1
|
Han Y, Zhao H, Li G, Jia J, Guo H, Tan J, Sun X, Li S, Ran Q, Bai C, Gu Y, Li Z, Guan H, Gao S, Zhou PK. GCN5 mediates DNA-PKcs crotonylation for DNA double-strand break repair and determining cancer radiosensitivity. Br J Cancer 2024; 130:1621-1634. [PMID: 38575732 PMCID: PMC11091118 DOI: 10.1038/s41416-024-02636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.
Collapse
Affiliation(s)
- Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gang Li
- School of Public Health, Institute for Environmental Medicine and Radiation Hygiene, University of South China, Hengyang, China
- Department of Hospital Infection Control, Shenzhen Luohu Peoples Hospital, Shenzhen, China
| | - Jin Jia
- School of Medicine, University of South China, Hengyang, China
| | - Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jinpeng Tan
- School of Medicine, University of South China, Hengyang, China
| | - Xingyao Sun
- School of Medicine, University of South China, Hengyang, China
| | - Saiyu Li
- School of life Sciences, Hebei University, Baoding, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yongqing Gu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - ZhongJun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China.
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
- School of Public Health, Institute for Environmental Medicine and Radiation Hygiene, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Wei SJ, Yang IH, Mohiuddin IS, Kshirsagar GJ, Nguyen TH, Trasti S, Maurer BJ, Kang MH. DNA-PKcs as an upstream mediator of OCT4-induced MYC activation in small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194939. [PMID: 37116859 DOI: 10.1016/j.bbagrm.2023.194939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor noted for the rapid development of both metastases and resistance to chemotherapy. High mutation burden, ubiquitous loss of TP53 and RB1, and a mutually exclusive amplification of MYC gene family members contribute to genomic instability and make the development of new targeted agents a challenge. Previously, we reported a novel OCT4-induced MYC transcriptional activation pathway involving c-MYC, pOCT4S111, and MAPKAPK2 in progressive neuroblastoma, also a neuroendocrine tumor. Using tumor microarray analysis of clinical samples and preclinical models, we now report a correlation in expression between these proteins in SCLC. In correlating c-MYC protein expression with genomic amplification, we determined that some SCLC cell lines exhibited high c-MYC without genomic amplification, implying amplification-independent MYC activation. We then confirmed direct interaction between OCT4 and DNA-PKcs and identified specific OCT4 and DNA-PKcs binding sites. Knock-down of both POU5F1 (encoding OCT4) and PRKDC (encoding DNA-PKcs) resulted in decreased c-MYC expression. Further, we confirmed binding of OCT4 to the promoter/enhancer region of MYC. Together, these data establish the presence of a DNA-PKcs/OCT4/c-MYC pathway in SCLCs. We then disruptively targeted this pathway and demonstrated anticancer activity in SCLC cell lines and xenografts using both DNA-PKcs inhibitors and a protein-protein interaction inhibitor of DNA-PKcs and OCT4. In conclusion, we demonstrate here that DNA-PKcs can mediate high c-MYC expression in SCLCs, and that this pathway may represent a new therapeutic target for SCLCs with high c-MYC expression.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - In-Hyoung Yang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ismail S Mohiuddin
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ganesh J Kshirsagar
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Thinh H Nguyen
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Trasti
- Laboratory Animal Resources Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Barry J Maurer
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Abstract
General control nonderepressible 5 protein (Gcn5) and its homologs, including p300/CBP-associated factor (PCAF), are lysine acetyltransferases that modify both histone and non-histone proteins using acetyl coenzyme A as a donor substrate. While decades of studies have uncovered a vast network of cellular processes impacted by these acetyltransferases, including gene transcription and metabolism, far less is known about how these enzymes are themselves regulated. In this review, we summarize the type and functions of posttranslational modifications proposed to control Gcn5 in both yeast and human cells. We further outline common themes, open questions, and strategies to guide future work.
Collapse
|
5
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
6
|
Abstract
Significance: Genomic instability, a hallmark of cancer, renders cancer cells susceptible to genomic stress from both endogenous and exogenous origins, resulting in the increased tendency to accrue DNA damage, chromosomal instability, or aberrant DNA localization. Apart from the cell autonomous tumor-promoting effects, genomic stress in cancer cells could have a profound impact on the tumor microenvironment. Recent Advances: Recently, it is increasingly appreciated that harnessing genomic stress could provide a promising strategy to revive antitumor immunity, and thereby offer new therapeutic opportunities in cancer treatment. Critical Issues: Genomic stress is closely intertwined with antitumor immunity via mechanisms involving the direct crosstalk with DNA damage response components, upregulation of immune-stimulatory/inhibitory ligands, release of damage-associated molecular patterns, increase of neoantigen repertoire, and activation of DNA sensing pathways. A better understanding of these mechanisms will provide molecular basis for exploiting the genomic stress to boost antitumor immunity. Future Directions: Future research should pay attention to the heterogeneity between individual cancers in the genomic instability and the associated immune response, and how to balance the toxicity and benefit by specifying the types, potency, and treatment sequence of genomic stress inducer in therapeutic practice. Antioxid. Redox Signal. 34, 1128-1150.
