1
|
Chen T, Tang X, Wang Z, Feng F, Xu C, Zhao Q, Wu Y, Sun H, Chen Y. Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising therapeutic treatment for KRAS-mutant cancers. Eur J Med Chem 2023; 261:115828. [PMID: 37778239 DOI: 10.1016/j.ejmech.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Kristen rat sarcoma (KRAS) is one of the most common oncogenes in human cancers. As a guanine nucleotide exchange factor, Son of Sevenless Homologue 1 (SOS1) represents a potential therapeutic concept for the treatment of KRAS-mutant cancers because of its activation on KRAS and downstream signaling pathways. In this review, we provide a comprehensive overview of the structure, biological function, and regulation of SOS1. We also focus on the recent advances in SOS1 inhibitors and emphasize their binding modes, structure-activity relationships and pharmacological activities. We hope that this publication can provide a comprehensive compendium on the rational design of SOS1 inhibitors.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Chen J, Xu X, Chen S, Lu T, Zheng Y, Gan Z, Shen Z, Ma S, Wang D, Su L, He F, Shang X, Xu H, Chen D, Zhang L, Xiong F. Double heterozygous pathogenic mutations in KIF3C and ZNF513 cause hereditary gingival fibromatosis. Int J Oral Sci 2023; 15:46. [PMID: 37752101 PMCID: PMC10522663 DOI: 10.1038/s41368-023-00244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Collapse
Affiliation(s)
- Jianfan Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Experimental Department of Obstetrics and Gynecology Institute, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Xu
- Department of Precision Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Song Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Duocai Wang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Leyi Su
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Machado RA, de Andrade RS, Pêgo SPB, Krepischi ACV, Coletta RD, Martelli-Júnior H. New evidence of genetic heterogeneity causing hereditary gingival fibromatosis and ALK and CD36 as new candidate genes. J Periodontol 2023; 94:108-118. [PMID: 35665929 DOI: 10.1002/jper.22-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hereditary gingival fibromatosis (HGF) is an uncommon genetic condition characterized by slow but progressive fibrous, non-hemorrhagic, and painless growth of the gingival tissues due to the increased deposition of collagen and other macromolecules of the extracellular matrix. HGF occurs in approximately 1:750,000 individuals and can exhibit dominant or recessive inheritance. To date, five loci (2p21-p22, 2p22.3-p23.3, 4q12, 5q13-q22, and 11p15) and three genes [REST (RE1-silencing transcription factor), SOS1 (Son-of-Sevenless-1), and ZNF862 (zinc finger protein 862 gene)] have been associated with HGF. Here, our study aimed to identify genetic variants associated with HGF by applying whole-exome sequencing (WES) and bioinformatics analyses. METHODS Thirteen Brazilian individuals with HGF and nine relatives without HGF from four unrelated families were chosen for our investigation. Blood collected from the patients and their relatives were used for WES. Five Web-available tools, namely, CADD, PolyPhen, SIFT, Mutation Taster, and Franklin's algorithms, were used to predict protein damage. RESULTS WES revealed pathogenic variants affecting the known HGF genes REST (c.1491_1492delAG) and SOS1 (c.3265_3266insTAAC) in two families. Additionally, potentially pathogenic variants segregating in the other two families were mapped to ALK receptor tyrosine kinase gene (ALK) (c.361C > T) and to collagen type I receptor and thrombospondin receptor gene (CD36) (c.1133G > T). CONCLUSION Our findings reinforce the high genetic heterogeneity of HGF, identifying new variants in HGF known genes (REST and SOS1) and ALK and CD36 as new genes that cause HGF.
Collapse
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil.,Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Soares de Andrade
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Sabina Pena Borges Pêgo
- Stomatology Clinic, Dental School, State University of Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo (IB/USP), São Paulo, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil.,Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Hercílio Martelli-Júnior
- Stomatology Clinic, Dental School, State University of Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosario Vellano (Unifenas), Alfenas, Minas Gerais, Brazil
| |
Collapse
|
4
|
Strzelec K, Dziedzic A, Łazarz-Bartyzel K, Grabiec AM, Gutmajster E, Kaczmarzyk T, Plakwicz P, Gawron K. Clinics and genetic background of hereditary gingival fibromatosis. Orphanet J Rare Dis 2021; 16:492. [PMID: 34819125 PMCID: PMC8611899 DOI: 10.1186/s13023-021-02104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hereditary gingival fibromatosis (HGF) is a rare condition characterized by slowly progressive overgrowth of the gingiva. The severity of overgrowth may differ from mild causing phonetic and masticatory issues, to severe resulting in diastemas or malposition of teeth. Both, autosomal-dominant and autosomal-recessive forms of HGF are described. The aim of this review is a clinical overview, as well as a summary and discussion of the involvement of candidate chromosomal regions, pathogenic variants of genes, and candidate genes in the pathogenesis of HGF. The loci related to non-syndromic HGF have been identified on chromosome 2 (GINGF, GINGF3), chromosome 5 (GINGF2), chromosome 11 (GINGF4), and 4 (GINGF5). Of these loci, pathogenic variants of the SOS-1 and REST genes inducing HGF have been identified in the GINGF and the GINGF5, respectively. Furthermore, among the top 10 clusters of genes ranked by enrichment score, ATP binding, and fibronectin encoding genes were proposed as related to HGF. CONCLUSION The analysis of clinical reports as well as translational genetic studies published since the late'90s indicate the clinical and genetic heterogeneity of non-syndromic HGF and point out the importance of genetic studies and bioinformatics of more numerous unrelated families to identify novel pathogenic variants potentially inducing HGF. This strategy will help to unravel the molecular mechanisms as well as uncover specific targets for novel and less invasive therapies of this rare, orphan condition.
