1
|
Shaping Chromatin in the Nucleus: The Bricks and the Architects. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:1-14. [PMID: 29208640 DOI: 10.1101/sqb.2017.82.033753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and Xenopus development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.
Collapse
|
2
|
Crook N, Abatemarco J, Sun J, Wagner JM, Schmitz A, Alper HS. In vivo continuous evolution of genes and pathways in yeast. Nat Commun 2016; 7:13051. [PMID: 27748457 PMCID: PMC5071640 DOI: 10.1038/ncomms13051] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Directed evolution remains a powerful, highly generalizable approach for improving the performance of biological systems. However, implementations in eukaryotes rely either on in vitro diversity generation or limited mutational capacities. Here we synthetically optimize the retrotransposon Ty1 to enable in vivo generation of mutant libraries up to 1.6 × 107 l−1 per round, which is the highest of any in vivo mutational generation approach in yeast. We demonstrate this approach by using in vivo-generated libraries to evolve single enzymes, global transcriptional regulators and multi-gene pathways. When coupled to growth selection, this approach enables in vivo continuous evolution (ICE) of genes and pathways. Through a head-to-head comparison, we find that ICE libraries yield higher-performing variants faster than error-prone PCR-derived libraries. Finally, we demonstrate transferability of ICE to divergent yeasts, including Kluyveromyces lactis and alternative S. cerevisiae strains. Collectively, this work establishes a generic platform for rapid eukaryotic-directed evolution across an array of target cargo. Directed evolution is a powerful technique for generating improved biological systems through repeated rounds of mutagenesis and selection. Here the authors engineer the yeast retrotransposon Ty1 to enable the creation of large mutant libraries in vivo and use this system to generate improved variants of single enzymes and multigene pathways.
Collapse
Affiliation(s)
- Nathan Crook
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA
| | - Joseph Abatemarco
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA
| | - Jie Sun
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA
| | - James M Wagner
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA
| | - Alexander Schmitz
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Stop C0400, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Gal C, Moore KM, Paszkiewicz K, Kent NA, Whitehall SK. The impact of the HIRA histone chaperone upon global nucleosome architecture. Cell Cycle 2015; 14:123-34. [PMID: 25602522 PMCID: PMC4614360 DOI: 10.4161/15384101.2014.967123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIRA is an evolutionarily conserved histone chaperone that mediates
replication-independent nucleosome assembly and is important for a variety of processes
such as cell cycle progression, development, and senescence. Here we have used a chromatin
sequencing approach to determine the genome-wide contribution of HIRA to nucleosome
organization in Schizosaccharomyces pombe. Cells lacking HIRA experience
a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed
role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we
find that at its target promoters, HIRA commonly maintains the full occupancy of the
−1 nucleosome. HIRA does not affect global chromatin structure at replication
origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of
the genome. Nucleosome organization associated with the heterochromatic
(dg-dh) repeats located at the centromere is perturbed by loss of HIRA
function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR
retrotransposons. Overall, our data indicate that HIRA plays an important role in
maintaining nucleosome architecture at both euchromatic and heterochromatic loci.
