1
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
2
|
Gillani SQ, Reshi I, Nabi N, Un Nisa M, Sarwar Z, Bhat S, Roberts TM, Higgins JMG, Andrabi S. PCTAIRE1 promotes mitotic progression and resistance against antimitotic and apoptotic signals. J Cell Sci 2022; 135:jcs258831. [PMID: 35044463 PMCID: PMC8918779 DOI: 10.1242/jcs.258831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/29/2021] [Indexed: 10/24/2022] Open
Abstract
PCTAIRE1 (also known as CDK16) is a serine-threonine kinase implicated in physiological processes like neuronal development, vesicle trafficking, spermatogenesis and cell proliferation. However, its exact role in cell division remains unclear. In this study, using a library screening approach, we identified PCTAIRE1 among several candidates that resisted mitotic arrest and mitotic cell death induced by polyomavirus small T (PolST) expression in mammalian cells. Our study showed that PCTAIRE1 is a mitotic kinase that localizes at centrosomes during G2 and at spindle poles as the cells enter mitosis, and then at the midbody during cytokinesis. We also report that PCTAIRE1 protein levels fluctuate through the cell cycle and reach their peak at mitosis, during which there is an increase in PCTAIRE1 phosphorylation as well. Interestingly, knockdown of PCTAIRE1 resulted in aberrant mitosis by interfering with spindle assembly and chromosome segregation. Further, we found that PCTAIRE1 promotes resistance of cancer cells to antimitotic drugs, and this underscores the significance of PCTAIRE1 as a potential drug target for overcoming chemotherapeutic resistance. Taken together, these studies establish PCTAIRE1 as a critical mediator of mitotic progression and highlight its role in chemotherapeutic resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Irfana Reshi
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Sameer Bhat
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Thomas M. Roberts
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. G. Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University,Newcastle upon Tyne NE2 4HH, UK
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
3
|
A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling. J Virol 2017; 91:JVI.01774-16. [PMID: 27852846 DOI: 10.1128/jvi.01774-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. IMPORTANCE The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect.
Collapse
|
4
|
The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA CLINICAL 2016; 6:87-99. [PMID: 27556014 PMCID: PMC4986044 DOI: 10.1016/j.bbacli.2016.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance.
Collapse
|
5
|
Fernando ATP, Andrabi S, Cizmecioglu O, Zhu C, Livingston DM, Higgins JM, Schaffhausen BS, Roberts TM. Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene 2015; 34:2483-92. [PMID: 24998850 PMCID: PMC4286542 DOI: 10.1038/onc.2014.192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/25/2022]
Abstract
Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, thereby resulting in the activation of the spindle assembly checkpoint. Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed, that PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors.
Collapse
Affiliation(s)
- Arun T Pores Fernando
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Shaida Andrabi
- Department of Cancer Biology, Dana-Farber Cancer Institute
| | - Onur Cizmecioglu
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Cailei Zhu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital
| | | | - Jonathan M.G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Brian S Schaffhausen
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Polyomavirus interaction with the DNA damage response. Virol Sin 2015; 30:122-9. [PMID: 25910481 DOI: 10.1007/s12250-015-3583-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication-normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response (DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATM- and ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.
Collapse
|
7
|
Ruvolo PP. The Interplay between PP2A and microRNAs in Leukemia. Front Oncol 2015; 5:43. [PMID: 25750899 PMCID: PMC4335100 DOI: 10.3389/fonc.2015.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase family whose members have been implicated in tumor suppression in many cancer models. In many cancers, loss of PP2A activity has been associated with tumorigenesis and drug resistance. Loss of PP2A results in failure to turn off survival signaling cascades that drive drug resistance such as those regulated by protein kinase B. PP2A is responsible for modulating function and controlling expression of tumor suppressors such as p53 and oncogenes such as BCL2 and MYC. Thus, PP2A has diverse functions regulating cell survival. The importance of microRNAs (miRs) is emerging in cancer biology. A role for miR regulation of PP2A is not well understood; however, recent studies suggest a number of clinically significant miRs such as miR-155 and miR-19 may include PP2A targets. We have recently found that a PP2A B subunit (B55α) can regulate a number of miRs in acute myeloid leukemia cells. The identification of a miR/PP2A axis represents a novel regulatory pathway in cellular homeostasis. The ability of miRs to suppress specific PP2A targets and for PP2A to control such miRs can add an extra level of control in signaling that could be used as a rheostat for many signaling cascades that maintain cellular homeostasis. As such, loss of PP2A or expression of miRs relevant for PP2A function could promote tumorigenesis or at least result in drug resistance. In this review, we will cover the current state of miR regulation of PP2A with a focus on leukemia. We will also briefly discuss what is known of PP2A regulation of miR expression.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
8
|
Papillomavirus E7 oncoproteins share functions with polyomavirus small T antigens. J Virol 2014; 89:2857-65. [PMID: 25540383 DOI: 10.1128/jvi.03282-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis.