Collapse
Affiliation(s)
- Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Medical College, Jagiellonian University, Kraków, Poland
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Gutmajster
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Tomasz Kaczmarzyk
- Department of Periodontology and Oral Medicine, Medical College, Jagiellonian University, Kraków, Poland.,Department of Oral Surgery, Medical College, Jagiellonian University, Kraków, Poland
| | - Paweł Plakwicz
- Department of Periodontology and Oral Diseases, Faculty of Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland.
| |
Collapse
|
5
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Cowan JR, Salyer L, Wright NT, Kinnamon DD, Amaya P, Jordan E, Bamshad MJ, Nickerson DA, Hershberger RE. SOS1 Gain-of-Function Variants in Dilated Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002892. [PMID: 32603605 DOI: 10.1161/circgen.119.002892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disease characterized by progressive ventricular enlargement and reduced systolic function. Here, we report genetic and functional analyses implicating the rat sarcoma signaling protein, SOS1 (Son of sevenless homolog 1), in DCM pathogenesis. METHODS Exome sequencing was performed on 412 probands and family members from our DCM cohort, identifying several SOS1 variants with potential disease involvement. As several lines of evidence have implicated dysregulated rat sarcoma signaling in the pathogenesis of DCM, we assessed functional impact of each variant on the activation of ERK (extracellular signal-regulated kinase), AKT (protein kinase B), and JNK (c-Jun N-terminal kinase) pathways. Relative expression levels were determined by Western blot in HEK293T cells transfected with variant or wild-type human SOS1 expression constructs. RESULTS A rare SOS1 variant [c.571G>A, p.(Glu191Lys)] was found to segregate alongside an A-band TTN truncating variant in a pedigree with aggressive, early-onset DCM. Reduced disease severity in the absence of the SOS1 variant suggested its potential involvement as a genetic risk factor for DCM in this family. Exome sequencing identified 5 additional SOS1 variants with potential disease involvement in 4 other families [c.1820T>C, p.(Ile607Thr); c.2156G>C, p.(Gly719Ala); c.2230A>G, p.(Arg744Gly); c.2728G>C, p.(Asp910His); c.3601C>T, p.(Arg1201Trp)]. Impacted amino acids occupied a number of functional domains relevant to SOS1 activity, including the N-terminal histone fold, as well as the C-terminal REM (rat sarcoma exchange motif), CDC25 (cell division cycle 25), and PR (proline-rich) tail domains. Increased phosphorylated ERK expression relative to wild-type levels was seen for all 6 SOS1 variants, paralleling known disease-relevant SOS1 signaling profiles. CONCLUSIONS These data support gain-of-function variation in SOS1 as a contributing factor to isolated DCM.
Collapse
Affiliation(s)
- Jason R Cowan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Lorien Salyer
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA (N.T.W.)
| | - Daniel D Kinnamon
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Pedro Amaya
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Elizabeth Jordan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Michael J Bamshad
- Department of Pediatrics (M.J.B.), University of Washington, Seattle
| | | | - Ray E Hershberger
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Cardiovascular Medicine (R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
7
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
8
|
Gawron K, Bereta G, Nowakowska Z, Łazarz-Bartyzel K, Potempa J, Chomyszyn-Gajewska M, Górska R, Plakwicz P. Analysis of mutations in the SOS-1 gene in two Polish families with hereditary gingival fibromatosis. Oral Dis 2017; 23:983-989. [PMID: 28425619 DOI: 10.1111/odi.12684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To establish whether two families from Malopolska and Mazovia provinces in Poland are affected by hereditary gingival fibromatosis type 1, caused by a single-cytosine insertion in exon 21 of the Son-of-Sevenless-1 gene. MATERIAL AND METHODS Six subjects with hereditary gingival fibromatosis and five healthy subjects were enrolled in the study. Gingival biopsies were collected during gingivectomy or tooth extraction and used for histopathological evaluation. Total RNA and genomic DNA were purified from cultured gingival fibroblasts followed by cDNA and genomic DNA sequencing and analysis. RESULTS Hereditary gingival fibromatosis was confirmed by periodontal examination, X-ray, and laboratory tests. Histopathological evaluation showed hyperplastic epithelium, numerous collagen bundles, and abundant-to-moderate fibroblasts in subepithelial and connective tissue. Sequencing of exons 19-22 of the Son-of-Sevenless-1 gene did not reveal a single-cytosine insertion nor other mutations. CONCLUSIONS Patients from two Polish families under study had not been affected by hereditary gingival fibromatosis type 1, caused by a single-cytosine insertion in exon 21 of the Son-of-Sevenless-1 gene. Further studies of the remaining regions of this gene as well as of other genes are needed to identify disease-related mutations in these patients. This will help to unravel the pathogenic mechanism of gingival overgrowth.
Collapse
Affiliation(s)
- K Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - G Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Z Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - K Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Medical College, Institute of Dentistry, Jagiellonian University, Krakow, Poland
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - M Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Medical College, Institute of Dentistry, Jagiellonian University, Krakow, Poland
| | - R Górska
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| | - P Plakwicz
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nat Commun 2017; 8:15061. [PMID: 28452363 PMCID: PMC5414354 DOI: 10.1038/ncomms15061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.
Collapse
|
10
|
Ng MY, Wang M, Casey PJ, Gan YH, Hagen T. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif). PLoS One 2017; 12:e0171464. [PMID: 28166272 PMCID: PMC5293191 DOI: 10.1371/journal.pone.0171464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Christensen SM, Tu HL, Jun JE, Alvarez S, Triplet MG, Iwig JS, Yadav KK, Bar-Sagi D, Roose JP, Groves JT. One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nat Struct Mol Biol 2016; 23:838-46. [PMID: 27501536 PMCID: PMC5016256 DOI: 10.1038/nsmb.3275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.
Collapse
Affiliation(s)
- Sune M. Christensen
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Hsiung-Lin Tu
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jesse E. Jun
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Meredith G. Triplet
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jeffrey S. Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Kamlesh K. Yadav
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Owens M, Kivuva E, Quinn A, Brennan P, Caswell R, Lango Allen H, Vaidya B, Ellard S. SOS1 frameshift mutations cause pure mucosal neuroma syndrome, a clinical phenotype distinct from multiple endocrine neoplasia type 2B. Clin Endocrinol (Oxf) 2016; 84:715-9. [PMID: 26708403 DOI: 10.1111/cen.13008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mucosal neuromas, thickened corneal nerves and marfanoid body habitus are characteristic phenotypic features of multiple endocrine neoplasia type 2B (MEN2B) and often provide an early clue to the diagnosis of the syndrome. Rarely, patients present with typical physical features of MEN2B but without associated endocrinopathies (medullary thyroid carcinoma or pheochromocytoma) or a RET gene mutation; this clinical presentation is thought to represent a distinct condition termed 'pure mucosal neuroma syndrome'. METHODS Exome sequencing was performed in two unrelated probands with mucosal neuromas, thickened corneal nerves and marfanoid body habitus, but no MEN2B-associated endocrinopathy or RET gene mutation. Sanger sequencing was performed to confirm mutations detected by exome sequencing and to test in family members and 3 additional unrelated index patients with mucosal neuromas or thickened corneal nerves. RESULTS A heterozygous SOS1 gene frameshift mutation (c.3266dup or c.3248dup) was identified in each proband. Sanger sequencing showed that proband 1 inherited the c.3266dup mutation from his affected mother, while the c.3248dup mutation had arisen de novo in proband 2. Sanger sequencing also identified one further novel SOS1 mutation (c.3254dup) in one of the 3 additional index patients. CONCLUSION Our results demonstrate the existence of pure mucosal neuroma syndrome as a clinical entity distinct from MEN2B that can now be diagnosed by genetic testing.