Collapse
Affiliation(s)
- Csenge Gal
- a Institute for Cell & Molecular Biosciences ; Newcastle University ; Newcastle upon Tyne , UK
| | | | | | | | | |
Collapse
|
4
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
5
|
Amin AD, Vishnoi N, Prochasson P. A global requirement for the HIR complex in the assembly of chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:264-276. [PMID: 24459729 DOI: 10.1016/j.bbagrm.2011.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to its extensive length, DNA is packaged into a protective chromatin structure known as the nucleosome. In order to carry out various cellular functions, nucleosomes must be disassembled, allowing access to the underlying DNA, and subsequently reassembled on completion of these processes. The assembly and disassembly of nucleosomes is dependent on the function of histone modifiers, chromatin remodelers and histone chaperones. In this review, we discuss the roles of an evolutionarily conserved histone chaperone known as the HIR/HIRA complex. In S. cerevisiae, the HIR complex is made up of the proteins Hir1, Hir2, Hir3 and Hpc2, which collectively act in transcriptional regulation, elongation, gene silencing, cellular senescence and even aging. This review presents an overview of the role of the HIR complex, in yeast as well as other organisms, in each of these processes, in order to give a better understanding of how nucleosome assembly is imperative for cellular homeostasis and genomic integrity. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
6
|
Abstract
The coordinated replication and transcription of pericentromeric repeats enable RNA interference (RNAi)-mediated transmission of pericentromeric heterochromatin in fission yeast, which is essential for the proper function of centromeres. Rad3/ATR kinase phosphorylates histone H2A on serine-128/-129 to create γH2A in pericentromeric heterochromatin during S phase, which recruits Brc1 through its breast cancer gene 1 protein (BRCA1) C-terminal (BRCT) domains. Brc1 prevents the collapse of stalled replication forks; however, it is unknown whether this activity influences centromere function. Here, we show that Brc1 localizes in pericentromeric heterochromatin during S phase, where it enhances Clr4/Suv39-mediated H3 lysine-9 dimethylation (H3K9me2) and gene silencing. Loss of Brc1 increases sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and increases chromosome missegregation in the presence of TBZ. Brc1 retains significant function even when it cannot bind γH2A. However, elimination of the serine-121 site on histone H2A, a target of Bub1 spindle assembly checkpoint kinase, sensitizes γH2A-deficient and brc1Δ cells to replication stress and microtubule destabilization. Collective results suggest that Brc1-mediated stabilization of stalled replication forks is necessary for fully efficient transmission of pericentromeric heterochromatin, which is required for accurate chromosome segregation during mitosis.
Collapse
|
7
|
Vishnoi N, Flaherty K, Hancock LC, Ferreira ME, Amin AD, Prochasson P. Separation-of-function mutation in HPC2, a member of the HIR complex in S. cerevisiae, results in derepression of the histone genes but does not confer cryptic TATA phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:557-66. [PMID: 21782987 DOI: 10.1016/j.bbagrm.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/02/2011] [Accepted: 07/06/2011] [Indexed: 12/29/2022]
Abstract
The HIR complex, which is comprised of the four proteins Hir1, Hir2, Hir3 and Hpc2, was first characterized as a repressor of three of the four histone gene loci in Saccharomyces cerevisiae. Using a bioinformatical approach, previous studies have identified a region of Hpc2 that is conserved in Schizosaccharomyces pombe and humans. Using a similar approach, we identified two additional domains, CDI and CDII, of the Hpc2 protein that are conserved among yeast species related to S. cerevisiae. We showed that the N terminal CDI domain (spanning amino acids 63-79) is dispensable for HIR complex assembly, but plays an essential role in the repression of the histone genes by recruiting the HIR complex to the HIR-dependent histone gene loci. The second conserved domain, CDII (spanning amino acids 452-480), is required for the stability of the Hpc2 protein itself as well as for the assembly of the HIR complex. In addition, we report a novel separation-of-function mutation within CDI of Hpc2, which causes derepression of the histone genes but does not confer other reported hir/hpc- phenotypes (such as Spt phenotypes, heterochromatin silencing defects and repression of cryptic promoters). This is the first direct demonstration that a separation-of-function mutation exists within the HIR complex.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
8
|
Anderson HE, Kagansky A, Wardle J, Rappsilber J, Allshire RC, Whitehall SK. Silencing mediated by the Schizosaccharomyces pombe HIRA complex is dependent upon the Hpc2-like protein, Hip4. PLoS One 2010; 5:e13488. [PMID: 20976105 PMCID: PMC2956695 DOI: 10.1371/journal.pone.0013488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND HIRA (or Hir) proteins are conserved histone chaperones that function in multi-subunit complexes to mediate replication-independent nucleosome assembly. We have previously demonstrated that the Schizosaccharomyces pombe HIRA proteins, Hip1 and Slm9, form a complex with a TPR repeat protein called Hip3. Here we have identified a new subunit of this complex. METHODOLOGY/PRINCIPAL FINDINGS To identify proteins that interact with the HIRA complex, rapid affinity purifications of Slm9 were performed. Multiple components of the chaperonin containing TCP-1 complex (CCT) and the 19S subunit of the proteasome reproducibly co-purified with Slm9, suggesting that HIRA interacts with these complexes. Slm9 was also found to interact with a previously uncharacterised protein (SPBC947.08c), that we called Hip4. Hip4 contains a HRD domain which is a characteristic of the budding yeast and human HIRA/Hir-binding proteins, Hpc2 and UBN1. Co-precipitation experiments revealed that Hip4 is stably associated with all of the other components of the HIRA complex and deletion of hip4(+) resulted in the characteristic phenotypes of cells lacking HIRA function, such as temperature sensitivity, an elongated cell morphology and hypersensitivity to the spindle poison, thiabendazole. Moreover, loss of Hip4 function alleviated the heterochromatic silencing of reporter genes located in the mating type locus and centromeres and was associated with increased levels of non-coding transcripts derived from centromeric repeat sequences. Hip4 was also found to be required for the distinct form of silencing that controls the expression of Tf2 LTR retrotransposons. CONCLUSIONS/SIGNIFICANCE Overall, these results indicate that Hip4 is an integral component of the HIRA complex that is required for transcriptional silencing at multiple loci.