Collapse
|
9
|
Polyomavirus small T antigen interacts with yes-associated protein to regulate cell survival and differentiation. J Virol 2014; 88:12055-64. [PMID: 25122798 DOI: 10.1128/jvi.01399-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Murine polyomavirus small t antigen (PyST) regulates cell cycle, cell survival, apoptosis, and differentiation and cooperates with middle T antigen (MT) to transform primary cells in vitro and in vivo. Like all polyomavirus T antigens, PyST functions largely via its interactions with host cell proteins. Here, we show that PyST binds both Yes-associated protein 1 (YAP1) and YAP2, integral parts of the Hippo signaling pathway, which is a subject of increasing interest in human cancer. The transcription factor TEAD, which is a known target of YAP, is also found in PyST complexes. PyST enhanced YAP association with protein phosphatase 2A (PP2A), leading to decreased YAP phosphorylation. PyST increased YAP levels by decreasing its degradation. This effect was mediated by a reduction in YAP association with β-transducin repeat protein (βTRCP), which is known to regulate YAP turnover in a phosphorylation-dependent manner. Genetic analysis has identified PyST mutants defective in YAP binding. These mutants demonstrated that YAP binding is important for PyST to block myoblast differentiation and to synergize with the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) to promote cell death in 3T3-L1 preadipocytes placed under differentiation conditions. In addition to YAP binding, both of these phenotypes require PyST binding to PP2A. Importance: The Hippo/YAP pathway is a highly conserved cascade important for tissue development and homeostasis. Defects in this pathway are increasingly being associated with cancer. Polyomavirus small t antigen is a viral oncogene that cooperates with middle T antigen in transformation. On its own, small t antigen controls cell survival and differentiation. By binding YAP, small t antigen brings it together with protein phosphatase 2A. This work shows how this association of small t antigen with YAP is important for its effects on cell phenotype. It also suggests that PyST can be used to characterize cellular processes that are regulated by YAP.
Collapse
|
10
|
Wallace AM, Hardigan A, Geraghty P, Salim S, Gaffney A, Thankachen J, Arellanos L, D'Armiento JM, Foronjy RF. Protein phosphatase 2A regulates innate immune and proteolytic responses to cigarette smoke exposure in the lung. Toxicol Sci 2012; 126:589-99. [PMID: 22223484 PMCID: PMC3307605 DOI: 10.1093/toxsci/kfr351] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/22/2011] [Indexed: 11/13/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is the primary serine-threonine phosphatase of eukaryotic cells, and changes in its activity have been linked to neoplastic and neurodegenerative diseases. However, the role of PP2A in noncancerous lung diseases such as chronic obstructive pulmonary disease (COPD) has not been previously examined. This study determined that PP2A activity was significantly increased in the lungs of advanced emphysema subjects compared with age-matched controls. Furthermore, we found that cigarette smoke exposure increases PP2A activity in mouse lung in vivo and in primary human small airway epithelial (SAE) cells in vitro. In mice, intratracheal transfection of PP2A protein prior to cigarette smoke exposure prevented acute smoke-induced lung inflammation. Conversely, inhibiting PP2A activity during smoke exposure exacerbated inflammatory responses in the lung. To further determine how PP2A modulates the responses to cigarette smoke in the lung, enzyme levels were manipulated in SAE cells using protein transfection and short hairpin RNA (shRNA) techniques. Increasing PP2A activity in SAE cells via PP2A protein transfection downregulated cytokine expression and prevented the induction of proteases following cigarette smoke extract (CSE) treatment. Conversely, decreasing enzymatic activity by stably transfecting SAE cells with shRNA for the A subunit of PP2A exacerbated these smoke-mediated responses. This study establishes that PP2A induction by cigarette smoke modulates immune and proteolytic responses to cigarette smoke exposure. Together, these findings suggest that manipulation of PP2A activity may be a plausible means to treat COPD and other inflammatory diseases.