Collapse
Affiliation(s)
- Martina Owens
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Emma Kivuva
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Anthony Quinn
- Department of Ophthalmology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard Caswell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Bijay Vaidya
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
14
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
15
|
Hwang HS, Hwang SG, Yoon KW, Yoon JH, Roh KH, Choi EJ. CIIA negatively regulates the Ras-Erk1/2 signaling pathway through inhibiting the Ras-specific GEF activity of SOS1. J Cell Sci 2014; 127:1640-6. [PMID: 24522193 DOI: 10.1242/jcs.139931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Son of sevenless 1 (SOS1) is a Ras-specific guanine-nucleotide-exchange factor (GEF) that mediates intracellular signaling processes induced by receptor tyrosine kinases. In this study, we show that CIIA (also known as VPS28) physically associates with SOS1 and thereby inhibits the GEF activity of SOS1 on Ras, which prevents the epidermal growth factor (EGF)-induced activation of the Ras-Erk1/2 pathway. Furthermore, CIIA inhibited cyclin D1 expression, as well as DNA, synthesis in response to EGF. Intriguingly, CIIA failed to inhibit the Ras-specific GEF activity of Noonan-syndrome-associated SOS1 mutants (M269R, R552G, W729L and E846K). Taken together, our results suggest that CIIA functions as a negative modulator of the SOS1-Ras signaling events initiated by peptide growth factors including EGF.
Collapse
Affiliation(s)
- Hyun Sub Hwang
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
McDonald CB, El Hokayem J, Zafar N, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner. J Mol Recognit 2013; 26:92-103. [PMID: 23334917 DOI: 10.1002/jmr.2256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 01/10/2023]
Abstract
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
18
|
Sacco E, Spinelli M, Vanoni M. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007--present). Expert Opin Ther Pat 2012; 22:1263-87. [PMID: 23009088 DOI: 10.1517/13543776.2012.728586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Ras proteins are small GTPases molecular switches that cycle through two alternative conformational states, a GDP-bound inactive state and a GTP-bound active state. In the active state, Ras proteins interact with and modulate the activity of several downstream effectors regulating key cellular processes including proliferation, differentiation, survival, senescence, migration and metabolism. Activating mutations of RAS genes and of genes encoding Ras signaling members have a great incidence in proliferative disorders, such as cancer, immune and inflammatory diseases and developmental syndromes. Therefore, Ras and Ras signaling represent important clinical targets for the design and development of pharmaceutically active agents, including anticancer agents. AREAS COVERED The authors summarize methods available to down-regulate the Ras pathway and review recent patents covering Ras signaling modulators, as well as methods designed to kill specifically cancer cells bearing activated RAS oncogene. EXPERT OPINION Targeted therapy approach based on direct targeting of molecules specifically altered in Ras-dependent diseases is pursued with molecules that down-regulate expression or inhibit the biological function of mutant Ras or Ras signaling members. The low success rate in a clinical setting of molecules targeting activated members of the Ras pathway may require development of novel approaches, including combined and synthetic lethal therapies.
Collapse
Affiliation(s)
- Elena Sacco
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milano, Italy
| | | | | |
Collapse
|
19
|
Rojas JM, Oliva JL, Santos E. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer 2011; 2:298-305. [PMID: 21779500 DOI: 10.1177/1947601911408078] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Son of Sevenless (Sos) factors were originally discovered 2 decades ago as specialized Ras activators in signaling pathways controlling the process of R7 cell development in the eye of Drosophila melanogaster. The 2 known members of the mammalian Sos family (Sos1 and Sos2) code for ubiquitously expressed, highly homologous (69% overall) proteins involved in coupling signals originated by cell surface receptor tyrosine kinases (RTKs) to downstream, Ras-dependent mitogenic signaling pathways. Mechanistically, the Sos proteins function as enzymatic factors interacting with Ras proteins in response to upstream stimuli to promote guanine nucleotide exchange (GDP/GTP) and subsequent formation of the active Ras-GTP complex. In this review, we summarize current knowledge on structural, regulatory, and functional aspects of the Sos family, focusing on specific aspects of Sos biology such as structure-function relationship, crosstalk with different signaling pathways, and in vivo functional significance as deduced from phenotypic characterization of Sos knockout mice and human genetic syndromes caused by germline hSos1 mutations.
Collapse
Affiliation(s)
- José M Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | |
Collapse
|
20
|
Sacco E, Farina M, Greco C, Lamperti S, Busti S, Degioia L, Alberghina L, Liberati D, Vanoni M. Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnol Adv 2011; 30:154-68. [PMID: 21851854 DOI: 10.1016/j.biotechadv.2011.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
The multi-domain protein hSos1 plays a major role in cell growth and differentiation through its Ras-specific guanine nucleotide exchange domain whose complex regulation involves intra-molecular, inter-domain rearrangements. We present a stochastic mathematical model describing intra-molecular regulation of hSos1 activity. The population macroscopic effect is reproduced through a Monte-Carlo approach. Key model parameters have been experimentally determined by BIAcore analysis. Complementation experiments of a Saccharomyces cerevisiae cdc25(ts) strain with Sos deletion mutants provided a comprehensive data set for estimation of unknown parameters and model validation. The model is robust against parameter alteration and describes both the behavior of Sos deletion mutants and modulation of activity of the full length molecule under physiological conditions. By incorporating the calculated effect of amino acid changes at an inter-domain interface, the behavior of a mutant correlating with a developmental syndrome could be simulated, further validating the model. The activation state of Ras-specific guanine nucleotide exchange domain of hSos1 arises as an "emergent property" of its multi-domain structure that allows multi-level integration of a complex network of intra- and inter-molecular signals.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32:760-72. [PMID: 21387466 PMCID: PMC3118925 DOI: 10.1002/humu.21492] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/23/2011] [Indexed: 01/03/2023]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype–phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies. Hum Mutat 32:760–772, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Lepri
- IRCCS Casa Sollievo della Sofferenza, Laboratorio Mendel, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Groves JT, Kuriyan J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 2010; 17:659-65. [PMID: 20495561 PMCID: PMC3703790 DOI: 10.1038/nsmb.1844] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Signal transduction originates at the membrane, where the clustering of signaling proteins is a key step in transmitting a message. Membranes are difficult to study, and their influence on signaling is still only understood at the most rudimentary level. Recent advances in the biophysics of membranes, surveyed in this review, have highlighted a variety of phenomena that are likely to influence signaling activity, such as local composition heterogeneities and long-range mechanical effects. We discuss recent mechanistic insights into three signaling systems-Ras activation, Ephrin signaling and the control of actin nucleation-where the active role of membrane components is now appreciated and for which experimentation on the membrane is required for further understanding.
