings. We will also discuss the development of novel theories on the regulation of the a- and b-globin genes and clusters.
Collapse
Affiliation(s)
- Antonio Cao
- Istituto di Clinica e Biologia dell'Età Evolutiva, Università di Cagliari, Cagliari, Italy.
| | | |
Collapse
|
19
|
Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G. Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2. J Biol Chem 2002; 277:7029-36. [PMID: 11748222 PMCID: PMC2808425 DOI: 10.1074/jbc.m108826200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sp1/KLF family of factors regulates diverse cellular processes, including growth and development. Fetal Krüppel-like factor (FKLF2) is a new member of this family. In this study, we characterized the coactivators involved in FKLF2 transcriptional activation. Our results show that both CBP/p300 and p300/CBP-associated factor (PCAF) enhance FKLF2 transcriptional activity. We demonstrate that the acetyltransferase activity of PCAF but not that of CBP/p300 is required for stimulating FKLF2 transcription activity. We further show that p300 and PCAF act cooperatively in stimulating FKLF2 transcriptional activation. FKLF2 interacts with both CBP and PCAF through specific domains, and CBP and PCAF acetylate FKLF2. Both CBP/p300 and PCAF stimulate FKLF2 DNA binding activity. The integrity of the acetyltransferase domain of PCAF but not that of CBP/p300 is required for stimulating FKLF2 DNA binding activity. These results demonstrate that CBP/p300 and PCAF stimulate FKLF2 transcriptional activity at least by enhancing its DNA binding. The acetyltransferase activities of CBP/p300 and PCAF play a distinct role in stimulating FKLF2 transcription and DNA binding.
Collapse
Affiliation(s)
- Chao-Zhong Song
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Mahajan MC, Weissman SM. DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 2002; 99:348-56. [PMID: 11756191 DOI: 10.1182/blood.v99.1.348] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Correct developmental regulation of beta-like globin gene expression is achieved by preferential transcription of a gene at a given developmental stage, silencing of other beta-like gene promoters, and competition among these promoters for interaction with the locus control region (LCR). Several evolutionarily conserved DNA elements in the promoters of the beta-like genes and LCR have been studied in detail, and the role of their binding factors has been investigated. However, the beta-globin promoter includes additional evolutionarily conserved sequences of unknown function. The present study examined the properties of a 21-base pair (bp) promoter-conserved sequence (PCS) located at positions -115 to -136 bp relative to the transcription start site of the beta-globin gene. A helicaselike transcription factor (HLTF) belonging to the SWI2/SNF2 family of proteins binds to the PCS and a partly homologous sequence in the enhancer region of the LCR hypersensitive site 2 (HS2). Elevation of the level of HLTF in K562 erythroleukemic cells increases beta-promoter activity in transient transfection experiments, and mutations in the PCS that remove HLTF-binding regions abolish this effect, suggesting that HLTF is an activator of beta-globin transcription. Overexpression of HLTF in K562 cells does not affect the endogenous levels of gamma- and epsilon-globin message, but it markedly activates beta-globin transcription. In conclusion, this study reports a transcription factor belonging to the SWI2/SNF2 family, which preferentially activates chromosomal beta-globin gene transcription and which has not previously been implicated in globin gene regulation.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
21
|
Brown RC, Pattison S, van Ree J, Coghill E, Perkins A, Jane SM, Cunningham JM. Distinct domains of erythroid Krüppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 2002; 22:161-70. [PMID: 11739731 PMCID: PMC134232 DOI: 10.1128/mcb.22.1.161-170.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characterization of the mechanism(s) of action of trans-acting factors in higher eukaryotes requires the establishment of cellular models that test their function at endogenous target gene regulatory elements. Erythroid Krüppel-like factor (EKLF) is essential for beta-globin gene transcription. To elucidate the in vivo determinants leading to transcription of the adult beta-globin gene, functional domains of EKLF were examined in the context of chromatin remodeling and transcriptional activation at the endogenous locus. Human EKLF (hEKLF) sequences, linked to an estrogen-responsive domain, were studied with an erythroblast cell line lacking endogenous EKLF expression (J2eDeltaeklf). J2eDeltaeklf cells transduced with hEKLF demonstrated a dose-dependent rescue of beta-globin transcription in the presence of inducing ligand. Further analysis using a series of amino-terminal truncation mutants of hEKLF identified a distinct internal domain, which is sufficient for transactivation. Interestingly, studies of the chromatin structure of the beta-promoter revealed that a smaller carboxy-terminal domain generated an open promoter configuration. In vitro and in vivo binding studies demonstrated that this region interacted with BRG1, a component of the SWI/SNF chromatin remodeling complex. However, further study revealed that BRG1 interacted with an even smaller domain of EKLF, suggesting that additional protein interactions are required for chromatin remodeling at the endogenous beta-promoter. Taken together, our findings support a stepwise process of chromatin remodeling and coactivator recruitment to the beta-globin promoter in vivo. The J2eDeltaeklf inducible hEKLF system will be a valuable tool for further characterizing the temporal series of events required for endogenous beta-globin gene transcription.