Collapse
Affiliation(s)
- Holly E. Anderson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Alexander Kagansky
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Josephine Wardle
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon K. Whitehall
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci U S A 2010; 107:18551-6. [PMID: 20937885 DOI: 10.1073/pnas.1014023107] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To study adaptive evolution in defined environments, we performed evolution experiments with Saccharomyces cerevisiae (yeast) in nitrogen-limited chemostat cultures. We used DNA microarrays to identify copy-number variation associated with adaptation and observed frequent amplifications and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1. Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1Δ) and production of a single hybrid LTR at the GAP1 chromosomal locus. The GAP1(circle) is selected following prolonged culturing in L-glutamine-limited chemostats in a manner analogous to the selection of oncogenes present on double minutes in human cancers. Clones carrying only the gap1Δ allele were selected under various non-amino acid nitrogen limitations including ammonium, urea, and allantoin limitation. Previous studies have shown that the rate of intrachromosomal recombination between tandem repeats is stimulated by transcription of the intervening sequence. The high level of GAP1 expression in nitrogen-limited chemostats suggests that the frequency of GAP1(circle) and gap1Δ generation may be increased under nitrogen-limiting conditions. We propose that this genomic architecture facilitates evolvability of S. cerevisiae populations exposed to variation in levels and sources of environmental nitrogen.
Collapse
|
10
|
The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 2009; 29:5158-67. [PMID: 19620282 DOI: 10.1128/mcb.00698-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The assembly of nucleosomes by histone chaperones is an important component of transcriptional regulation. Here, we have assessed the global roles of the HIRA histone chaperone in Schizosaccharomyces pombe. Microarray analysis indicates that inactivation of the HIRA complex results in increased expression of at least 4% of fission yeast genes. HIRA-regulated genes overlap with those which are normally repressed in vegetatively growing cells, such as targets of the Clr6 histone deacetylase and silenced genes located in subtelomeric regions. HIRA is also required for silencing of all 13 intact copies of the Tf2 long terminal repeat (LTR) retrotransposon. However, the role of HIRA is not restricted to bona fide promoters, because HIRA also suppresses noncoding transcripts from solo LTR elements and spurious antisense transcripts from cryptic promoters associated with transcribed regions. Furthermore, the HIRA complex is essential in the absence of the quality control provided by nuclear exosome-mediated degradation of illegitimate transcripts. This suggests that HIRA restricts genomic accessibility, and consistent with this, the chromosomes of cells lacking HIRA are more susceptible to genotoxic agents that cause double-strand breaks. Thus, the HIRA histone chaperone is required to maintain the protective functions of chromatin.