Collapse
Affiliation(s)
- Jay T Groves
- Departments of Chemistry, University of California, Berkeley, California, USA.
| | | |
Collapse
|
23
|
Allosteric gating of Son of sevenless activity by the histone domain. Proc Natl Acad Sci U S A 2010; 107:3436-40. [PMID: 20133694 DOI: 10.1073/pnas.0914315107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulated activation of Ras by receptor tyrosine kinases (RTK) constitutes a key transduction step in signaling processes that control an array of fundamental cellular functions including proliferation, differentiation, and survival. The principle mechanism by which Ras is activated down stream of RTKs involves the stimulation of guanine nucleotide exchange by the ubiquitous guanine nucleotide exchange factor Son of sevenless (Sos). In resting conditions, Sos activity is constrained by intramolecular interactions that maintain the protein in an autoinhibited conformation. Structural, biochemical, and genetic studies have implicated the histone domain (Sos-H), which comprises the most N-terminal region of Sos, in the regulation of Sos autoinhibition. However, the molecular underpinnings of this regulatory function are not well understood. In the present study we demonstrate that Sos-H possesses in vitro and in vivo membrane binding activity that is mediated, in part, by the interactions between a cluster of basic residues and phosphatidic acid. This interaction is required for Sos-dependent activation of Ras following EGF stimulation. The inducible association of Sos-H with membranes contributes to the catalytic activity of Sos by forcing the domain to adopt a conformation that destabilizes the autoinhibitory state. Thus, Sos-H plays a critical role in governing the catalytic output of Sos through the coupling of membrane recruitment to the release of autoinhibition.
Collapse
|
24
|
Chakraborty AK, Das J. Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nat Rev Immunol 2010; 10:59-71. [DOI: 10.1038/nri2688] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Scotto-Lavino E, Garcia-Diaz M, Du G, Frohman MA. Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1. J Biol Chem 2009; 285:6419-24. [PMID: 20042605 DOI: 10.1074/jbc.m109.074773] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin II association with actin, which triggers contraction, is regulated by orchestrated waves of phosphorylation/dephosphorylation of the myosin regulatory light chain. Blocking myosin regulatory light chain phosphorylation with small molecule inhibitors alters the shape, adhesion, and migration of many types of smooth muscle and cancer cells. Dephosphorylation is mediated by myosin phosphatase (MP), a complex that consists of a catalytic subunit (protein phosphatase 1c, PP1c), a large subunit (myosin phosphatase targeting subunit, MYPT), and a small subunit of unknown function. MYPT functions by targeting PP1c onto its substrate, phosphorylated myosin II. Using RNA interference, we show here that stability of PP1c beta and MYPT1 is interdependent; knocking down one of the subunits decreases the expression level of the other. Associated changes in cell shape also occur, characterized by flattening and spreading accompanied by increased cortical actin, and cell numbers decrease secondary to apoptosis. Of the three highly conserved isoforms of PP1c, we show that MYPT1 binding is restricted to PP1c beta, and, using chimeric analysis and site-directed mutations, that the central region of PP1c beta confers the isoform-specific binding. This finding was unexpected because the MP crystal structure has been solved and was reported to identify the variable, C-terminal domain of PP1c beta as being the region key for isoform-specific interaction with MYPT1. These findings suggest a potential screening strategy for cardiovascular and cancer therapeutic agents based on destabilizing MP complex formation and function.
Collapse
|
26
|
Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, Chakraborty AK, Roose JP. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 2009; 136:337-51. [PMID: 19167334 DOI: 10.1016/j.cell.2008.11.051] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 10/10/2008] [Accepted: 11/24/2008] [Indexed: 01/10/2023]
Abstract
Activation of Ras proteins underlies functional decisions in diverse cell types. Two molecules, RasGRP and SOS, catalyze Ras activation in lymphocytes. Binding of active Ras to SOS' allosteric pocket markedly increases SOS' activity establishing a positive feedback loop for SOS-mediated Ras activation. Integrating in silico and in vitro studies, we demonstrate that digital signaling in lymphocytes (cells are "on" or "off") is predicated upon feedback regulation of SOS. SOS' feedback loop leads to hysteresis in the dose-response curve, which can enable a capacity to sustain Ras activation as stimuli are withdrawn and exhibit "memory" of past encounters with antigen. Ras activation via RasGRP alone is analog (graded increase in amplitude with stimulus). We describe how complementary analog (RasGRP) and digital (SOS) pathways act on Ras to efficiently convert analog input to digital output. Numerous predictions regarding the impact of our findings on lymphocyte function and development are noted.
Collapse
Affiliation(s)
- Jayajit Das
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Garcia A, Zheng Y, Zhao C, Toschi A, Fan J, Shraibman N, Brown HA, Bar-Sagi D, Foster DA, Arbiser JL. Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells. Clin Cancer Res 2008; 14:4267-74. [PMID: 18594009 DOI: 10.1158/1078-0432.ccr-08-0102] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Elevated phospholipase D (PLD) activity provides a survival signal in several human cancer cell lines and suppresses apoptosis when cells are subjected to the stress of serum withdrawal. Thus, targeting PLD survival signals has potential to suppress survival in cancer cells that depend on PLD for survival. Honokiol is a compound that suppresses tumor growth in mouse models. The purpose of this study was to investigate the effect of honokiol on PLD survival signals and the Ras dependence of these signals. EXPERIMENTAL DESIGN The effect of honokiol upon PLD activity was examined in human cancer cell lines where PLD activity provides a survival signal. The dependence of PLD survival signals on Ras was investigated, as was the effect of honokiol on Ras activation. RESULTS We report here that honokiol suppresses PLD activity in human cancer cells where PLD has been shown to suppress apoptosis. PLD activity is commonly elevated in response to the stress of serum withdrawal, and, importantly, the stress-induced increase in PLD activity is selectively suppressed by honokiol. The stress-induced increase in PLD activity was accompanied by increased Ras activation, and the stress-induced increase in PLD activity in MDA-MB-231 breast cancer cells was dependent on a Ras. The PLD activity was also dependent on the GTPases RalA and ADP ribosylation factor. Importantly, honokiol suppressed Ras activation. CONCLUSION The data provided here indicate that honokiol may be a valuable therapeutic reagent for targeting a large number of human cancers that depend on Ras and PLD for their survival.