Collapse
Affiliation(s)
- R Clark Brown
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- J J Bieker
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
23
|
Abstract
A partial understanding of the pathophysiology of sickle cell disease has suggested one means of treatment-increasing the distribution and concentration of fetal hemoglobin in sickle erythrocytes. Although this can be accomplished clinically with drugs like hydroxyurea, a complete understanding of the molecular and cellular basis of fetal hemoglobin regulation may suggest new and better ways of attaining this goal.
Collapse
Affiliation(s)
- M H Steinberg
- G.V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
24
|
Abstract
The erythroid cell-specific transcription factor erythroid Krüppel-like factor (EKLF) is an important activator of beta-globin gene expression. It achieves this by binding to the CACCC element at the beta-globin promoter via its zinc finger domain. The coactivators CBP and P300 interact with, acetylate, and enhance its activity, helping to explain its role as a transcription activator. Here we show that EKLF can also interact with the corepressors mSin3A and HDAC1 (histone deacetylase 1) through its zinc finger domain. When linked to a GAL4 DNA binding domain, full-length EKLF or its zinc finger domain alone can repress transcription in vivo. This repressive activity can be relieved by the HDAC inhibitor trichostatin A. Although recruitment of EKLF to a promoter is required to show repression, its zinc finger domain cannot bind directly to DNA and repress transcription simultaneously. In addition, the target promoter configuration is important for enabling EKLF to exhibit any repressive activity. These results suggest that EKLF may function in vivo as a transcription repressor and play a previously unsuspected additional role in regulating erythroid gene expression and differentiation.
Collapse
Affiliation(s)
- X Chen
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
25
|
Yang Y, Duan Z, Skarpidi E, Li Q, Papayannopoulou T, Stamatoyannopoulos G. Cloning and characterization of a potential transcriptional activator of human gamma-globin genes. Blood Cells Mol Dis 2001; 27:1-15. [PMID: 11162141 DOI: 10.1006/bcmd.2000.0344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hybrids produced by fusing human fetal erythroblasts (HFE) with mouse erythroleukemia (MEL) cells initially produce predominantly or exclusively human gamma-globin and switch to human beta globin expression as time in culture advances. One explanation for the initially predominant expression of gamma-globin gene in these hybrids is the presence of trans-acting factors that activate gamma-globin gene transcription. We used differential display of hybrids before and after the gamma to beta switch as well as fetal liver and adult erythroblasts to identify cDNAs that could be candidates for potential gamma gene activators. Identically sized amplicons which were present in fetal liver erythroblasts and in the hybrids expressing only gamma-globin but were absent in the adult erythroblasts and in the same hybrids after they had switched to beta globin expression were cloned and sequenced. Fifty pairs of cDNAs fitting these criteria were chosen for further analysis. The sequences of the two members of 48 pairs differed from each other, revealing the low efficiency of this experimental approach. One clone pair coded for human proteosome subunit X. The second pair coded for a protein containing an acidic domain in the N-terminus and three consecutive CDC10/SW16/ankyrin repeats in the C-terminus. Transactivation assays in the yeast hybrid system and transient transfection assays in COS cells showed that a potent trans-activating domain resides in the N-terminus of this protein. Northern blot and RT-PCR assays showed that this gene is expressed in several fetal tissues but not in adult tissues. Stable transfection assays provided evidence that the product of this gene may increase the level of gamma mRNA in HFE x MEL cell hybrids that undergo the gamma to beta switch, suggesting that this new gene encodes a protein that may function as gamma gene activator.