Collapse
Affiliation(s)
- Congying Pu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
8
|
Culbertson SJ, Shogren-Knaak MA. Mechanisms of stimulation of SAGA-mediated nucleosome acetylation by a transcriptional activator. Biochem Biophys Rep 2021; 25:100884. [PMID: 33437882 PMCID: PMC7786029 DOI: 10.1016/j.bbrep.2020.100884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic gene expression requires the coordination of multiple factors to overcome the repressive nature of chromatin. However, the mechanistic details of this coordination are not well understood. The SAGA family of transcriptional coactivators interacts with DNA-binding activators to establish regions of hyperacetylation. We have previously shown that, contrary to the prevailing model in which activator protein increases SAGA affinity for nucleosome substrate, the Gal4-VP16 activator model system augments the rate of acetylation turnover for the SAGA complex from budding yeast. To better understand how this stimulation occurs, we have identified necessary components using both kinetics assays and binding interactions studies. We find that Gal4-VP16-mediated stimulation requires activator binding to DNA flanking the nucleosome, as it cannot be reproduced in trans by activator protein alone or by exogenous DNA containing the activator binding site in combination with the activator protein. Further, activator-mediated stimulation requires subunits outside of the histone acetylation (HAT) module, with the Tra1 subunit being responsible for the majority of the stimulation. Interestingly, for the HAT module alone, nucleosome acetylation is inhibited by activator proteins due to non-specific binding of the activator to the nucleosomes. This inhibition is not observed for the yeast ADA complex, a small complex comprised mostly of the HAT module, suggesting that subunits outside of the HAT module in both it and SAGA can overcome non-specific activator binding to nucleosomes. However, this activity appears distinct from activator-mediated stimulation, as ADA complex acetylation is not stimulated by Gal4-VP16. Stimulation of nucleosome acetylation by SAGA requires activator in cis Tra1 mediates the majority of activator stimulation The core HAT complex of SAGA is inhibited by activator due to non-specific binding The related ADA complex is neither stimulated nor inhibited by activator
Collapse
Affiliation(s)
- Sannie J Culbertson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, United States
| | - Michael A Shogren-Knaak
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, United States
| |
Collapse
|
9
|
Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe. Mol Cell Biochem 2020; 474:229-241. [PMID: 32729004 DOI: 10.1007/s11010-020-03848-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Trachemys scripta elegans can survive up to three months of absolute anoxia at 3 °C and recover with minimal cellular damage. Red-eared sliders employ various physiological and biochemical adaptations to survive anoxia with metabolic rate depression (MRD) being the most prominent adaptation. MRD is mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms aimed at shutting down cellular processes that are not needed for anoxia survival, while reprioritizing ATP towards cell processes that are vital for anaerobiosis. Histone acetylation/deacetylation are epigenetic modifications that maintain a proper balance between permissive chromatin and restricted chromatin, yet very little is known about protein regulation and enzymatic activity of the writers and erasers of acetylation during natural anoxia tolerance. As such, this study explored the interplay between transcriptional activators, histone acetyltransferases (HATs), and transcriptional repressors, sirtuins (SIRTs), along with three prominent acetyl-lysine (K) moieties of histone H3 in the liver of red-eared sliders. Western immunoblotting was used to measure acetylation levels of H3-K14, H3-K18, and H3-K56, as well as protein levels of histone H3-total, HATs, and nuclear SIRTs in the liver in response to 5 h and 20 h anoxia. Global and nuclear enzymatic activity of HATs and enzymatic activity of nuclear SIRTs were also measured. Overall, a strong suppression of HATs-mediated H3 acetylation and SIRT-mediated deacetylation was evident in the liver of red-eared sliders that could play an important role in ATP conservation as part of the overall reduction in metabolic rate.
Collapse
|
10
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Wang R, Liu X. Epigenetic regulation of prostate cancer. Genes Dis 2019; 7:606-613. [PMID: 33335960 PMCID: PMC7729106 DOI: 10.1016/j.gendis.2019.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is (PCa) the second leading cause of cancer death in males in the United State, with 174,650 new cases and 31,620 deaths estimated in 2019. It has been documented that epigenetic deregulation such as histone modification and DNA methylation contributes to PCa initiation and progression. EZH2 (enhancer of zeste homolog 2), the catalytic subunit of the Polycomb Repressive Complex (PRC2) responsible for H3K27me3 and gene repression, has been identified as a promising target in PCa. In addition, overexpression of other epigenetic regulators such as DNA methyltransferases (DNMT) is also observed in PCa. These epigenetic regulators undergo extensive post-translational modifications, in particular, phosphorylation. AKT, CDKs, PLK1, PKA, ATR and DNA-PK are the established kinases responsible for phosphorylation of various epigenetic regulators.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
12
|
George VC, Ansari SA, Chelakkot VS, Chelakkot AL, Chelakkot C, Menon V, Ramadan W, Ethiraj KR, El-Awady R, Mantso T, Mitsiogianni M, Panagiotidis MI, Dellaire G, Vasantha Rupasinghe HP. DNA-dependent protein kinase: Epigenetic alterations and the role in genomic stability of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:92-105. [PMID: 31395353 DOI: 10.1016/j.mrrev.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.
Collapse
Affiliation(s)
- Vazhappilly Cijo George
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shabbir Ahmed Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - Chaithanya Chelakkot
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Cancer Biology Department, National Cancer Institute and College of Medicine, Cairo University, Cairo, Egypt
| | - Theodora Mantso
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Melina Mitsiogianni
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mihalis I Panagiotidis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
13
|
Syed KM, Joseph S, Mukherjee A, Majumder A, Teixeira JM, Dutta D, Pillai MR. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts. J Cell Sci 2016; 129:4576-4591. [PMID: 27875275 DOI: 10.1242/jcs.194035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis.
Collapse
Affiliation(s)
- Khaja Mohieddin Syed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Sunu Joseph
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Ananda Mukherjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, MSU, 333 Bostwick Ave, Grand Rapids, MI 49503, USA
| | - Aditi Majumder
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, MSU, 333 Bostwick Ave, Grand Rapids, MI 49503, USA
| | - Debasree Dutta
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Madhavan Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| |
Collapse
|
14
|
Fantini D, Huang S, Asara JM, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell 2016; 28:192-200. [PMID: 28035050 PMCID: PMC5221623 DOI: 10.1091/mbc.e16-08-0573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/11/2022] Open
Abstract
DDB2 is a multifunctional protein that participates in both nucleotide excision repair and regulation of gene transcription. In colon cancer cells, chromatin association of XRCC5/6, in the absence of DNA damage, depends on DDB2, and the DDB2–XRCC5/6 interaction promotes the transcription of the antiangiogenic gene SEMA3A. Damaged DNA-binding protein 2 (DDB2), a nuclear protein, participates in both nucleotide excision repair and mRNA transcription. The transcriptional regulatory function of DDB2 is significant in colon cancer, as it regulates metastasis. To characterize the mechanism by which DDB2 participates in transcription, we investigated the protein partners in colon cancer cells. Here we show that DDB2 abundantly associates with XRCC5/6, not involving CUL4 and DNA-PKcs. A DNA-damaging agent that induces DNA double-stranded breaks (DSBs) does not affect the interaction between DDB2 and XRCC5. In addition, DSB-induced nuclear enrichment or chromatin association of XRCC5 does not involve DDB2, suggesting that the DDB2/XRCC5/6 complex represents a distinct pool of XRCC5/6 that is not directly involved in DNA break repair (NHEJ). In the absence of DNA damage, on the other hand, chromatin association of XRCC5 requires DDB2. We show that DDB2 recruits XRCC5 onto the promoter of SEMA3A, a DDB2-stimulated gene. Moreover, depletion of XRCC5 inhibits SEMA3A expression without affecting expression of VEGFA, a repression target of DDB2. Together our results show that DDB2 is critical for chromatin association of XRCC5/6 in the absence of DNA damage and provide evidence that XRCC5/6 are functional partners of DDB2 in its transcriptional stimulatory activity.