Collapse
|
11
|
Du XZ, Zhou L, Zhao HB, Wang YF, Gui JF. Identical sequences but different expression patterns of Hira gene in gynogenetic and gonochoristic crucian carps. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:175-184. [PMID: 18649035 DOI: 10.1007/s10695-007-9158-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/02/2007] [Indexed: 05/26/2023]
Abstract
Hir/Hira (histone regulation) genes were first identified in yeast as negative regulators of histone gene expression. It has been confirmed that HIRA is a conserved family of proteins present in various animals and plants. In this paper, the cDNAs of the Hira homolog named CagHira and CaHira were isolated from gynogenetic gibel carp (gyno-carp) and gonochoristic color crucian carp (gono-carp) respectively. The full-length CagHira is 3,860 bp in length with an open reading frame (ORF) of 3,033 bp that encodes 1,011 amino acids, while the full-length CaHira is 3,748 bp in length and also has an ORF of 3,033 bp. The deduced amino acid sequences of both Hira homologs contain seven WD domains and show high identity with other HIRA family members. RT-PCR analyses revealed strong expression of Hira in the ovaries, whereas no expression was detected in the testes of either of the fishes. Hira transcription was not detected in the liver of gyno-carp, but a high level of Hira mRNA was observed in gono-carp. The temporal expression pattern showed that the Hira mRNA is consistently expressed during all embryonic development stages in gyno-carp. However, the abundance of CaHira mRNA significantly decreased (P < 0.05) shortly after fertilization and then increased again and remained stable from gastrula till hatching. The varying spatiotemporal expression patterns of Hira genes in gyno-carp and gono-carp may be associated with the differing reproductive modes used by these two closely related fishes. Our results suggest that Hira may play a role not only in the decondensation of sperm nucleus and the formation of pronucleus during fertilization, but also in gastrulation and the subsequent development of embryos.
Collapse
Affiliation(s)
- X Z Du
- College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | | | | | | |
Collapse
|
12
|
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
|
13
|
Pratt ZL, Drehman BJ, Miller ME, Johnston SD. Mutual interdependence of MSI1 (CAC3) and YAK1 in Saccharomyces cerevisiae. J Mol Biol 2007; 368:30-43. [PMID: 17321547 PMCID: PMC1861849 DOI: 10.1016/j.jmb.2007.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The MSI1 (CAC3) gene of Saccharomyces cerevisiae has been implicated in diverse cellular functions, including suppression of the RAS/cAMP/protein kinase A signaling pathway, chromatin assembly and transcriptional co-repression. Seeking to identify the molecular mechanisms by which Msi1p carries out these distinct activities, a novel genetic interaction was uncovered with YAK1, which encodes a kinase that antagonizes the RAS/cAMP pathway. MSI1 was capable of efficiently suppressing the heat shock sensitivity caused by deletion of yak1. Surprisingly, the YAK1 gene is required for Msi1p to associate with Cac1p in the yeast two-hybrid system. A new activity of Msi1p was identified: the ability to activate transcription of a reporter gene when tethered near the promoter, but only in the absence of fermentable carbon sources. This transcriptional activation function was diminished substantially by the loss of YAK1. Furthermore, MSI1 influences YAK1 function; over-expression of YAK1 decreased the growth rate, but only in the presence of a functional MSI1 gene. Finally, it is shown that YAK1 antagonizes nuclear accumulation of Msi1p in non-fermenting cells. Taken together, these data demonstrate a novel interaction between Msi1p and Yak1p in which each protein influences the activity of the other.
Collapse
Affiliation(s)
- Zachary L. Pratt
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| | - Bethany J. Drehman
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Mary E. Miller
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Stephen D. Johnston
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| |
Collapse
|
14
|
VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 2006; 22:363-74. [PMID: 16678108 DOI: 10.1016/j.molcel.2006.03.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 01/10/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
We report the crystal structure of the middle domain of the Pob3 subunit (Pob3-M) of S. cerevisiae FACT (yFACT, facilitates chromatin transcription), which unexpectedly adopts an unusual double pleckstrin homology (PH) architecture. A mutation within a conserved surface cluster in this domain causes a defect in DNA replication that is suppressed by mutation of replication protein A (RPA). The nucleosome reorganizer yFACT therefore interacts in a physiologically important way with the central single-strand DNA (ssDNA) binding factor RPA to promote a step in DNA replication. Purified yFACT and RPA display a weak direct physical interaction, although the genetic suppression is not explained by simple changes in affinity between the purified proteins. Further genetic analysis suggests that coordinated function by yFACT and RPA is important during nucleosome deposition. These results support the model that the FACT family has an essential role in constructing nucleosomes during DNA replication, and suggest that RPA contributes to this process.