Collapse
Affiliation(s)
- Alison M. Wallace
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Andrew Hardigan
- Division of Pulmonary and Critical Care Medicine, St. Luke's Roosevelt Health Sciences Center, New York, New York 10019
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, St. Luke's Roosevelt Health Sciences Center, New York, New York 10019
| | - Shaneeza Salim
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Adam Gaffney
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Jincy Thankachen
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Leo Arellanos
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Jeanine M. D'Armiento
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, New York 10032
| | - Robert F. Foronjy
- Division of Pulmonary and Critical Care Medicine, St. Luke's Roosevelt Health Sciences Center, New York, New York 10019
| |
Collapse
|
11
|
Comparisons between murine polyomavirus and Simian virus 40 show significant differences in small T antigen function. J Virol 2011; 85:10649-58. [PMID: 21835797 DOI: 10.1128/jvi.05034-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although members of a virus family produce similar gene products, those products may have quite different functions. Simian virus 40 (SV40) large T antigen (LT), for example, targets p53 directly, but murine polyomavirus LT does not. SV40 small T antigen (SVST) has received considerable attention because of its ability to contribute to transformation of human cells. Here, we show that there are major differences between SVST and polyomavirus small T antigen (POLST) in their effects on differentiation, transformation, and cell survival. Both SVST and POLST induce cell cycle progression. However, POLST also inhibits differentiation of 3T3-L1 preadipocytes and C2C12 myoblasts. Additionally, POLST induces apoptosis of mouse embryo fibroblasts. SVST reduces the proapoptotic transcriptional activity of FOXO1 through phosphorylation. On the other hand, SVST complements large T antigen and Ras for the transformation of human mammary epithelial cells (HMECs), but POLST does not. Mechanistically, the differences between SVST and POLST may lie in utilization of protein phosphatase 2A (PP2A). POLST binds both Aα and Aβ scaffolding subunits of PP2A while SVST binds only Aα. Knockdown of Aβ could mimic POLST-induced apoptosis. The two small T antigens can target different proteins for dephosphorylation. POLST binds and dephosphorylates substrates, such as lipins, that SVST does not.
Collapse
|
12
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
13
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2008; 384:304-16. [PMID: 19022468 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
14
|
Eichhorn PJA, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:1-15. [PMID: 18588945 DOI: 10.1016/j.bbcan.2008.05.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/06/2023]
Abstract
The serine/threonine protein phosphatase (PP2A) is a trimeric holoenzyme that plays an integral role in the regulation of a number of major signaling pathways whose deregulation can contribute to cancer. The specificity and activity of PP2A are highly regulated through the interaction of a family of regulatory B subunits with the substrates. Accumulating evidence indicates that PP2A acts as a tumor suppressor. In this review we summarize the known effects of specific PP2A holoenzymes and their roles in cancer relevant pathways. In particular we highlight PP2A function in the regulation of MAPK and Wnt signaling.
Collapse
Affiliation(s)
- Pieter J A Eichhorn
- Division of Molecular Carcinogenesis, Center for Cancer Genomics and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Eichhorn PJA, Creyghton MP, Wilhelmsen K, van Dam H, Bernards R. A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC. PLoS Genet 2008; 3:e218. [PMID: 18069897 PMCID: PMC2134945 DOI: 10.1371/journal.pgen.0030218] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022] Open
Abstract
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. Protein Phosphatase type 2A (PP2A) represent a family of holoenzyme complexes involved in wide range of activities such as growth, differentiation, and cell death. The PP2A holoenzyme complex is made up of a catalytic, a structural, and one of various “B” subunits. These “B” subunits are thought to provide the substrate specificity required for PP2A activity. Previous work on PP2A has mostly been derived by inhibiting the catalytic subunit through chemical inhibition, as such inhibiting all of the pathways associated with PP2A. To identify individual “B” subunits involved in specific cellular processes we have generated a “B” subunit gene knockdown library, which allows us to inhibit each of the known “B” subunits individually. One of the many pathways regulated by PP2A is the c-Jun NH2-terminal kinase (JNK) kinase pathway, which, depending on stimulus, can affect either cell survival or cell proliferation. Here we report that the “B” subunit PR55γ acts as a negative regulator of JNK activity and cell death. We show that PR55γ influences JNK activity by inhibiting one of its upstream regulators, the proto-oncogene c-SRC, through dephosphorylation at one of the key residues on c-SRC, a site we show to be critical for c-SRC activation following cell stress. Overall our work describes the novel function of a specific PP2A subunit involved in cell survival and identifies a novel mechanism of c-SRC regulation.