Collapse
Affiliation(s)
- Y Yang
- Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev 2000; 14:2778-94. [PMID: 11069894 PMCID: PMC317038 DOI: 10.1101/gad.822500] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We explored the mechanism of definitive-stage epsilon-globin transcriptional inactivity within a human beta-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the epsilon-globin promoter at a position corresponding to that in the adult beta-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent epsilon-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the epsilon-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of epsilon-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage epsilon-globin repressor. We conclude that the suppression of epsilon-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the epsilon-globin gene.
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
The zebrafish biklf gene encodes a novel Krüppel-like transcription factor containing three contiguous zinc fingers at the C-terminus. Expression of biklf is detected from the shield stage onward in the developing prechordal plate, and as a 'baseball seam'-like lateral stripe beginning at the end of gastrulation. The latter expression domain is suppressed in the swirl mutant in which bmp2b is disrupted. At the 5-somite stage the lateral expression domain separates into two distinct stripes, one in the ectoderm, the other in blood islands in the lateral plate mesoderm. Blood island staining of biklf continues through somitogenesis as the most prominent area of biklf expression.
Collapse
Affiliation(s)
- A Kawahara
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, MD 20892, Bethesda, USA
| | | |
Collapse
|
29
|
FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 2000. [DOI: 10.1182/blood.v95.11.3578] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.
Collapse
|
30
|
Abstract
FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.
Collapse
|
31
|
Ji X, Liu D, Xu D, Li L, Wang J, Liang Z. DNA-protein interaction at erythroid important regulatory elements of MEL cells byin vivo footprinting. CHINESE SCIENCE BULLETIN-CHINESE 2000. [DOI: 10.1007/bf02887183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Lee JS, Ngo H, Kim D, Chung JH. Erythroid Kruppel-like factor is recruited to the CACCC box in the beta-globin promoter but not to the CACCC box in the gamma-globin promoter: the role of the neighboring promoter elements. Proc Natl Acad Sci U S A 2000; 97:2468-73. [PMID: 10706605 PMCID: PMC15952 DOI: 10.1073/pnas.040476297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The programmed expression of the five beta-like globin genes (epsilon, (A)gamma, (G)gamma, delta, and beta) is characterized by a series of switches that are developmentally regulated. The (A)gamma- and (G)gamma- (fetus) to beta-globin (adult) switch depends on transcription factor erythroid Krüppel-like factor (EKLF), which, like Sp1, binds to CACCC boxes. EKLF is essential for the expression of the beta-globin but not the gamma-globin gene. Because both gamma-globin and beta-globin promoters contain the CACCC box, and their promoter elements are similar, it is not known why the two promoters behave so differently. In this report, we searched for the functional differences between the two promoters by studying their ability to recruit EKLF. We used the in vivo PIN*POINT assay to show that EKLF is recruited to the beta-globin promoter but not to the gamma-globin promoter. We show that this selectivity is a result of differences in surrounding promoter elements and not CACCC box alone. One of the differences between the two promoters with a functional consequence is the CCTTG repeat that is present in the gamma-globin promoter but not in the beta-globin promoter. The repeat, when inserted in the beta-globin promoter, decreases EKLF recruitment to and activity of the beta-globin promoter, suggesting that the repeat functions as a suppressor element. The CCTTG repeat can also suppress the SV40 promoter in cis, and the suppressor factor binding to the repeat can be squelched with a plasmid containing a high copy number of the repeat. These findings may have implications in designing drug targets for treatment of beta-globin disorders.