Collapse
Affiliation(s)
- Andrew P VanDemark
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, 84132, USA
| | | | | | | | | | | |
Collapse
|
15
|
Greenall A, Williams ES, Martin KA, Palmer JM, Gray J, Liu C, Whitehall SK. Hip3 Interacts with the HIRA Proteins Hip1 and Slm9 and Is Required for Transcriptional Silencing and Accurate Chromosome Segregation. J Biol Chem 2006; 281:8732-9. [PMID: 16428807 DOI: 10.1074/jbc.m512170200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fission yeast HIRA proteins Hip1 and Slm9 are members of an evolutionarily conserved family of histone chaperones that are implicated in nucleosome assembly. Here we have used single-step affinity purification and mass spectrometry to identify factors that interact with both Hip1 and Slm9. This analysis identified Hip3, a previously uncharacterized 187-kDa protein, with similarity to S. cerevisiae Hir3. Consistent with this, cells disrupted for hip3+ exhibit a range of growth defects that are similar to those associated with loss of Hip1 and Slm9. These include temperature sensitivity, a cell cycle delay, and synthetic lethality with cdc25-22. Furthermore, genetic analysis also indicates that disruption of hip3+ is epistatic with mutation of hip1+ and slm9+. Mutation of hip3+ alleviates transcriptional silencing at several heterochromatic loci, including in the outer (otr) centromeric repeats, indicating that Hip3 is required for the integrity of pericentric heterochromatin. As a result, loss of Hip3 function leads to high levels of minichromosome loss and an increased frequency of lagging chromosomes during mitosis. Importantly, the function of Hip1, Slm9, and Hip3 is not restricted to constitutive heterochromatic loci, since these proteins also repress the expression of a number of genes, including the Tf2 retrotransposons.
Collapse
Affiliation(s)
- Amanda Greenall
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Prochasson P, Florens L, Swanson SK, Washburn MP, Workman JL. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev 2006; 19:2534-9. [PMID: 16264190 PMCID: PMC1276727 DOI: 10.1101/gad.1341105] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone regulatory (HIR) and histone promoter control (HPC) repressor proteins regulate three of the four histone gene loci during the Saccharomyces cerevisiae cell cycle. Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 proteins form a stable HIR repressor complex. The HIR complex promotes histone deposition onto DNA in vitro and constitutes a novel nucleosome assembly complex. The HIR complex stably binds to DNA and nucleosomes. Furthermore, HIR complex binding to nucleosomes forms a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Thus, the HIR complex is a novel nucleosome assembly complex which functions with SWI/SNF to regulate transcription.
Collapse
Affiliation(s)
- Philippe Prochasson
- The Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | |
Collapse
|
17
|
Mazzoni C, Palermo V, Torella M, Falcone C. , the co-repressor of histone gene transcription of , acts as a multicopy suppressor of the apoptotic phenotypes of the mRNA degradation mutant. FEMS Yeast Res 2005; 5:1229-35. [PMID: 16169287 DOI: 10.1016/j.femsyr.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 11/16/2022] Open
Abstract
We previously have reported that Saccharomyces cerevisiae mutants expressing Kllsm4Delta1, a truncated form of the KlLSM4 gene, as well as mutants in genes of the mRNA-decapping pathway, show phenotypic markers of apoptosis, increased temperature sensitivity and reduced growth in the presence of different drugs and oxidative stressing agents, such as acetic acid and H(2)O(2). To isolate multicopy extra-genic suppressors of these defects, we transformed the Kllsm4Delta1 mutant with a yeast DNA library and we selected a series of clones showing resistance to acetic acid. One of these clones carried a DNA fragment containing the HIR1 gene that encodes a transcriptional co-repressor of histone genes. The over-expression of HIR1 in the Kllsm4Delta1 mutant prevented rapid cell death during chronological aging, reduced nuclei fragmentation and increased resistance to H(2)O(2). Transcription analysis revealed that the expression of histone genes was lowered in the mutant over-expressing HIR1, indicating a relationship between the latter gene and apoptosis.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro 5, Italy.