Collapse
Affiliation(s)
- Pieter J. A Eichhorn
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Menno P Creyghton
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kevin Wilhelmsen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans van Dam
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Polyomavirus middle T antigen induces the transcription of osteopontin, a gene important for the migration of transformed cells. J Virol 2008; 82:4946-54. [PMID: 18337582 DOI: 10.1128/jvi.02650-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Middle T antigen (MT) is the principal oncoprotein of murine polyomavirus. Experiments on the acute immediate effects of MT expression on cellular RNA levels showed that expression of osteopontin (OPN) was strongly induced by MT expression. Osteopontin is a protein known to be associated with cancer. It has a role in tumor progression and invasion. Protein analysis confirmed that MT induced the secretion of OPN into the extracellular medium. Expression of antisense OPN RNA had no effect on the growth of MT-transformed cells. However, it had a strong effect on the ability of MT transformants to migrate or to fill a wound. Analysis of MT mutants implicated both the SHC and phosphatidylinositol 3-kinase pathways in OPN induction. Reporter assays showed that MT regulated the OPN promoter through two of its PEA3 (polyoma enhancer activator 3) sites. As critical PEA3 sites are also part of the polyomavirus enhancer, the same signaling important for viral replication also contributes to virally induced metastatic potential.
Collapse
|
17
|
Dahl J, Chen HI, George M, Benjamin TL. Polyomavirus small T antigen controls viral chromatin modifications through effects on kinetics of virus growth and cell cycle progression. J Virol 2007; 81:10064-71. [PMID: 17626093 PMCID: PMC2045420 DOI: 10.1128/jvi.00821-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G(2) and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominantly in G(2). These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.
Collapse
Affiliation(s)
- Jean Dahl
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
18
|
Chen L, Wang X, Fluck MM. Independent contributions of polyomavirus middle T and small T to the regulation of early and late gene expression and DNA replication. J Virol 2006; 80:7295-307. [PMID: 16840310 PMCID: PMC1563708 DOI: 10.1128/jvi.00679-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that murine polyomavirus mutants that lack both middle T (MT) and small T (ST) functions have a severe pleiotropic defect in early and late viral gene expression as well as genome amplification. The respective contribution of MT and ST to this phenotype was unclear. This work separates the roles of MT and ST in both permissive mouse cells and nonpermissive rat cells. It demonstrates for the first time a role for both proteins. To gain insight into the signaling pathways that might be required, we focused on MT and its mutants. The results show that each of the major MT signaling connections, Shc, phosphatidylinositol 3'-kinase, and phospholipase C gamma1, could contribute in an additive way. Unexpectedly, a mutant lacking all these connections because the three major tyrosines had been converted to phenylalanine retained some activity. A mutant in which all six MT C-terminal tyrosines had been mutated was inactive. This suggests a novel signaling pathway for MT that uses the minor tyrosines. What is common to ST and the individual MT signaling pathways is the ability to signal to the polyomavirus enhancer, in particular to the crucial AP-1 and PEA3/ets binding sites. This connection explains the pleiotropy of MT and ST effects on transcription and DNA replication.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
19
|
Abstract
Polyomavirus T antigens share a common N-terminal sequence that comprises a DnaJ domain. DnaJ domains activate DnaK molecular chaperones. The functions of J domains have primarily been tested by mutation of their conserved HPD residues. Here, we report detailed mutagenesis of the polyomavirus J domain in both large T (63 mutants) and middle T (51 mutants) backgrounds. As expected, some J mutants were defective in binding DnaK (Hsc70); other mutants retained the ability to bind Hsc70 but were defective in stimulating its ATPase activity. Moreover, the J domain behaves differently in large T and middle T. A given mutation was twice as likely to render large T unstable as it was to affect middle T stability. This apparently arose from middle T's ability to bind stabilizing proteins such as protein phosphatase 2A (PP2A), since introduction of a second mutation preventing PP2A binding rendered some middle T J-domain mutants unstable. In large T, the HPD residues are critical for Rb-dependent effects on the host cell. Residues Q32, A33, Y34, H49, M52, and N56 within helix 2 and helix 3 of the large T J domain were also found to be required for Rb-dependent transactivation. Cyclin A promoter assays showed that J domain function also contributes to large T transactivation that is independent of Rb. Single point mutations in middle T were generally without effect. However, residue Q37 is critical for middle T's ability to form active signaling complexes. The Q37A middle T mutant was defective in association with pp60(c-src) and in transformation.