Collapse
Affiliation(s)
- Avalon Garcia
- Department of Biological Sciences, Hunter College of The City University of New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Many faces of Ras activation. Biochim Biophys Acta Rev Cancer 2008; 1786:178-87. [PMID: 18541156 DOI: 10.1016/j.bbcan.2008.05.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.
Collapse
|
30
|
Swanson KD, Winter JM, Reis M, Bentires-Alj M, Greulich H, Grewal R, Hruban RH, Yeo CJ, Yassin Y, Iartchouk O, Montgomery K, Whitman SP, Caligiuri MA, Loh ML, Gilliland DG, Look AT, Kucherlapati R, Kern SE, Meyerson M, Neel BG. SOS1 mutations are rare in human malignancies: implications for Noonan Syndrome patients. Genes Chromosomes Cancer 2008; 47:253-9. [PMID: 18064648 DOI: 10.1002/gcc.20527] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ line gain-of-function mutations in several members of the RAS/ERK pathway, including PTPN11, KRAS, and RAF1, cause the autosomal dominant genetic disorder Noonan Syndrome (NS). NS patients are at increased risk of leukemia/myeloproliferative disease and possibly some solid tumors, such as neuroblastoma. Recently, SOS1 gain of function mutations have also been shown to cause NS. Somatic PTPN11, KRAS, and RAF1 mutations occur (although at different frequencies) in a variety of sporadic neoplasms, but whether SOS1 mutations are associated with human cancer has not been evaluated. We sequenced DNA from a total of 810 primary malignancies, including pancreatic, lung, breast, and colon carcinomas, and acute myelogenous leukemia, as well as several neuroblastoma cell lines. From this large, diverse series, missense SOS1 mutations were identified in a single pancreatic tumor, one lung adenocarcinoma, and a T-cell acute lymphoblastic leukemia cell line. Our findings suggest that SOS1 is not a significant human oncogene in most cancers. Furthermore, NS patients with SOS1 mutations may not be at increased risk of developing cancer.
Collapse
Affiliation(s)
- Kenneth D Swanson
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 2008; 28:569-83. [PMID: 18042453 DOI: 10.1016/j.molcel.2007.09.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/30/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zenker M, Horn D, Wieczorek D, Allanson J, Pauli S, van der Burgt I, Doerr HG, Gaspar H, Hofbeck M, Gillessen-Kaesbach G, Koch A, Meinecke P, Mundlos S, Nowka A, Rauch A, Reif S, von Schnakenburg C, Seidel H, Wehner LE, Zweier C, Bauhuber S, Matejas V, Kratz CP, Thomas C, Kutsche K. SOS1 is the second most common Noonan gene but plays no major role in cardio-facio-cutaneous syndrome. J Med Genet 2007; 44:651-6. [PMID: 17586837 PMCID: PMC2597961 DOI: 10.1136/jmg.2007.051276] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 01/23/2023]
Abstract
BACKGROUND Heterozygous gain-of-function mutations in various genes encoding proteins of the Ras-MAPK signalling cascade have been identified as the genetic basis of Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS). Mutations of SOS1, the gene encoding a guanine nucleotide exchange factor for Ras, have been the most recent discoveries in patients with NS, but this gene has not been studied in patients with CFCS. METHODS AND RESULTS We investigated SOS1 in a large cohort of patients with disorders of the NS-CFCS spectrum, who had previously tested negative for mutations in PTPN11, KRAS, BRAF, MEK1 and MEK2. Missense mutations of SOS1 were discovered in 28% of patients with NS. In contrast, none of the patients classified as having CFCS was found to carry a pathogenic sequence change in this gene. CONCLUSION We have confirmed SOS1 as the second major gene for NS. Patients carrying mutations in this gene have a distinctive phenotype with frequent ectodermal anomalies such as keratosis pilaris and curly hair. However, the clinical picture associated with SOS1 mutations is different from that of CFCS. These findings corroborate that, despite being caused by gain-of-function mutations in molecules belonging to the same pathway, NS and CFCS scarcely overlap genotypically.
Collapse
|
33
|
Abstract
Evolutionary conserved members of the Ras superfamily of small GTP-binding proteins function as binary molecular switches to control diverse biological processes. In the context of cellular signaling, these include functions in exocytic and endocytic trafficking, as well as roles in signal relay downstream of various cell surface receptors. We previously reviewed roles played by the large family of GTPase, activating proteins in these processes. In this companion review, we highlight recent findings relating to the regulation of another major class of Ras superfamily regulatory proteins, the guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- André Bernards
- Harvard Medical School and Massachusetts General Hospital, Center for Cancer Research, Charlestown, MA 02129, USA
| | | |
Collapse
|
34
|
Jang SI, Lee EJ, Hart PS, Ramaswami M, Pallos D, Hart TC. Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis. J Biol Chem 2007; 282:20245-55. [PMID: 17510059 DOI: 10.1074/jbc.m701609200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of human SOS1 is responsible for hereditary gingival fibromatosis type 1, a benign overgrowth condition of the gingiva. Here, we investigated molecular mechanisms responsible for the increased rate of cell proliferation in gingival fibroblasts caused by mutant SOS1 in vitro. Using ectopic expression of wild-type and mutant SOS1 constructs, we found that truncated SOS1 could localize to the plasma membrane, without growth factor stimuli, leading to sustained activation of Ras/MAPK signaling. Additionally, we observed an increase in the magnitude and duration of ERK signaling in hereditary gingival fibromatosis gingival fibroblasts that was associated with phosphorylation of retinoblastoma tumor suppressor protein and the up-regulation of cell cycle regulators, including cyclins C, D, and E and the E2F/DP transcription factors. These factors promote cell cycle progression from G(1) to S phase, and their up-regulation may underlie the increased gingival fibroblast proliferation observed. Selective depletion of wild-type and mutant SOS1 through small interfering RNA demonstrates the link between mutation of SOS1, ERK signaling, cell proliferation rate, and the expression levels of Egr-1 and proliferating cell nuclear antigen. These findings elucidate the mechanisms for gingival overgrowth mediated by SOS1 gene mutation in humans.