Collapse
Affiliation(s)
- J S Lee
- Laboratory of Molecular Hematology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1654, USA
| | | | | | | |
Collapse
|
33
|
Ji XJ, Liu DP, Xu DD, Li L, Wang J, Liang CC. Both locus control region and proximal regulatory elements direct the developmental regulation of ?-globin gene cluster. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<376::aid-jcb5>3.0.co;2-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Guy LG, Delvoye N, Wall L. Expression of a human beta-globin transgene in mice with the CACC motif and upstream sequences deleted from the promoter still depends on erythroid Krüppel-like factor. J Biol Chem 2000; 275:3675-80. [PMID: 10652365 DOI: 10.1074/jbc.275.5.3675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice in which the erythroid Krüppel-like Factor (EKLF) gene is inactivated die in fetal life due to down-regulation of the beta-globin gene. Results have suggested that EKLF functions through the proximal CACC motif of the beta-globin promoter. For example, natural mutations of this element that fail to bind EKLF give reduced gene expression and the ability of EKLF to activate reporter genes in co-transfection assays is dependent on an intact CACC. Here, removal of the CACC motif and upstream promoter sequences from the beta-globin gene resulted in reduced expression in transgenic mice. However, breeding onto an EKLF-/- background demonstrated that a CACC-less beta-globin transgene remains highly dependent on EKLF. Hence, although the beta-globin gene partly depends on the proximal CACC motif for expression, it is unlikely that the major mechanism of gene activation by EKLF is through this element. We also show that a lacZ reporter gene linked to the beta-globin promoter, with or without the CACC box present, is actually expressed higher in EKLF-/- fetuses than in wild type animals, suggesting that EKLF may be able to act as an inhibitor of transcription with certain transgene configurations.
Collapse
Affiliation(s)
- L G Guy
- Centre Hospitalier de l'Université de Montréal/Institut du Cancer de Montréal, Université de Montréal, Montreal, Quebec H2L 4M1, Canada
| | | | | |
Collapse
|
35
|
Temple MD, Cairns MJ, Kim A, Murray V. Protein-DNA footprinting of the human epsilon-globin promoter in human intact cells using nitrogen mustard analogues and other DNA-damaging agents. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:245-56. [PMID: 10366709 DOI: 10.1016/s0167-4781(99)00057-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitrogen mustard analogues, bleomycin and dimethyl sulphate (DMS) have been used as probes of protein-DNA interactions in intact human cells. The sites of damage have been determined at base pair resolution in the single copy epsilon-globin gene promoter in erythroid K562 cells, non-erythroid HeLa cells and purified DNA. Exponential amplification of gene-specific damage fragments was achieved using the ligation-mediated polymerase chain reaction (LMPCR) technique and analysed on DNA sequencing gels. A comparison of the relative damage band intensities between purified DNA and intact cells revealed several significant differences - both protection (footprint) and enhancement. These differences occurred at putative transcription factor binding sites and hence are thought to be due to protein-DNA interactions. A major feature of the band intensity ratio plots was the footprint observed at the CCAAT box binding motif as revealed by nitrogen mustard analogues. Enhanced band intensity (hypersensitivity) was displayed at the 5'- and 3'-ends of the CCAAT box in K562 cells - this feature was absent in HeLa cells and in vitro reconstitutions. A footprint was found at the GATA-1 motif in K562 cells that was also absent in non-expressing HeLa cells. Footprints were also evident at the TATA box, CACC box and the epsilonF1 DNA binding motif in K562 cells.
Collapse
Affiliation(s)
- M D Temple
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
36
|
Ristaldi MS, Casula S, Porcu S, Marongiu MF, Pirastu M, Cao A. Activation of the delta-globin gene by the beta-globin gene CACCC motif. Blood Cells Mol Dis 1999; 25:193-209. [PMID: 10575545 DOI: 10.1006/bcmd.1999.0245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The promoter region of adult beta globin genes in humans and other mammals contains conserved regions of pivotal importance for their regulated tissue specific expression. These include the CACCC and CAAT motifs. The CACCC motif is duplicated in humans and other mammals. The human delta-globin gene lacks these conserved regions and its expression in normal individuals is about 3% that of the beta globin gene. Previous studies have shown that the introduction of the beta-globin CACCC or CAAT can activate the delta-globin gene promoter, but the effect of the distal CACCC element has not yet been tested. In the present study, using site-specific mutagenesis, we have introduced the consensus sequence for the distal and proximal CACCC motif and the CAAT box alone or in combination in the wild-type delta-globin gene promoter. The resulting mutants, as well as the wild type (wt) delta- and beta-globin gene promoters, have been analyzed in a transient expression assay in Cos7, K562, and MEL cell lines. The results show that the CACCC boxes can increase the transcription efficiency of