Collapse
Affiliation(s)
- Kerry A Whalen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
20
|
Winnischofer SMB, de Oliveira MLS, Sogayar MC. Suppression of AP-1 constitutive activity interferes with polyomavirus MT antigen transformation ability. J Cell Biochem 2004; 90:253-66. [PMID: 14505342 DOI: 10.1002/jcb.10628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polyomavirus (Py) encodes a potent oncogene, the middle T antigen (MT), that induces cell transformation by binding to and activating several cytoplasmic proteins which take part in transduction of growth factors-induced mitogenic signal to the nucleus. We have previously reported that the AP-1 transcriptional complex is a target for MT during cell transformation although, its activation was not sufficient for establishment of the transformed phenotype. Here we show that expression of a dominant-negative cJun mutant in MT transformed cell lines inhibits its transformation ability, indicating that constitutive AP-1 activity is necessary for cell transformation mediated by MT. Evidences also suggest that proliferation of MT transformed cells in low serum concentrations and their ability to form colonies in agarose are controlled by distinct mechanisms.
Collapse
|
21
|
Johannessen M, Olsen PA, Sørensen R, Johansen B, Seternes OM, Moens U. A role of the TATA box and the general co-activator hTAF(II)130/135 in promoter-specific trans-activation by simian virus 40 small t antigen. J Gen Virol 2003; 84:1887-1897. [PMID: 12810884 DOI: 10.1099/vir.0.19057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFkappaB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory proteins. Indeed, a previous study has shown that st-ag enhanced NFkappaB-mediated transcription. This study demonstrates that promoters possessing a consensus TATA box (i.e. TATAAAAG) in the context of either NFkappaB- or Sp1-binding sites are trans-activated by st-ag. Overexpressing the general transcription factor hTAF(II)130/135, but not hTAF(II)28 or hTAF(II)80, stimulated the activity of promoters in a consensus TATA box-dependent mode. Converting the consensus TATA motif into a non-consensus TATA box strongly impaired activation by st-ag and hTAF(II)130/135. Conversely, mutating a non-consensus TATA motif into the consensus TATA box rendered the mutated promoter inducible by st-ag and hTAF(II)130/135. Mutation of the TATA box had no effect on TNFalpha- or RelA/p65-mediated induction of NFkappaB-responsive promoters, indicating a specific st-ag effect on hTAF(II)130/135. St-ag stimulated the intrinsic transcriptional activity of hTAF(II)130/135. Substitutions in the conserved HPDKGG motif in the N-terminal region or a mutation that impaired the interaction with protein phosphatase 2A abrogated the ability of st-ag to activate hTAF(II)130/135-mediated transcription. These results indicate that trans-activation of promoters by st-ag may depend on a consensus TATA motif and suggest that such promoters recruit the general transcription factor hTAF(II)130/135.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Petter Angell Olsen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Rita Sørensen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ole Morten Seternes
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ugo Moens
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
22
|
Johannessen M, Olsen PA, Johansen B, Seternes OM, Moens U. Activation of the coactivator four-and-a-half-LIM-only protein FHL2 and the c-fos promoter through inhibition of protein phosphatase 2A. Biochem Pharmacol 2003; 65:1317-28. [PMID: 12694872 DOI: 10.1016/s0006-2952(03)00071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have demonstrated that the serine/threonine protein phosphatase 2A (PP2A) can modulate the transcriptional activity of several sequence-specific DNA-binding proteins. However, less is known about the effect of PP2A on the activities of general transcription factors and transcriptional coregulators. Here we describe that the activity of a general coactivator, the four-and-a-half-LIM-only protein 2 (FHL2), is regulated in a PP2A-dependent manner. Specific inhibition of PP2A by simian virus 40 (SV40) small t-antigen (st-ag) stimulated the intrinsic transcriptional activity of FHL2 more than 10-fold, while a st-ag mutant unable to bind PP2A had no effect. Overexpression of the B56 subunits alpha, beta, and gamma1 of PP2A impaired the induction of FHL2 by st-ag. FHL2 functioned as a coactivator for CREB-mediated transcription, and inactivation of PP2A further increased FHL2-induced CREB-directed transcription. Overexpression of FHL2 readily enhanced the transcription of the luciferase reporter gene driven by the c-fos promoter, and inhibition of PP2A further stimulated FHL2-induced transactivation of this promoter. These results suggest that dephosphorylation of the general coactivator FHL2 may represent a novel mechanism by which PP2A modulates the transcription of FHL2-responsive genes.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
23
|
Berjanskii M, Riley M, Van Doren SR. Hsc70-interacting HPD loop of the J domain of polyomavirus T antigens fluctuates in ps to ns and micros to ms. J Mol Biol 2002; 321:503-16. [PMID: 12162962 DOI: 10.1016/s0022-2836(02)00631-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.