Collapse
Affiliation(s)
- Shyh-Ing Jang
- Section of Human and Craniofacial Genetics, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 2007; 9:706-12. [PMID: 17486115 DOI: 10.1038/ncb1594] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 04/17/2007] [Indexed: 11/08/2022]
Abstract
The activation of Ras by the guanine nucleotide-exchange factor Son of sevenless (Sos) constitutes the rate-limiting step in the transduction process that links receptor tyrosine kinases to Ras-triggered intracellular signalling pathways. A prerequisite for the function of Sos in this context is its ligand-dependent membrane recruitment, and the prevailing model implicates both the Sos carboxy-terminal proline-rich motifs and amino-terminal pleckstrin homology (PH) domain in this process. Here, we describe a previously unrecognized pathway for the PH domain-dependent membrane recruitment of Sos that is initiated by the growth factor-induced generation of phosphatidic acid via the signalling enzyme phospholipase D2 (PLD2). Phosphatidic acid interacts with a defined site in the Sos PH domain with high affinity and specificity. This interaction is essential for epidermal growth factor (EGF)-induced Sos membrane recruitment and Ras activation. Our findings establish a crucial role for PLD2 in the coupling of extracellular signals to Sos-mediated Ras activation, and provide new insights into the spatial coordination of this activation event.
Collapse
Affiliation(s)
- Chen Zhao
- Graduate Program in Genetics, Stony Brook University, Stony Brook NY 11794, USA
| | | | | | | | | |
Collapse
|
36
|
Modzelewska K, Elgort MG, Huang J, Jongeward G, Lauritzen A, Yoon CH, Sternberg PW, Moghal N. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. Mol Cell Biol 2007; 27:3695-707. [PMID: 17339331 PMCID: PMC1899997 DOI: 10.1128/mcb.01630-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 3242, Salt Lake City, UT 84112-5550, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27:2732-45. [PMID: 17283063 PMCID: PMC1899892 DOI: 10.1128/mcb.01882-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras activation is crucial for lymphocyte development and effector function. Both T and B lymphocytes contain two types of Ras activators: ubiquitously expressed SOS and specifically expressed Ras guanyl nucleotide-releasing protein (RasGRP). The need for two activators is enigmatic since both are activated following antigen receptor stimulation. In addition, RasGRP1 appears to be dominant over SOS in an unknown manner. The crystal structure of SOS provides a clue: an unusual allosteric Ras-GTP binding pocket. Here, we demonstrate that RasGRP orchestrates Ras signaling in two ways: (i) by activating Ras directly and (ii) by facilitating priming of SOS with RasGTP that binds the allosteric pocket. Priming enhances SOS' in vivo activity and creates a positive RasGTP-SOS feedback loop that functions as a rheostat for Ras activity. Without RasGRP1, initiation of this loop is impaired because SOS' catalyst is its own product (RasGTP)-hence the dominance of RasGRP1. Introduction of an active Ras-like molecule (RasV12C40) in T- and B-cell lines can substitute for RasGRP function and enhance SOS' activity via its allosteric pocket. The unusual RasGRP-SOS interplay results in sensitive and robust Ras activation that cannot be achieved with either activator alone. We hypothesize that this mechanism enables lymphocytes to maximally respond to physiologically low levels of stimulation.
Collapse
Affiliation(s)
- Jeroen P Roose
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0795, USA
| | | | | | | | | |
Collapse
|
38
|
Lee EJ, Jang SI, Pallos D, Kather J, Hart TC. Characterization of fibroblasts with Son of Sevenless-1 mutation. J Dent Res 2007; 85:1050-5. [PMID: 17062749 PMCID: PMC2248237 DOI: 10.1177/154405910608501115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although non-syndromic hereditary gingival fibromatosis (HGF) is genetically heterogeneous, etiologic mutations have been identified only in the Son of Sevenless-1 gene (SOS1). To test evidence of increased cell proliferation, we studied histological, morphological, and proliferation characteristics in monolayer and three-dimensional cultures of fibroblasts with the SOS1 g.126,142-126,143insC mutation. Histological assessment of HGF gingiva indicated increased numbers of fibroblasts (30%) and increased collagen (10%). Cell proliferation studies demonstrated increased growth rates and 5-bromo-2-deoxyuridine incorporation for HGF fibroblasts. Flow cytometry showed greater proportions of HGF fibroblasts in the G2/M phase. Attachment of HGF fibroblasts to different extracellular matrix surfaces demonstrated increased formation of protrusions with lamellipodia. HGF fibroblasts in three-dimensional culture showed greater cell proliferation, higher cell density, and alteration of surrounding collagen matrix. These findings revealed that increased fibroblast numbers and collagen matrix changes are associated with mutation of the SOS1 gene in vitro and in vivo.
Collapse
Affiliation(s)
- E J Lee
- Human Craniofacial Genetics Section, NIDCR, National Institutes of Health, DHHS, Building 10, Room 5-2523, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J, Bar-Sagi D. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr Biol 2007; 16:2173-9. [PMID: 17084704 DOI: 10.1016/j.cub.2006.09.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/11/2006] [Indexed: 12/20/2022]
Abstract
The RTK-Ras-ERK cascade is a central signaling module implicated in the control of diverse biological processes including cell proliferation, differentiation, and survival. The coupling of RTK to Ras is mediated by the Ras-specific nucleotide-exchange factor Son of Sevenless (Sos), which activates Ras by inducing the exchange of GDP for GTP . Considerable evidence indicates that the duration and amplitude of Ras signals are important determinants in controlling the biological outcome . However, the mechanisms that regulate the quantitative output of Ras signaling remain poorly understood. We define a previously unrecognized regulatory component of the machinery that specifies the kinetic properties of signals propagated through the RTK-Ras-ERK cascade. We demonstrate that the establishment of a positive feedback loop involving Ras.GTP and Sos leads to an increase in the amplitude and duration of Ras activation in response to EGF stimulation. This effect is propagated to downstream elements of the pathway as reflected by sustained EGF-induced ERK phosphorylation and enhanced SRE-dependent transcription. As a consequence, the physiological endpoint of EGF action is switched from proliferation to differentiation. We propose that the engagement of Ras/Sos positive feedback loop may contribute to the mechanism by which ligand stimulation is coupled to discrete biological responses.