Collapse
Affiliation(s)
- Damiano Fantini
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL 60607
| | - Shuo Huang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL 60607
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois, Chicago, IL 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL 60607 .,Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
15
|
Tavares CDJ, Sharabi K, Dominy JE, Lee Y, Isasa M, Orozco JM, Jedrychowski MP, Kamenecka TM, Griffin PR, Gygi SP, Puigserver P. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator. J Biol Chem 2016; 291:10635-45. [PMID: 27022023 DOI: 10.1074/jbc.m115.706200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 01/26/2023] Open
Abstract
Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.
Collapse
Affiliation(s)
- Clint D J Tavares
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Kfir Sharabi
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - John E Dominy
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Yoonjin Lee
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Jose M Orozco
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Pere Puigserver
- From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
16
|
tBRD-1 selectively controls gene activity in the Drosophila testis and interacts with two new members of the bromodomain and extra-terminal (BET) family. PLoS One 2014; 9:e108267. [PMID: 25251222 PMCID: PMC4177214 DOI: 10.1371/journal.pone.0108267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023] Open
Abstract
Multicellular organisms have evolved specialized mechanisms to control transcription in a spatial and temporal manner. Gene activation is tightly linked to histone acetylation on lysine residues that can be recognized by bromodomains. Previously, the testis-specifically expressed bromodomain protein tBRD-1 was identified in Drosophila. Expression of tBRD-1 is restricted to highly transcriptionally active primary spermatocytes. tBRD-1 is essential for male fertility and proposed to act as a co-factor of testis-specific TATA box binding protein-associated factors (tTAFs) for testis-specific transcription. Here, we performed microarray analyses to compare the transcriptomes of tbrd-1 mutant testes and wild-type testes. Our data confirmed that tBRD-1 controls gene activity in male germ cells. Additionally, comparing the transcriptomes of tbrd-1 and tTAF mutant testes revealed a subset of common target genes. We also characterized two new members of the bromodomain and extra-terminal (BET) family, tBRD-2 and tBRD-3. In contrast to other members of the BET family in animals, both possess only a single bromodomain, a characteristic feature of plant BET family members. Immunohistology techniques not only revealed that tBRD-2 and tBRD-3 partially co-localize with tBRD-1 and tTAFs in primary spermatocytes, but also that their proper subcellular distribution was impaired in tbrd-1 and tTAF mutant testes. Treating cultured male germ cells with inhibitors showed that localization of tBRD-2 and tBRD-3 depends on the acetylation status within primary spermatocytes. Yeast two-hybrid assays and co-immunoprecipitations using fly testes protein extracts demonstrated that tBRD-1 is able to form homodimers as well as heterodimers with tBRD-2, tBRD-3, and tTAFs. These data reveal for the first time the existence of single bromodomain BET proteins in animals, as well as evidence for a complex containing tBRDs and tTAFs that regulates transcription of a subset of genes with relevance for spermiogenesis.
Collapse
|
17
|
A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat Commun 2014; 5:4091. [PMID: 24909977 DOI: 10.1038/ncomms5091] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/12/2014] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.
Collapse
|
18
|
Liu X, Xiao W, Wang XD, Li YF, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting α-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem 2013; 288:36648-61. [PMID: 24220028 DOI: 10.1074/jbc.m113.486910] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p38-interacting protein (p38IP) is a component of the GCN5 histone acetyltransferase-containing coactivator complex (GCN5-SAGA complex). It remains unclear whether p38IP or GCN5-SAGA is involved in cell cycle regulation. Using RNA interference to knock down p38IP, we observed that cells were arrested at the G2/M phase, exhibiting accumulation of cyclins, shrunken spindles, and hypoacetylation of α-tubulin. Further analysis revealed that knockdown of p38IP led to proteasome-dependent degradation of GCN5. GCN5 associated with and acetylated α-tubulin, and recovering GCN5 protein levels in p38IP knockdown cells by ectopic expression of GCN5 efficiently reversed α-tubulin hypoacetylation and G2/M arrest. During the G2/M transition, the association of α-tubulin with GCN5 increased, and the acetylation of α-tubulin reached a peak. Biochemical analyses demonstrated that the interaction between p38IP and GCN5 depended on the p38IP N terminus (1-381 amino acids) and GCN5 histone acetyltransferase domain and bromodomain. The p38IP N terminus could effectively reverse p38IP depletion-induced GCN5 degradation, thus recovering α-tubulin acetylation and G2/M progression. p38IP-mediated suppression of GCN5 ubiquitination most likely occurs via nuclear sequestration of GCN5. Our data indicate that the GCN5-SAGA complex is required for G2/M progression, mainly because p38IP promotes the acetylation of α-tubulin by preventing the degradation of GCN5, in turn facilitating the formation of the mitotic spindle.
Collapse
Affiliation(s)
- Xin Liu
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275 and
| | | | | | | | | | | |
Collapse
|
19
|
Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2012; 2:249-268. [PMID: 22679557 PMCID: PMC3365807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 06/01/2023] Open
Abstract
A DNA double strand break (DSB) is a highly toxic lesion, which can generate genetic instability and profound genome rearrangements. However, DSBs are required to generate diversity during physiological processes such as meiosis or the establishment of the immune repertoire. Thus, the precise regulation of a complex network of processes is necessary for the maintenance of genomic stability, allowing genetic diversity but protecting against genetic instability and its consequences on oncogenesis. Two main strategies are employed for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is initiated by single-stranded DNA (ssDNA) resection and requires sequence homology with an intact partner, while NHEJ requires neither resection at initiation nor a homologous partner. Thus, resection is an pivotal step at DSB repair initiation, driving the choice of the DSB repair pathway employed. However, an alternative end-joining (A-EJ) pathway, which is highly mutagenic, has recently been described; A-EJ is initiated by ssDNA resection but does not require a homologous partner. The choice of the appropriate DSB repair system, for instance according the cell cycle stage, is essential for genome stability maintenance. In this context, controlling the initial events of DSB repair is thus an essential step that may be irreversible, and the wrong decision should lead to dramatic consequences. Here, we first present the main DSB repair mechanisms and then discuss the importance of the choice of the appropriate DSB repair pathway according to the cell cycle phase. In a third section, we present the early steps of DSB repair i.e., DSB signaling, chromatin remodeling, and the regulation of ssDNA resection. In the last part, we discuss the competition between the different DSB repair mechanisms. Finally, we conclude with the importance of the fine tuning of this network for genome stability maintenance and for tumor protection in fine.