the delta-globin gene promoter in both erythroid and non-erythroid cell systems. The contribution of the two CACCC elements is almost equal in the non-erythroid (Cos7) and erythroid embryonic-fetal cell lines (K562), while the proximal CACCC element is more active in adult erythroid cells (MEL). Nonetheless, duplication of this element does not appear to affect the efficiency of the promoter synergistically. Furthermore, to assess the competitive ability of the delta globin promoter containing the proximal or distal CACCC consensus sequences over the wt beta globin gene promoter, we have carried out transient expression experiments using DNA constructs in which the delta and beta globin gene promoters are linked in cis and are sharing a single enhancer (competitive transient expression). The results show that both CACCC elements are able to activate the delta globin gene promoter in Cos7 and K562 cells, although to a different extent, whereas only the proximal CACCC element is effective in increasing the transcription efficiency in MEL cells. These findings are in agreement with the more severe clinical phenotype produced by the beta-thalassemia mutations affecting the proximal CACCC box as compared with those within the distal CACCC box. The Erythroid Kruppel Like Factor (EKLF) is a nuclear protein restricted to erythroid cells which specifically bind the CACCC box sequence and activate the beta-globin gene. In the present study we carried out transactivation experiments of the mutagenized delta-globin gene promoter by introducing an EKLF expressing construct in erythroid cells. Constructs containing the proximal but not those bearing the distal CACCC element are transactivated. Our results indicate that the proximal CACCC box and, to a lesser extent, also the distal box have a role in the regulated stage specific expression of a beta-like globin gene, and show that the insertion of a single CACCC motif in the delta-globin gene promoter is sufficient to increase its activity. Nevertheless only the delta globin gene promoter containing the proximal CACCC element is able to compete with the wt beta globin gene promoter in the adult erythroid environment. These findings have potential relevance for the future prospective treatment of inherited hemoglobinopathies based on the conversion of the low functioning delta-globin gene into a high functioning beta-like globin gene.
Collapse
Affiliation(s)
- M S Ristaldi
- Istituto di Ricerche sulle Talassemie e Anemie Mediterranee-CNR-Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Asano H, Li XS, Stamatoyannopoulos G. FKLF, a novel Krüppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol 1999; 19:3571-9. [PMID: 10207080 PMCID: PMC84149 DOI: 10.1128/mcb.19.5.3571] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA encoding a novel Krüppel-type zinc finger protein, FKLF, was cloned from fetal globin-expressing human fetal erythroid cells. The deduced polypeptide sequence composed of 512 amino acids revealed that, like Sp1 and EKLF, FKLF has three contiguous zinc fingers at the near carboxyl-terminal end. A long amino-terminal domain is characterized by the presence of two acidic and two proline-rich regions. Reverse transcription (RT)-PCR assays using various cell lines demonstrated that the FKLF mRNA is expressed predominantly in erythroid cells. FKLF message is detectable by RT-PCR in fetal liver but not in adult bone marrow cells. As predicted from its structural features, FKLF is a transcriptional activator. In luciferase assays FKLF activated the gamma- and epsilon-globin gene promoters, and, to a much lower degree, the beta-globin promoter. Studies of HS2-gamma gene reporter constructs carrying CACCC box deletions revealed that the CACCC box sequence of the gamma gene promoter mediates the activation of the gamma gene by FKLF. Other erythroid promoters (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase) containing CACCC elements or GC-rich potential Sp1-binding sites were activated minimally, if at all, by FKLF, indicating that FKLF is not a general activator of genes carrying the CACCC motifs. Transfection of K562 cells with FKLF cDNA enhanced the expression of the endogenous epsilon- and gamma-globin genes, suggesting an in vivo role of FKLF in fetal and embryonic globin gene expression. Our results indicate that the protein potentially encoded by the FKLF cDNA acts as a transcriptional activator of embryonic and fetal beta-like globin genes.
Collapse
Affiliation(s)
- H Asano
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
38
|
Abstract
Reactivation of silent fetal or embryonic genes could be used for the treatment of genetic diseases caused by mutations of genes normally expressed during the adult stage of development. A paradigm of this approach is the activation of fetal hemoglobin synthesis in adult individuals and its use in the treatment of beta chain hemoglobinopathies. The current understanding of the molecular control of the beta globin locus is reviewed, as are the cellular and molecular basis of induction of fetal hemoglobin in the adult and the approaches used for stimulation of fetal hemoglobin synthesis in patients with beta chain hemoglobinopathies.
Collapse
Affiliation(s)
- R A Swank
- Division of Medical Genetics, University of Washington, Seattle 98195-7720, USA.
| | | |
Collapse
|