Collapse
Affiliation(s)
- Sean Boykevisch
- Department of Molecular Genetics and Microbiology, State University of New York, at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JPL, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2006; 39:75-9. [PMID: 17143282 DOI: 10.1038/ng1939] [Citation(s) in RCA: 406] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 11/07/2006] [Indexed: 12/26/2022]
Abstract
Noonan syndrome is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart defects and skeletal anomalies. Increased RAS-mitogen-activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations causes 50% of cases of Noonan syndrome. Here, we report that 22 of 129 individuals with Noonan syndrome without PTPN11 or KRAS mutation have missense mutations in SOS1, which encodes a RAS-specific guanine nucleotide exchange factor. SOS1 mutations cluster at codons encoding residues implicated in the maintenance of SOS1 in its autoinhibited form. In addition, ectopic expression of two Noonan syndrome-associated mutants induces enhanced RAS and ERK activation. The phenotype associated with SOS1 defects lies within the Noonan syndrome spectrum but is distinctive, with a high prevalence of ectodermal abnormalities but generally normal development and linear growth. Our findings implicate gain-of-function mutations in a RAS guanine nucleotide exchange factor in disease for the first time and define a new mechanism by which upregulation of the RAS pathway can profoundly change human development.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sacco E, Metalli D, Busti S, Fantinato S, D'Urzo A, Mapelli V, Alberghina L, Vanoni M. Catalytic competence of the Ras-GEF domain of hSos1 requires intra-REM domain interactions mediated by phenylalanine 577. FEBS Lett 2006; 580:6322-8. [PMID: 17084389 DOI: 10.1016/j.febslet.2006.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/15/2006] [Accepted: 10/19/2006] [Indexed: 11/18/2022]
Abstract
The Ras-specific guanine nucleotide exchange region of hSos1 consists of two consecutive domains: the catalytic core (residues 742-1024) contains all residues binding to Ras, including the catalytic hairpin, and an upstream REM domain (residues 553-741), so called because it contains an evolutionary conserved Ras Exchange Motif (REM). We functionally define the boundaries of the REM domain through a combination of in vivo and in vitro assays. We show that an intra-REM domain interaction, mediated by phenylalanine 577, is required to allow interaction of the REM domain with the catalytic core, constraining it in the active conformation.
Collapse
Affiliation(s)
- Elena Sacco
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zarich N, Oliva JL, Martínez N, Jorge R, Ballester A, Gutiérrez-Eisman S, García-Vargas S, Rojas JM. Grb2 is a negative modulator of the intrinsic Ras-GEF activity of hSos1. Mol Biol Cell 2006; 17:3591-7. [PMID: 16760435 PMCID: PMC1525251 DOI: 10.1091/mbc.e05-12-1104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
hSos1 is a Ras guanine-nucleotide exchange factor. It was suggested that the carboxyl-terminal region of hSos1 down-regulates hSos1 functionality and that the intrinsic guanine-nucleotide exchange activity of this protein may be different before and after stimulation of tyrosine kinase receptors. Using different myristoylated hSos1 full-length and carboxyl-terminal truncated mutants, we show that Grb2 function accounts not only for recruitment of hSos1 to the plasma membrane but also for modulation of hSos1 activity. Our results demonstrate that the first two canonical Grb2 binding sites, inside the carboxyl-terminal region of hSos1, are responsible for this regulation. Following different approaches, such as displacement of Grb2 from the hSos1-Grb2 complex or depletion of Grb2 levels by small interfering RNA, we found that the full-length Grb2 proteins mediate negative regulation of the intrinsic Ras guanine-nucleotide exchange activity of hSos1.
Collapse
Affiliation(s)
- Natasha Zarich
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - José Luis Oliva
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Natalia Martínez
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Rocío Jorge
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Ballester
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Silvia Gutiérrez-Eisman
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Susana García-Vargas
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
43
|
Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D. Differential modification of Ras proteins by ubiquitination. Mol Cell 2006; 21:679-87. [PMID: 16507365 DOI: 10.1016/j.molcel.2006.02.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/10/2006] [Accepted: 02/14/2006] [Indexed: 01/18/2023]
Abstract
Ras proteins are essential components of signal transduction pathways that control cell proliferation, differentiation, and survival. It is well recognized that the functional versatility of Ras proteins is accomplished through their differential compartmentalization, but the mechanisms that control their spatial segregation are not fully understood. Here we show that HRas is subject to ubiquitin conjugation, whereas KRas is refractory to this modification. The membrane-anchoring domain of HRas is necessary and sufficient to direct the mono- and diubiquitination of HRas. Ubiquitin attachment to HRas stabilizes its association with endosomes and modulates its ability to activate the Raf/MAPK signaling pathway. Therefore, differential ubiquitination of Ras proteins may control their location-specific signaling activities.
Collapse
Affiliation(s)
- Natalia Jura
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794, USA
| | | | | | | |
Collapse
|
44
|
Sondermann H, Nagar B, Bar-Sagi D, Kuriyan J. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc Natl Acad Sci U S A 2005; 102:16632-7. [PMID: 16267129 PMCID: PMC1276615 DOI: 10.1073/pnas.0508315102] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ras-specific nucleotide exchange factor son of sevenless (SOS) is a large, multidomain protein with complex regulation, including a Ras-dependent allosteric mechanism. The N-terminal segment of SOS, the histone domain, contains two histone folds, which is highly unusual for a cytoplasmic protein. Using a combination of computational docking, small-angle x-ray scattering, mutagenesis, and calorimetry, we show that the histone domain folds into the rest of SOS and docks onto a helical linker that connects the pleckstrin-homology (PH) and Dbl-homology (DH) domains of SOS to the catalytic domain. In this model, a positively charged surface region on the histone domain is positioned so as to provide a fourth potential anchorage site on the membrane for SOS in addition to the PH domain, the allosteric Ras molecule, and the C-terminal adapter-binding site. The histone domain in SOS interacts with the helical linker, using a region of the surface that in nucleosomes is involved in histone tetramerization. Adjacent surface elements on the histone domain that correspond to the DNA-binding surface of nucleosomes form the predicted interaction site with the membrane. The orientation and position of the histone domain in the SOS model implicates it as a potential mediator of membrane-dependent activation signals.