Collapse
Affiliation(s)
- Anastazja Grabarz
- Université Paris Sud, Laboratoire « Stabilité Génétique et Oncogenèse » CNRS, UMR 8200 and Institut de Cancérologie Gustave-Roussy PR2, 114 Rue Edouard Vaillant, 94805 VILLEJUIF. CNRS, France
| | | | | | | |
Collapse
|
20
|
Williamson EA, Wray JW, Bansal P, Hromas R. Overview for the histone codes for DNA repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:207-27. [PMID: 22749147 DOI: 10.1016/b978-0-12-387665-2.00008-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA damage occurs continuously as a result of various factors-intracellular metabolism, replication, and exposure to genotoxic agents, such as ionizing radiation and chemotherapy. If left unrepaired, this damage could result in changes or mutations within the cell genomic material. There are a number of different pathways that the cell can utilize to repair these DNA breaks. However, it is of utmost interest to know how the DNA damage is signaled to the various DNA pathways. As DNA damage occurs within the chromatin, we postulate that modifications of histones are important for signaling the position of DNA damage, recruiting the DNA repair proteins to the site of damage, and creating an open structure such that the repair proteins can access the site of damage. We discuss the modifications that occur on the histones and the manner in which they relate to the type of damage that has occurred as well as the DNA repair pathways that are activated.
Collapse
|
21
|
Patzlaff JS, Terrenoire E, Turner BM, Earnshaw WC, Paulson JR. Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells. Exp Cell Res 2010; 316:2123-35. [PMID: 20452346 DOI: 10.1016/j.yexcr.2010.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/08/2010] [Accepted: 05/03/2010] [Indexed: 01/16/2023]
Abstract
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.
Collapse
Affiliation(s)
- Jason S Patzlaff
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA.
| | | | | | | | | |
Collapse
|
22
|
Lilley CE, Chaurushiya MS, Weitzman MD. Chromatin at the intersection of viral infection and DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:319-27. [PMID: 19616655 PMCID: PMC2838936 DOI: 10.1016/j.bbagrm.2009.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022]
Abstract
During infection, viruses cause global disruption to nuclear architecture in their attempt to take over the cell. In turn, the host responds with various defenses, which include chromatin-mediated silencing of the viral genome and activation of DNA damage signaling pathways. Dynamic exchanges at chromatin, and specific post-translational modifications on histones have recently emerged as master controllers of DNA damage signaling and repair. Studying viral control of chromatin modifications is identifying histones as important players in the battle between host and virus for control of cell cycle and gene expression. These studies are revealing new complexities of the virus-host interaction, uncovering the potential of chromatin as an anti-viral defense mechanism, and also providing unique insights into the role of chromatin in DNA repair.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
23
|
Koltovaya NA, Nikulushkina YV, Kadyshevskaya EY, Roshina MP, Devin AB. Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408080048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:376-82. [DOI: 10.1016/j.bbagrm.2008.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/27/2008] [Accepted: 04/16/2008] [Indexed: 11/22/2022]
|
25
|
Abstract
Chromatin structure plays a key role in most processes involving DNA metabolism. Chromatin modifications implicated in transcriptional regulation are relatively well characterized and are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, ubiquitylation, sumoylation, acetylation and methylation, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. Recent evidences suggest that such mechanisms are also involved in DNA damage detection and DNA repair. One of the most well-characterized modifications is caused by the formation of DNA double strand breaks (DSBs), resulting in phosphorylation of histone H2AX (the so-called gamma-H2AX) on the chromatin surrounding the DNA lesion. It is generally believed that histone H2AX phosphorylation is required for the concentration and stabilization of DNA repair proteins to the damaged chromatin. The phosphorylation of this histone seems to play a role in both non-homologous end-joining (NHEJ) and homologous recombination (HR) repair pathways. However, the choice of the repair pathway might depend on or induce additional post-translational modifications affecting other histone proteins necessary to the completion of the entire DNA repair process. Interestingly, even in the absence of DSBs, histone modifications occur. Indeed, following UV-exposure, histone acetylation takes place and is believed to facilitate the nucleotide excision repair (NER) process by promoting chromatin accessibility to the repair factors. This review focuses on recent data characterizing the function of histone modification in various repair processes and discusses if the combination of such modifications can be the trademark of a specific DNA repair pathway.
Collapse
|
26
|
Zou Y, Wu J, Giannone RJ, Boucher L, Du H, Huang Y, Johnson DK, Liu Y, Wang Y. Nucleophosmin/B23 negatively regulates GCN5-dependent histone acetylation and transactivation. J Biol Chem 2007; 283:5728-37. [PMID: 18165222 DOI: 10.1074/jbc.m709932200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. An in vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr 199 enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation.
Collapse
Affiliation(s)
- Yonglong Zou
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee MY, Kim MA, Kim HJ, Bae YS, Park JI, Kwak JY, Chung JH, Yun J. Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: implications in cancer cell death. Biochem Biophys Res Commun 2007; 360:483-9. [PMID: 17603010 DOI: 10.1016/j.bbrc.2007.06.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/15/2007] [Indexed: 11/17/2022]
Abstract
Protein acetylation modification has been implicated in many cellular processes but the direct evidence for the involvement of protein acetylation in signal transduction is very limited. In the present study, we found that an alkylating agent methyl methanesulfonate (MMS) induces a robust and reversible hyperacetylation of both cytoplasmic and nuclear proteins during the early phase of the cellular response to MMS. Notably, the acetylation level upon MMS treatment was strongly correlated with the susceptibility of cancer cells, and the enhancement of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to increase the cellular susceptibility. These results suggest protein acetylation is important for the cell death signal transduction pathway and indicate that the use of HDAC inhibitors for the treatment of cancer is relevant.
Collapse
Affiliation(s)
- Min-Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, 3-1, Dongdaeshin-Dong, Seo-Gu, Busan 602-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Masson C, Bury-Moné S, Guiot E, Saez-Cirion A, Schoëvaërt-Brossault D, Brachet-Ducos C, Delelis O, Subra F, Jeanson-Leh L, Mouscadet JF. Ku80 participates in the targeting of retroviral transgenes to the chromatin of CHO cells. J Virol 2007; 81:7924-32. [PMID: 17507472 PMCID: PMC1951289 DOI: 10.1128/jvi.02015-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The heterodimer Ku70/80 Ku is the DNA-binding component of the DNA-PK complex required for the nonhomologous end-joining pathway. It participates in numerous nuclear processes, including telomere and chromatin structure maintenance, replication, and transcription. Ku interacts with retroviral preintegration complexes and is thought to interfere with the retroviral replication cycle, in particular the formation of 2-long terminal repeat (LTR) viral DNA circles, viral DNA integration, and transcription. We describe here the effect of Ku80 on both provirus integration and the resulting transgene expression in cells transduced with retroviral vectors. We found that transgene expression was systematically higher in Ku80-deficient xrs6 cells than in Ku80-expressing CHO cells. This higher expression was observed irrespective of the presence of the viral LTR and was also not related to the nature of the promoter. Real-time PCR monitoring of the early viral replicative steps demonstrated that the absence of Ku80 does not affect the efficiency of transduction. We analyzed the transgene distributions localization in nucleus by applying a three-dimensional reconstruction model to two-dimensional fluorescence in situ hybridization images. This indicated that the presence of Ku80 resulted in a bias toward the transgenes being located at the periphery of the nucleus associated with their being repressed; in the absence of this factor the transgenes tend to be randomly distributed and actively expressed. Therefore, although not strictly required for retroviral integration, Ku may be involved in targeting retroviral elements to chromatin domains prone to gene silencing.