Collapse
Affiliation(s)
- Mark Berjanskii
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
24
|
McCluskey A, Sim ATR, Sakoff JA. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45:1151-75. [PMID: 11881984 DOI: 10.1021/jm010066k] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam McCluskey
- School of Biological & Chemical Science, Medicinal Chemistry Group, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
25
|
Abstract
Simian virus 40 small t antigen (st) is required for optimal transformation and replication properties of the virus. We find that in certain cell types, such as the human osteosarcoma cell line U2OS, st is capable of inducing apoptosis, as evidenced by a fragmented nuclear morphology and positive terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining of transfected cells. The cell death can be p53 independent, since it also occurs in p53-deficient H1299 cells. Genetic analysis indicates that two specific mutants affect apoptosis induction. One of these (C103S) has been frequently used as a PP2A binding mutant. The second mutant (TR4) lacks the final four amino acids of st, which have been reported to be unimportant for PP2A binding in vitro. However, TR4 unexpectedly fails to bind PP2A in vivo. Furthermore, a long-term colony assay reveals a potent colony inhibition upon st expression, and the behavior of st mutants in this assay reflects the relative frequency of nuclear fragmentation observed in transfections using the same mutants. Notably, either Bcl-2 coexpression or broad caspase inhibitor treatment could restore normal nuclear morphology. Finally, fluorescence-activated cell sorting analysis suggests a correlation between the ability of st to modulate cell cycle progression and apoptosis. Taken together, these observations underscore that st does not always promote proliferation but may, depending on conditions and cell type, effect a cell death response.
Collapse
Affiliation(s)
- O Gjoerup
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
27
|
Yen A, Placanica L, Bloom S, Varvayanis S. Polyomavirus small t antigen prevents retinoic acid-induced retinoblastoma protein hypophosphorylation and redirects retinoic acid-induced G0 arrest and differentiation to apoptosis. J Virol 2001; 75:5302-14. [PMID: 11333911 PMCID: PMC114935 DOI: 10.1128/jvi.75.11.5302-5314.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyomavirus small t antigen (ST) impedes late features of retinoic acid (RA)-induced HL-60 myeloid differentiation as well as growth arrest, causing apoptosis instead. HL-60 cells were stably transfected with ST. ST slowed the cell cycle, retarding G2/M in particular. Treated with RA, the ST transfectants continued to proliferate and underwent apoptosis. ST also impeded the normally RA-induced hypophosphorylation of the retinoblastoma tumor suppressor protein consistent with failure of the cells to arrest growth. The RA-treated transfectants expressed CD11b, an early cell surface differentiation marker, but inducible oxidative metabolism, a later and more mature functional differentiation marker, was largely inhibited. Instead, the cells underwent apoptosis. ST affected significant known components of RA signaling that result in G0 growth arrest and differentiation in wild-type HL-60. ST increased the basal amount of activated ERK2, which normally increases when wild-type cells are treated with RA. ST caused increased RARalpha expression, which is normally down regulated in RA-treated wild-type cells. The effects of ST on RA-induced myeloid differentiation did not extend to monocytic differentiation and G0 arrest induced by 1,25-dihydroxy vitamin D3, whose receptor is also a member of the steroid-thyroid hormone superfamily. In this case, ST abolished the usually induced G0 arrest and retarded, but did not block, differentiation without inducing apoptosis, thus uncoupling growth arrest and differentiation. In sum, the data show that ST disrupted the normal RA-induced program of G0 arrest and differentiation, causing the cells to abort differentiation and undergo apoptosis.
Collapse
Affiliation(s)
- A Yen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
28
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
29
|
Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353:417-39. [PMID: 11171037 PMCID: PMC1221586 DOI: 10.1042/0264-6021:3530417] [Citation(s) in RCA: 936] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.
Collapse
Affiliation(s)
- V Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
30
|
Abstract
Dynamic phosphorylation and dephosphorylation of proteins are fundamental mechanisms utilized by cells to transduce signals. Whereas transduction by protein kinases has been a major focus of studies in the last decade, protein phosphatase 2A (PP2A) enzymes emerge in this millenium as the most fashionable players in cellular signaling. Viral proteins target specific PP2A enzymes in order to deregulate chosen cellular pathways in the host and promote viral progeny. The observation that a variety of viruses utilize PP2A to alienate cellular behavior emphasizes the fundamental importance of PP2A in signal transduction. This review will primarily focus on discussing the uniqueness of PP2A regulation and uncovering the critical role played by protein-protein interactions in the modulation of PP2A signaling. Moreover, the place of PP2A in signaling pathways and its functional significance for human diseases will be discussed.