Collapse
Affiliation(s)
- Holger Sondermann
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
45
|
Ford B, Skowronek K, Boykevisch S, Bar-Sagi D, Nassar N. Structure of the G60A mutant of Ras: implications for the dominant negative effect. J Biol Chem 2005; 280:25697-705. [PMID: 15878843 DOI: 10.1074/jbc.m502240200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substituting alanine for glycine at position 60 in v-H-Ras generated a dominant negative mutant that completely abolished the ability of v-H-Ras to transform NIH 3T3 cells and to induce germinal vesicle breakdown in Xenopus oocytes. The crystal structure of the GppNp-bound form of RasG60A unexpectedly shows that the switch regions adopt an open conformation reminiscent of the structure of the nucleotide-free form of Ras in complex with Sos. Critical residues that normally stabilize the guanine nucleotide and the Mg(2+) ion have moved considerably. Sos binds to RasG60A but is unable to catalyze nucleotide exchange. Our data suggest that the dominant negative effect observed for RasG60A.GTP could result from the sequestering of Sos in a non-productive Ras-GTP-guanine nucleotide exchange factor ternary complex.
Collapse
Affiliation(s)
- Bradley Ford
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
46
|
Silver SJ, Chen F, Doyon L, Zink AW, Rebay I. New class of Son-of-sevenless (Sos) alleles highlights the complexities of Sos function. Genesis 2005; 39:263-72. [PMID: 15286999 DOI: 10.1002/gene.20054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Son-of-sevenless (Sos) encodes a complex multidomain protein best known for its role in activating the small GTPase RAS in response to receptor tyrosine kinase (RTK) stimulation. Much less well understood is SOS's role in modulating RAC activity via a separate GEF domain. In the course of a genetic modifier screen designed to investigate the complexities of RTK/RAS signal transduction, a complementation group of 11 alleles was isolated and mapped to the Sos locus. Molecular characterization of these alleles indicates that they specifically affect individual domains of the protein. One of these alleles, SosM98, which contains a single amino acid substitution in the RacGEF motif, functions as a dominant negative in vivo to downregulate RTK signaling. These alleles provide new tools for future investigations of SOS-mediated activation of both RAS and RAC and how these dual roles are coordinated and coregulated during development.
Collapse
Affiliation(s)
- Serena J Silver
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
47
|
Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 2004; 119:393-405. [PMID: 15507210 DOI: 10.1016/j.cell.2004.10.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/30/2004] [Accepted: 09/02/2004] [Indexed: 12/19/2022]
Abstract
The classical model for the activation of the nucleotide exchange factor Son of sevenless (SOS) involves its recruitment to the membrane, where it engages Ras. The recent discovery that Ras*GTP is an allosteric activator of SOS indicated that the regulation of SOS is more complex than originally envisaged. We now present crystallographic and biochemical analyses of a construct of SOS that contains the Dbl homology-pleckstrin homology (DH-PH) and catalytic domains and show that the DH-PH unit blocks the allosteric binding site for Ras and suppresses the activity of SOS. SOS is dependent on Ras binding to the allosteric site for both a lower level of activity, which is a result of Ras*GDP binding, and maximal activity, which requires Ras*GTP. The action of the DH-PH unit gates a reciprocal interaction between Ras and SOS, in which Ras converts SOS from low to high activity forms as Ras*GDP is converted to Ras*GTP by SOS.
Collapse
Affiliation(s)
- Holger Sondermann
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
48
|
Aiba Y, Oh-hora M, Kiyonaka S, Kimura Y, Hijikata A, Mori Y, Kurosaki T. Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation. Proc Natl Acad Sci U S A 2004; 101:16612-7. [PMID: 15545601 PMCID: PMC528733 DOI: 10.1073/pnas.0407468101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 12/15/2022] Open
Abstract
The Ras signaling pathway plays a critical role in B lymphocyte development and activation, but its activation mechanism has not been well understood. At least one mode of Ras regulation in B cells involves a Ras-guanyl nucleotide exchange factor, RasGRP3. We demonstrate here that RasGRP3 undergoes phosphorylation at Thr-133 upon B cell receptor cross-linking, thereby resulting in its activation. Deletion of phospholipase C-gamma2 or pharmacological interference with conventional PKCs resulted in marked reduction in both Thr-133 phosphorylation and Ras activation. Moreover, mutation of Thr-133 in RasGRP3 alone severely impaired its ability to activate Ras in B cell receptor signaling. Hence, our data suggest that PKC, after being activated by diacylglycerol, phosphorylates RasGRP3, thereby contributing to its full activation.
Collapse
Affiliation(s)
- Yuichi Aiba
- Laboratories of Lymphocyte Differentiation and Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Hirano M, Furiya Y, Kariya S, Nishiwaki T, Ueno S. Loss of function mechanism in aprataxin-related early-onset ataxia. Biochem Biophys Res Commun 2004; 322:380-6. [PMID: 15325241 DOI: 10.1016/j.bbrc.2004.07.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Indexed: 11/16/2022]
Abstract
Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is an autosomal recessive form of cerebellar ataxia that occurs most commonly in Japan but is also frequently seen in Europe. This disease is caused by mutations in the aprataxin gene, but the functions of the gene product and the pathogenic mechanism remain unclear. The present study provides experimental evidence that the histidine triad (HIT) domain in aprataxin has enzymatic activity that is negatively regulated by the intramolecular interaction of the N-terminal domain. Furthermore, the reduction in HIT activity seen in all the disease-causing mutants tested, and the correlation between the reduced activity and the severe phenotype, support that aprataxin's physiological function is associated with its catalytic activity. Our findings suggest that the clinical phenotypes are caused by a loss of aprataxin function, attributable largely to diminished HIT activity but partially to a reduction in the levels of gene products.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology, Nara Medical University, Nara, Japan.
| | | | | | | | | |
Collapse
|
50
|
Sondermann H, Soisson SM, Bar-Sagi D, Kuriyan J. Tandem histone folds in the structure of the N-terminal segment of the ras activator Son of Sevenless. Structure 2004; 11:1583-93. [PMID: 14656442 DOI: 10.1016/j.str.2003.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ras activator Son of Sevenless (Sos) contains a Cdc25 homology domain, responsible for nucleotide exchange, as well as Dbl/Pleckstrin homology (DH/PH) domains. We have determined the crystal structure of the N-terminal segment of human Sos1 (residues 1-191) and show that it contains two tandem histone folds. While the N-terminal domain is monomeric in solution, its structure is surprisingly similar to that of histone dimers, with both subunits of the histone "dimer" being part of the same peptide chain. One histone fold corresponds to the region of Sos that is clearly similar in sequence to histones (residues 91-191), whereas the other is formed by residues in Sos (1-90) that are unrelated in sequence to histones. Residues that form a contiguous patch on the surface of the histone domain of Sos are conserved from C. elegans to humans, suggesting a potential role for this domain in protein-protein interactions.
Collapse
Affiliation(s)
- Holger Sondermann
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|