Collapse
Affiliation(s)
- Christel Masson
- LBPA, CNRS, E.N.S. Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Daniel JA, Grant PA. Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat Res 2007; 618:135-48. [PMID: 17337012 PMCID: PMC1892243 DOI: 10.1016/j.mrfmmm.2006.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 09/23/2006] [Indexed: 01/08/2023]
Abstract
Over the past 10 years, much progress has been made to understand the roles of the similar, yet distinct yeast SAGA and SLIK coactivator complexes involved in histone post-translational modification and gene regulation. Many different groups have elucidated functions of the SAGA complexes including identification of novel components, which have conferred additional distinct functions. Together, recent studies demonstrate unique attributes of the SAGA coactivator complexes in histone acetylation, methylation, phosphorylation, and deubiquitination. In addition to roles in transcriptional activation with the 19S proteasome regulatory particle, recent evidence also suggests functions for SAGA in elongation and mRNA export. The modular nature of SAGA allows this approximately 1.8 MDa complex to organize its functions and carry out multiple roles during transcription, particularly under conditions of cellular stress.
Collapse
Affiliation(s)
- Jeremy A Daniel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
30
|
Costelloe T, Fitzgerald J, Murphy NJ, Flaus A, Lowndes NF. Chromatin modulation and the DNA damage response. Exp Cell Res 2006; 312:2677-86. [PMID: 16893724 DOI: 10.1016/j.yexcr.2006.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/19/2006] [Indexed: 11/22/2022]
Abstract
The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks.
Collapse
Affiliation(s)
- Thomas Costelloe
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway
| | | | | | | | | |
Collapse
|
31
|
Jin C, Kato K, Chimura T, Yamasaki T, Nakade K, Murata T, Li H, Pan J, Zhao M, Sun K, Chiu R, Ito T, Nagata K, Horikoshi M, Yokoyama KK. Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2. Nat Struct Mol Biol 2006; 13:331-8. [PMID: 16518400 DOI: 10.1038/nsmb1063] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/17/2006] [Indexed: 01/08/2023]
Abstract
Jun dimerization protein-2 (JDP2) is a component of the AP-1 transcription factor that represses transactivation mediated by the Jun family of proteins. Here, we examine the functional mechanisms of JDP2 and show that it can inhibit p300-mediated acetylation of core histones in vitro and in vivo. Inhibition of histone acetylation requires the N-terminal 35 residues and the DNA-binding region of JDP2. In addition, we demonstrate that JDP2 has histone-chaperone activity in vitro. These results suggest that the sequence-specific DNA-binding protein JDP2 may control transcription via direct regulation of the modification of histones and the assembly of chromatin.
Collapse
Affiliation(s)
- Chunyuan Jin
- Gene Engineering Division, Dept. of Biological Systems, BioResource Center, RIKEN (The Institute of Physical & Chemical Research), Tsukuba Science City, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Xu X, Singh-Rodriguez S, Zhao Y, Kuo MH. Histone H3 Ser10 phosphorylation-independent function of Snf1 and Reg1 proteins rescues a gcn5- mutant in HIS3 expression. Mol Cell Biol 2005; 25:10566-79. [PMID: 16287868 PMCID: PMC1291248 DOI: 10.1128/mcb.25.23.10566-10579.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcn5 protein is a prototypical histone acetyltransferase that controls transcription of multiple yeast genes. To identify molecular functions that act downstream of or in parallel with Gcn5 protein, we screened for suppressors that rescue the transcriptional defects of HIS3 caused by a catalytically inactive mutant Gcn5, the E173H mutant. One bypass of Gcn5 requirement gene (BGR) suppressor was mapped to the REG1 locus that encodes a semidominant mutant truncated after amino acid 740. Reg1(1-740) protein does not rescue the complete knockout of GCN5, nor does it suppress other gcn5- defects, including the inability to utilize nonglucose carbon sources. Reg1(1-740) enhances HIS3 transcription while HIS3 promoter remains hypoacetylated, indicating that a noncatalytic function of Gcn5 is targeted by this suppressor protein. Reg1 protein is a major regulator of Snf1 kinase that phosphorylates Ser10 of histone H3. However, whereas Snf1 protein is important for HIS3 expression, replacing Ser10 of H3 with alanine or glutamate neither attenuates nor augments the BGR phenotypes. Overproduction of Snf1 protein also preferentially rescues the E173H allele. Biochemically, both Snf1 and Reg1(1-740) proteins copurify with Gcn5 protein. Snf1 can phosphorylate recombinant Gcn5 in vitro. Together, these data suggest that Reg1 and Snf1 proteins function in an H3 phosphorylation-independent pathway that also involves a noncatalytic role played by Gcn5 protein.
Collapse
Affiliation(s)
- Yang Liu
- 401 BCH Building, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824.
| | | | | | | | | |
Collapse
|
33
|
Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005; 83:344-53. [PMID: 15959560 DOI: 10.1139/o05-041] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone proteins play structural and functional roles in all nuclear processes. They undergo different types of covalent modifications, defined in their ensemble as epigenetic because changes in DNA sequences are not involved. Histone acetylation emerges as a central switch that allows interconversion between permissive and repressive chromatin domains in terms of transcriptional competence. The mechanisms underlying the histone acetylation-dependent control of gene expression include a direct effect on the stability of nucleosomal arrays and the creation of docking sites for the binding of regulatory proteins. Histone acetyltransferases and deacetylases are, respectively, the enzymes devoted to the addition and removal of acetyl groups from lysine residues on the histone N-terminal tails. The enzymes exert fundamental roles in developmental processes and their deregulation has been linked to the progression of diverse human disorders, including cancer.