Collapse
Affiliation(s)
- E Sontag
- Department of Pathology/Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9073, USA.
| |
Collapse
|
31
|
Berjanskii MV, Riley MI, Xie A, Semenchenko V, Folk WR, Van Doren SR. NMR structure of the N-terminal J domain of murine polyomavirus T antigens. Implications for DnaJ-like domains and for mutations of T antigens. J Biol Chem 2000; 275:36094-103. [PMID: 10950962 DOI: 10.1074/jbc.m006572200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NMR structure of the N-terminal, DnaJ-like domain of murine polyomavirus tumor antigens (PyJ) has been determined to high precision, with root mean square deviations to the mean structure of 0.38 A for backbone atoms and 0.94 A for all heavy atoms of ordered residues 5-41 and 50-69. PyJ possesses a three-helix fold, in which anti-parallel helices II and III are bridged by helix I, similar to the four-helix fold of the J domains of DnaJ and human DnaJ-1. PyJ differs significantly in the lengths of N terminus, helix I, and helix III. The universally conserved HPD motif appears to form a His-Pro C-cap of helix II. Helix I features a stabilizing Schellman C-cap that is probably conserved universally among J domains. On the helix II surface where positive charges of other J domains have been implicated in binding of hsp70s, PyJ contains glutamine residues. Nonetheless, chimeras that replace the J domain of DnaJ with PyJ function like wild-type DnaJ in promoting growth of Escherichia coli. This activity can be modulated by mutations of at least one of these glutamines. T antigen mutations reported to impair cellular transformation by the virus, presumably via interactions with PP2A, cluster in the hydrophobic folding core and at the extreme N terminus, remote from the HPD loop.
Collapse
Affiliation(s)
- M V Berjanskii
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
32
|
Primo L, Roca C, Ferrandi C, Lanfrancone L, Bussolino F. Human endothelial cells expressing polyoma middle T induce tumors. Oncogene 2000; 19:3632-41. [PMID: 10951569 DOI: 10.1038/sj.onc.1203708] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The middle T oncogene of murine polyomavirus (PymT) rapidly transforms and immortalizes murine embryonic endothelial cells (EC), leading to the formation of vascular tumors in newborn mice, by recruitment of host, non-transformed EC. These tumors are reminiscent of human vascular tumors like cavernous hemangioma, Kaposi's sarcoma or those characterizing Kasabach-Merrit syndrome. Here we investigate the in vitro and in vivo behavior of human primary umbilical cord vein EC expressing PymT. While PymT has been unable to transform human fibroblasts in earlier experiments or controls done here, mT expressing EC (PymT-EC) derived by infection with pLX-PymT retrovirus induce hemangiomas in nu/nu mice. These tumors contain not only human cells but also recruited mouse EC as shown by the presence of human and murine CD31 positive EC. In vitro analysis shows that PymT-EC retain endothelial specific markers like CD31, Von Willebrand factor, and VE-cadherin, and reach the confluence without signs of overgrowth. They are also responsive to vascular endothelial growth factor-A. However, their proliferation rate is increased. The balance between urokinase-type plasminogen activator and plasminogen activator inhibitor-1 is modified; RNA and catalytic activity for the former are elevated while PAI-1 RNA is reduced. In contrast with murine model, where the PymT EC cells become immortal, the effects induced by PymT in human EC are transient. After 12-15 passages, human PymT EC stop proliferating, assume a senescent phenotype, and lose the ability to induce hemangiomas. At the same time both the amount of middle T protein and the level of activation of pp60c-src lower.
Collapse
Affiliation(s)
- L Primo
- Institute for Cancer Research and Treatment, Candiolo, Torino, Italy
| | | | | | | | | |
Collapse
|
33
|
Abstract
Protein phosphatase 2A describes an extended family of intracellular protein serine/threonine phosphatases sharing a common catalytic subunit that regulates a variety of processes by means of diverse regulatory subunits. During the past year, studies have shown that protein phosphatase 2A influences events ranging from the initiation of DNA replication to vertebrate axis formation to apoptosis.
Collapse
Affiliation(s)
- D M Virshup
- Departments of Pediatrics and Oncological Sciences, 5C334 School of Medicine, University of Utah, Salt Lake City, 84132, USA. david.