Collapse
Affiliation(s)
- Loredana Verdone
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | |
Collapse
|
34
|
Tamburini BA, Tyler JK. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 2005; 25:4903-13. [PMID: 15923609 PMCID: PMC1140608 DOI: 10.1128/mcb.25.12.4903-4913.2005] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many recent studies have demonstrated recruitment of chromatin-modifying enzymes to double-strand breaks. Instead, we wanted to examine chromatin modifications during the repair of these double-strand breaks. We show that homologous recombination triggers the acetylation of N-terminal lysines on histones H3 and H4 flanking a double-strand break, followed by deacetylation of H3 and H4. Consistent with a requirement for acetylation and deacetylation during homologous recombination, Saccharomyces cerevisiae with substitutions of the acetylatable lysines of histone H4, deleted for the N-terminal tail of histone H3 or H4, deleted for the histone acetyltransferase GCN5 gene or the histone deacetylase RPD3 gene, shows inviability following induction of an HO lesion that is repaired primarily by homologous recombination. Furthermore, the histone acetyltransferases Gcn5 and Esa1 and the histone deacetylases Rpd3, Sir2, and Hst1 are recruited to the HO lesion during homologous recombinational repair. We have also observed a distinct pattern of histone deacetylation at the donor locus during homologous recombination. Our results demonstrate that dynamic changes in histone acetylation accompany homologous recombination and that the ability to modulate histone acetylation is essential for viability following homologous recombination.
Collapse
Affiliation(s)
- Beth A Tamburini
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
35
|
Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 2005; 25:3934-44. [PMID: 15870268 PMCID: PMC1087737 DOI: 10.1128/mcb.25.10.3934-3944.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repair of chromosome double-strand breaks (DSBs) is central to cell survival and genome integrity. Nonhomologous end joining (NHEJ) is the major cellular repair pathway that eliminates chromosome DSBs. Here we report our genetic screen that identified Rsc8 and Rsc30, subunits of the Saccharomyces cerevisiae chromatin remodeling complex RSC, as novel NHEJ factors. Deletion of RSC30 gene or the C-terminal truncation of RSC8 impairs NHEJ of a chromosome DSB created by HO endonuclease in vivo. rsc30Delta maintains a robust level of homologous recombination and the damage-induced cell cycle checkpoints. By chromatin immunoprecipitation, we show recruitment of RSC to a chromosome DSB with kinetics congruent with its involvement in NHEJ. Recruitment of RSC to a DSB depends on Mre11, Rsc30, and yKu70 proteins. Rsc1p and Rsc2p, two other RSC subunits, physically interact with yKu80p and Mre11p. The interaction of Rsc1p with Mre11p appears to be vital for survival from genotoxic stress. These results suggest that chromatin remodeling by RSC is important for NHEJ.
Collapse
Affiliation(s)
- Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
36
|
Yaneva M, Li H, Marple T, Hasty P. Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Res 2005; 33:5320-30. [PMID: 16177181 PMCID: PMC1226312 DOI: 10.1093/nar/gki821] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
on-homologous end joining (NHEJ) and homologous recombination (HR) are pathways that repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, the repair of these breaks is influenced by histone acetylation. Therefore, we tested mammalian cells deleted for NHEJ (Ku80 or DNA Ligase IV) or altered for HR (breast cancer associated gene, Brca2, or Bloom's syndrome, Blm) for sensitivity to trichostatin A (TSA), a histone deacetylase inhibitor that is being investigated as an anti-cancer therapeutic. We show that cells mutated for Ku80 (ku80-/-) or DNA Ligase IV (lig 4-/-), but not cells mutated for Brca2 (brca2lex1/lex2) or Blm (blm(tm3Brd/tm4Brd)), are hypersensitive to TSA in a dose-dependent manner. TSA-induced toxicity stimulates apoptosis and cell cycle checkpoint responses independent of p53, but does not increase phosphorylated histone H2AX (-H2AX) as compared with a clastogenic agent, camptothecin, indicating that the quantity of DSBs is not the primary cause of TSA-induced cell death. In addition, we show that potential anti-cancer drugs (LY-294002 and vanillin) that inhibit the family of phosphatidylinositol 3 kinases that include the NHEJ protein, DNA-PKCS act in synergy with TSA to reduce the viability of HeLa cells in tissue culture presenting the possibility of using the two drugs in combination to treat cancer.
Collapse
Affiliation(s)
| | - Han Li
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science CenterSan Antonio, TX 78245, USA
| | - Teresa Marple
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science CenterSan Antonio, TX 78245, USA
| | - Paul Hasty
- Lexicon Genetics Inc.The Woodlands, TX 77381-4287, USA
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science CenterSan Antonio, TX 78245, USA
- To whom correspondence should be addressed. Tel: +1 210 567 7278; Fax: +1 210 567 7247;
| |
Collapse
|
37
|
Abstract
Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal-dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through "loss-of-function" and "gain-of-function" mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP are able to recognize acetyllysine residues in histones, HIV Tat, p53, c-Myb or MyoD. In addition to the acetyllysine moiety, the flanking sequences also contribute to efficient recognition. The relationship between acetyllysine and bromodomains is reminiscent of the specific recognition of phosphorylated residues by phospho-specific binding modules such as SH2 domains and 14-3-3 proteins. Therefore, lysine acetylation forges a novel signaling partnership with bromodomains to govern the temporal and spatial regulation of protein functions in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, Department of Medicine, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
38
|
Panchenko MV, Zhou MI, Cohen HT. von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem 2004; 279:56032-41. [PMID: 15502158 DOI: 10.1074/jbc.m410487200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jade-1 was identified as a protein partner of the von Hippel-Lindau tumor suppressor pVHL. The interaction of Jade-1 and pVHL correlates with renal cancer risk. We have investigated the molecular function of Jade-1. Jade-1 has two zinc finger motifs called plant homeodomains (PHD). A line of evidence suggests that the PHD finger functions in chromatin remodeling and protein-protein interactions. We determined the cellular localization of Jade-1 and examined whether Jade-1 might have transcriptional and histone acetyltransferase (HAT) functions. Biochemical cell fractionation studies as well as confocal images of cells immunostained with a specific Jade-1 antibody revealed that endogenous Jade-1 is localized predominantly in the cell nucleus. Tethering of Gal4-Jade-1 fusion protein to Gal4-responsive promoters in co-transfection experiments activated transcription 5-6-fold, indicating that Jade-1 is a possible transcriptional activator. It was remarkable that overexpression of Jade-1 in cultured cells specifically increased levels of endogenous acetylated histone H4, but not histone H3, strongly suggesting that Jade-1 associates with HAT activity specific for histone H4. Deletion of the two PHD fingers completely abolished Jade-1 transcriptional and HAT activities, indicating that these domains are indispensable for Jade-1 nuclear functions. In addition, we demonstrated that TIP60, a known HAT with histone H4/H2A specificity, physically associates with Jade-1 and is able to augment Jade-1 HAT function in live cells, strongly suggesting that TIP60 might mediate Jade-1 HAT activity. Thus, Jade-1 is a novel candidate transcriptional co-activator associated with HAT activity and may play a key role in the pathogenesis of renal cancer and von Hippel-Lindau disease.
Collapse
Affiliation(s)
- Maria V Panchenko
- Department of Medicine, Sections of Nephrology and Hematology/Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | | |
Collapse
|
39
|
Wong K, Zhang J, Awasthi S, Sharma A, Rogers L, Matlock EF, Van Lint C, Karpova T, McNally J, Harrod R. Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem 2004; 279:55667-74. [PMID: 15496412 DOI: 10.1074/jbc.m408174200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional coactivators, p300/CREB-binding protein-associated factor (PCAF) and hGCN5, are recruited to chromatin-remodeling complexes on enhancers of various gene promoters in response to growth factor stimulation. However, the molecular mechanisms by which surface receptor signals modulate the assembly of nuclear transcription complexes are not fully understood. Here we report that nerve growth factor receptor signaling induces nuclear translocation of PCAF and hGCN5 dependent upon the phosphorylation of Ser and Thr residues within their histone acetyltransferase domains, which requires activation of PI3K, Rsk2(pp90), and MSK-1. Neurotrophin stimulation induces p53(K320) acetylation by PCAF and transcriptionally activates p53-responsive enhancer elements within the p21(WAF/CIP1) promoter associated with G(1)/S arrest during neuronal differentiation. Most importantly, these findings represent the first evidence for signal-dependent nuclear translocation of PCAF and hGCN5 acetyltransferases and allude to a novel mechanism for ligand/receptor modulation of nuclear chromatin-remodeling complexes in neurons.
Collapse
Affiliation(s)
- Kasuen Wong
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, 6501 Airline Drive, Dallas, TX 75275-0376, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J. DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 2004; 31:6819-27. [PMID: 14627815 PMCID: PMC290281 DOI: 10.1093/nar/gkg921] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic DNA is organized into nucleosomes and higher order chromatin structure, which plays an important role in the regulation of many nuclear processes including DNA repair. Non-homologous end-joining, the major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells, is mediated by a set of proteins including DNA-dependent protein kinase (DNA-PK). DNA-PK is comprised of a large catalytic subunit, DNA-PKcs, and its regulatory subunit, Ku. Current models predict that Ku binds to the ends of broken DNA and DNA-PKcs is recruited to form the active kinase complex. Here we show that DNA-PK can be activated by nucleosomes through the ability of Ku to bind to the ends of nucleosomal DNA, and that the activated DNA-PK is capable of phosphorylating H2AX within the nucleosomes. Histone acetylation has little effect on the steps of Ku binding to nucleosomes and subsequent activation of DNA-PKcs. However, acetylation largely enhances the phosphorylation of H2AX by DNA-PK, and this acetylation effect is observed when H2AX exists in the context of nucleosomes but not in a free form. These results suggest that the phosphorylation of H2AX, known to be important for DSB repair, can be regulated by acetylation and may provide a mechanistic basis on which to understand the recent observations that histone acetylation critically functions in repairing DNA DSBs.
Collapse
Affiliation(s)
- Eun-Jung Park
- Division of Molecular Life Sciences and Center for Cell Signalling Research, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
41
|
Fernandez-Capetillo O, Nussenzweig A. Linking histone deacetylation with the repair of DNA breaks. Proc Natl Acad Sci U S A 2004; 101:1427-8. [PMID: 14757822 PMCID: PMC341727 DOI: 10.1073/pnas.0307342101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Jazayeri A, McAinsh AD, Jackson SP. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A 2004; 101:1644-9. [PMID: 14711989 PMCID: PMC341805 DOI: 10.1073/pnas.0304797101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are two main pathways in eukaryotic cells for the repair of DNA double-strand breaks: homologous recombination and nonhomologous end joining. Because eukaryotic genomes are packaged in chromatin, these pathways are likely to require the modulation of chromatin structure. One way to achieve this is by the acetylation of lysine residues on the N-terminal tails of histones. Here we demonstrate that Sin3p and Rpd3p, components of one of the predominant histone deacetylase complexes of Saccharomyces cerevisiae, are required for efficient nonhomologous end joining. We also show that lysine 16 of histone H4 becomes deacetylated in the proximity of a chromosomal DNA double-strand break in a Sin3p-dependent manner. Taken together, these results define a role for the Sin3p/Rpd3p complex in the modulation of DNA repair.
Collapse
Affiliation(s)
- Ali Jazayeri
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | |
Collapse
|
43
|
Zhang S, Schlott B, Görlach M, Grosse F. DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 2004; 32:1-10. [PMID: 14704337 PMCID: PMC373260 DOI: 10.1093/nar/gkg933] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An RNA-dependent association of Ku antigen with nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), was found in nuclear extracts of HeLa cells by immunoprecipitation and by gel filtration chromatography. Both Ku antigen and NDH II were associated with hnRNP complexes. Two-dimensional gel electrophoresis showed that Ku antigen was most abundantly associated with hnRNP C, K, J, H and F, but apparently not with others, such as hnRNP A1. Unexpectedly, DNA-dependent protein kinase (DNA-PK), which comprises Ku antigen as the DNA binding subunit, phosphorylated hnRNP proteins in an RNA-dependent manner. DNA-PK also phosphorylated recombinant NDH II in the presence of RNA. RNA binding assays displayed a preference of DNA-PK for poly(rG), but not for poly(rA), poly(rC) or poly(rU). This RNA binding affinity of DNA-PK can be ascribed to its Ku86 subunit. Consistently, poly(rG) most strongly stimulated the DNA-PK-catalyzed phosphorylation of NDH II. RNA interference studies revealed that a suppressed expression of NDH II altered the nuclear distribution of hnRNP C, while silencing DNA-PK changed the subnuclear distribution of NDH II and hnRNP C. These results support the view that DNA-PK can also function as an RNA-dependent protein kinase to regulate some aspects of RNA metabolism, such as RNA processing and transport.
Collapse
Affiliation(s)
- Suisheng Zhang
- Department of Biochemistry, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
44
|
Torok MS, Grant PA. Histone Acetyltransferase Proteins Contribute to Transcriptional Processes at Multiple Levels. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:181-99. [PMID: 14969728 DOI: 10.1016/s0065-3233(04)67007-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
45
|
Martínez de Alba AE, Sägesser R, Tabler M, Tsagris M. A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J Virol 2003; 77:9685-94. [PMID: 12915580 PMCID: PMC187389 DOI: 10.1128/jvi.77.17.9685-9694.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed.