| |
Collapse
|
34
|
Gottlieb K, Villarreal LP. The distribution and kinetics of polyomavirus in lungs of intranasally infected newborn mice. Virology 2000; 266:52-65. [PMID: 10612660 DOI: 10.1006/viro.1999.0030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary cell types that sustain polyomavirus (Py) replication following intranasal infection as well as the nature of the host cellular response to Py were unknown. As this is an essential and specific site for virus entry, it seems likely that viral gene function must be adapted to these mucosal tissues. Using immunohistochemistry and in situ hybridization, we determined the cell types in the lung that support Py gene expression and replication following intranasal inoculation of newborn mice within 24 h of birth. Lungs were collected daily from days 1 to 10 postinfection for Py DNA and early T antigen analysis and for histological examination by H&E staining, using methods that preserve the delicate newborn lung architecture. Viral DNA was present in increasing quantities from 2 to 6 dpi in a subset of the Clara cells lining the inner lumen of the bronchi and bronchioles, while T antigen expression was present in a majority of the cells in the bronchi and bronchiole lumen. A distinct and transient pattern of hyperplasia was observed among the cells expressing T antigen and was present from 3 through 6 dpi. Py DNA-containing cells exfoliated into the bronchiole lumen and alveolar ducts, but Py T antigen was not detected in these cells. Py DNA was first detected at 2 dpi, increased through 6 dpi, and abruptly declined through 9 dpi at which time there was no sign of viral DNA in the lungs by in situ hybridization. An unusual infiltration of neutrophils began before the presence of exfoliated cells or Py replication and continued for 2-3 days and was followed by a lymphocytic infiltration at 8-10 dpi lasting 2-3 days. Neither the hyperplasia nor the neutrophil infiltration occurred following infection with the MOP1033 MT-Ag or RB1 LT-Ag mutants of Py. In addition, both the neutrophil infiltration and the transient hyperplasia are in stark contrast to the heavy macrophage infiltration that follows infection of lungs with mouse adenovirus. Thus it appears that Py elicits a distinct host response pattern not seen with other DNA viral infections.
Collapse
Affiliation(s)
- K Gottlieb
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California, 92697, USA
| | | |
Collapse
|
35
|
Yen A, Cherington V, Schaffhausen B, Marks K, Varvayanis S. Transformation-defective polyoma middle T antigen mutants defective in PLCgamma, PI-3, or src kinase activation enhance ERK2 activation and promote retinoic acid-induced, cell differentiation like wild-type middle T. Exp Cell Res 1999; 248:538-51. [PMID: 10222145 DOI: 10.1006/excr.1999.4423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In HL-60 human myeloblastic leukemia cells, retinoic acid is known to cause cFMS, RAF, MEK, and ERK2 dependent myeloid cell differentiation and G0 arrest associated with RB tumor suppressor protein hypophosphorylation, implicating receptor tyrosine kinase signal transduction in propelling these retinoic acid-induced cellular effects. Furthermore, ectopic expression of polyoma middle T antigen, which activates similar early signal transduction molecules as PDGF class receptors such as cFMS, accelerates these retinoic acid-induced effects. To determine if this depends on middle T's ability to activate PLCgamma, PI-3 kinase, and src-like kinases, stable transfectants of HL-60 cells expressing either the polyoma middle T dl23 mutant, which is defective for PLCgamma and PI-3 kinase activation, or the Delta205 mutant, which in addition has greatly attenuated src-like kinase activation ability, were created and compared to wild-type middle T-transfected HL-60. The transgenes were under control of the retinoic acid (or 1, 25-dihydroxy vitamin D3) inducible Moloney murine leukemia virus LTRs. Expression of the dl23 or Delta205 mutant accelerated retinoic acid-induced cell differentiation. The effects of the mutants were comparable to those of the wild-type middle T. Likewise, retinoic acid-induced G0 arrest of mutant transfected cells and wild-type middle T transfected cells was similar. The same was true for 1, 25-dihydroxy vitamin D3-induced monocytic differentiation as for retinoic acid-induced myeloid differentiation. The mutants did not cause the same slight shortening of the cell cycle as wild-type middle T. Both the mutants and the wild-type middle T caused a similar increase in the cellular basal level of activated ERK2 MAPK. Since retinoic acid increases ERK2 activation, which is necessary for differentiation, the data suggest that mutant and wild-type middle T enhanced the retinoic acid effects by increasing basal levels of ERK2 activation. Consistent with this, the polyoma-induced foreshortening of the time for differentiation coincided with the time for retinoic acid to significantly increase ERK2 activation. As in wild-type HL-60, retinoic acid induced the early down-regulation of RXRalpha in mutant transfectants similar to wild-type middle T transfectants, consistent with no loss or gain of relevant functions due to the mutations. In contrast, vitamin D3 did not down-regulate RXRalpha in HL-60 or transfectants. Polyoma middle T and these transformation-defective mutants thus enhanced ERK2 activation to have an early effect in promoting retinoic acid-induced differentiation without a strong dependence on activating PLCgamma, PI-3 kinase, or src-like kinase.
Collapse
Affiliation(s)
- A Yen
- Department of Pathology, Cornell University, Ithaca, New York, 14853, USA
| | | | | | | | | |
Collapse
|