Collapse
|
46
|
Schaffer A, Kim EC, Wu X, Zan H, Testoni L, Salamon S, Cerutti A, Casali P. Selective inhibition of class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identified ATTT cis-elements. J Biol Chem 2003; 278:23141-50. [PMID: 12672812 DOI: 10.1074/jbc.m212952200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin (Ig) class switching is central to the maturation of the antibody response as IgG, IgA, and IgE are endowed with more diverse biological effector functions than IgM. It is induced upon engagement of CD40 on B lymphocytes by CD40L expressed by activated CD4+ T cells and exposure of B cells to T cell-secreted cytokines including interleukin-4 and transforming growth factor-beta. It begins with germ line IH-CH transcription and unfolds through class switch DNA recombination (CSR). We show here that the HoxC4 and Oct-1 homeodomain proteins together with the Ku70/Ku86 heterodimer bind as a complex to newly identified switch (S) regulatory ATTT elements (SREs) in the Igamma and Iepsilon promoters and downstream regions to dampen basal germ line Igamma-Cgamma and Iepsilon-Cepsilon transcriptions and repress CSR to Cgamma and Cepsilon. This mechanism is inactive in the Calpha1/Calpha2 loci because of the lack of SREs in the Ialpha1/Ialpha2 promoters. Accordingly, in resting human IgM+IgD+ B cells, HoxC4, Oct-1, and Ku70/Ku86 can be readily identified as bound to the Igamma and Iepsilon promoters but not the Ialpha1/Ialpha2 promoters. CD40 signaling dissociates the HoxC4.Oct-1. Ku complex from the Igamma and Iepsilon promoter SREs, thereby relieving the IH-CH transcriptional repression and allowing CSR to unfold. Dissociation of HoxC4.Oct-1. Ku from DNA is hampered by CD153 engagement, a CD40-signaling inhibitor. Thus, these findings outline a HoxC4.Oct-1. Ku-dependent mechanism of selective regulation of class switching to IgG and IgE and further suggest distinct co-evolution and shared CSR activation pathways in the Cgamma and Cepsilon as opposed to the Calpha1/Calpha2 loci.
Collapse
Affiliation(s)
- András Schaffer
- Division of Molecular Immunology, Department of Pathology and Laboratory Medicine, Joan and Sanford I. Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mishra SK, Mazumdar A, Vadlamudi RK, Li F, Wang RA, Yu W, Jordan VC, Santen RJ, Kumar R. MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem 2003; 278:19209-19. [PMID: 12639951 DOI: 10.1074/jbc.m301968200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activity of estrogen receptor-alpha (ER-alpha) is modified by coactivators, corepressors, and chromatin remodeling complexes. We have previously shown that the metastasis-associated protein-1 (MTA1), a component of histone deacetylase and nucleosome remodeling complexes, represses ER-driven transcription by recruiting histone deacetylases to the estrogen receptor element (ERE)-containing target gene chromatin in breast cancer cells. Using a yeast two-hybrid screening to clone MTA1-interacting proteins, we identified a previously uncharacterized molecule, which we named as MTA1-interacting coactivator (MICoA). Our findings suggest that estrogen signaling promotes nuclear translocation of MICoA and that MICoA interacts with MTA1 both in vitro and in vivo. MICoA binds to the C-terminal region of MTA1, whereas MTA1 binds to the N-terminal MICoA containing one nuclear receptor interaction LSRLL motif. We showed that MICoA is an ER coactivator, cooperates with other ER coactivators, stimulates ER-transactivation functions, and associates with the endogenous ER and its target gene promoter chromatin. MTA1 also repressed MICoA-mediated stimulation of ERE-mediated transcription in the presence of ER and ER variants with naturally occurring mutations, such as D351Y and K303R, and that it interfered with the association of MICoA with the ER-target gene chromatin. Because chromatin is a highly dynamic structure and because MTA1 and MICoA could be detected within the same complex, these findings suggest that MTA1 and MICoA might transmodulate functions of each other and any potential deregulation of MTA1 is likely to contribute to the functional inactivation of the ER pathway, presumably by derecruitment of MICoA from ER target promoter chromatin.
Collapse
Affiliation(s)
- Sandip K Mishra
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 2002; 419:411-5. [PMID: 12353039 DOI: 10.1038/nature01035] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Accepted: 07/02/2002] [Indexed: 11/09/2022]
Abstract
Although the acetylation of histones has a well-documented regulatory role in transcription, its role in other chromosomal functions remains largely unexplored. Here we show that distinct patterns of histone H4 acetylation are essential in two separate pathways of double-strand break repair. A budding yeast strain with mutations in wild-type H4 acetylation sites shows defects in nonhomologous end joining repair and in a newly described pathway of replication-coupled repair. Both pathways require the ESA1 histone acetyl transferase (HAT), which is responsible for acetylating all H4 tail lysines, including ectopic lysines that restore repair capacity to a mutant H4 tail. Arp4, a protein that binds histone H4 tails and is part of the Esa1-containing NuA4 HAT complex, is recruited specifically to DNA double-strand breaks that are generated in vivo. The purified Esa1-Arp4 HAT complex acetylates linear nucleosomal arrays with far greater efficiency than circular arrays in vitro, indicating that it preferentially acetylates nucleosomes near a break site. Together, our data show that histone tail acetylation is required directly for DNA repair and suggest that a related human HAT complex may function similarly.
Collapse
Affiliation(s)
- Alexander W Bird
- Department of Microbiology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quivy V, Van Lint C. Diversity of acetylation targets and roles in transcriptional regulation: the human immunodeficiency virus type 1 promoter as a model system. Biochem Pharmacol 2002; 64:925-34. [PMID: 12213588 DOI: 10.1016/s0006-2952(02)01152-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persuasive evidence has accumulated that reversible acetylation of proteins is key post-translational modification regulating transcription in eukaryotes. Deacetylase inhibitors (such as trichostatin A) modulate the expression of approximately 2% of all cellular genes. We and others have demonstrated a marked transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) promoter in response to deacetylase inhibitors. Deacetylation events seem to be an important mechanism of HIV-1 transcriptional repression during latency, whereas acetylation events play critical functional roles in HIV-1 reactivation from latency. These deacetylation/acetylation events are implicated in chromatin remodeling of the viral promoter region, as well as in modulating the functional properties of cellular and viral transcription factors binding to this promoter region. Thereby, the HIV-1 promoter constitutes a unique regulatory model system to study the complex relationship between acetylation processes and transcriptional activity.
Collapse
Affiliation(s)
- Vincent Quivy
- Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
50
|
Karmakar P, Piotrowski J, Brosh RM, Sommers JA, Miller SPL, Cheng WH, Snowden CM, Ramsden DA, Bohr VA. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 2002; 277:18291-302. [PMID: 11889123 DOI: 10.1074/jbc.m111523200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.
Collapse
Affiliation(s)
- Parimal Karmakar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|