| | | | | | | |
Collapse
|
18
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
19
|
Huang S, Zhou H, Katzmann D, Hochstrasser M, Atanasova E, Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci U S A 2005; 102:13410-5. [PMID: 16157874 PMCID: PMC1224646 DOI: 10.1073/pnas.0506176102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic inheritance of heterochromatin structure is an important cellular process whose mechanism remains elusive. In this article, we describe the identification of nine enhancers of the silencing defect of a Saccharomyces cerevisiae-PCNA mutant by screening a library of approximately 4,700 viable yeast deletion mutants. Of the nine mutants identified, six (hir1, hir3, sas2, sas4, sas5, and sir1) were previously known to reduce silencing synergistically with a mutation in Cac1p, the large subunit of chromatin assembly factor 1 (CAF-1). The predicted gene products that are affected in three other mutants (nam7, msh2, and rtt106) have not been implicated previously in silencing. Characterization of the rtt106Delta allele revealed that it synergistically reduced heterochromatin silencing when combined with a mutation in Cac1p but not with a mutation in Asf1p (a histone H3 and H4 chaperone). Moreover, Rtt106p interacted with histones H3 and H4 both in vitro and in vivo, and it displayed a nucleosome assembly activity in vitro. Furthermore, Rtt106p interacts with CAF-1 physically through Cac1p. These biochemical and genetic data indicate that Rtt106p is a previously uncharacterized histone chaperone connecting S phase to epigenetic inheritance.
Collapse
Affiliation(s)
- Shengbing Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lewis LK, Karthikeyan G, Cassiano J, Resnick MA. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 2005; 33:4928-39. [PMID: 16141196 PMCID: PMC1197131 DOI: 10.1093/nar/gki806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022] Open
Abstract
Assembly of new chromatin during S phase requires the histone chaperone complexes CAF-1 (Cac2p, Msi1p and Rlf2p) and RCAF (Asf1p plus acetylated histones H3 and H4). Cells lacking CAF-1 and RCAF are hypersensitive to DNA-damaging agents, such as methyl methanesulfonate and camptothecin, suggesting a possible defect in double-strand break (DSB) repair. Assays developed to quantitate repair of defined, cohesive-ended break structures revealed that DSB-induced plasmid:chromosome recombination was reduced approximately 10-fold in RCAF/CAF-1 double mutants. Recombination defects were similar with both chromosomal and plasmid targets in vivo, suggesting that inhibitory chromatin structures were not involved. Consistent with these observations, ionizing radiation-induced loss of heterozygosity was abolished in the mutants. Nonhomologous end-joining (NHEJ) repair proficiency and accuracy were intermediate between wild-type levels and those of NHEJ-deficient yku70 and rad50 mutants. The defects in NHEJ, but not homologous recombination, could be rescued by deletion of HMR-a1, a component of the a1/alpha2 transcriptional repressor complex. The findings are consistent with the observation that silent mating loci are partially derepressed. These results demonstrate that defective assembly of nucleosomes during new DNA synthesis compromises each of the known pathways of DSB repair and that the effects can be indirect consequences of changes in silenced chromatin structure.
Collapse
Affiliation(s)
- L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | | | | | | |
Collapse
|
21
|
Sharp JA, Rizki G, Kaufman PD. Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 2005; 171:885-99. [PMID: 16020781 PMCID: PMC1456847 DOI: 10.1534/genetics.105.044719] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CAF-1, Hir proteins, and Asf1 are histone H3/H4 binding proteins important for chromatin-mediated transcriptional silencing. We explored genetic and physical interactions between these proteins and S-phase/DNA damage checkpoint kinases in the budding yeast Saccharomyces cerevisiae. Although cells lacking checkpoint kinase Mec1 do not display defects in telomeric gene silencing, silencing was dramatically reduced in cells lacking both Mec1 and the Cac1 subunit of CAF-1. Silencing was restored in cac1Delta and cac1Delta mec1Delta cells upon deletion of Rad53, the kinase downstream of Mec1. Restoration of silencing to cac1Delta cells required both Hir1 and Asf1, suggesting that Mec1 counteracts functional sequestration of the Asf1/Hir1 complex by Rad53. Consistent with this idea, the degree of suppression of silencing defects by rad53 alleles correlated with effects on Asf1 binding. Furthermore, deletion of the Dun1 kinase, a downstream target of Rad53, also suppressed the silencing defects of cac1Delta cells and reduced the levels of Asf1 associated with Rad53 in vivo. Loss of Mec1 and Rad53 did not alter telomere lengths or Asf1 protein levels, nuclear localization, or chromosome association. We conclude that the Mec1 and Dun1 checkpoint kinases regulate the Asf1-Rad53 interaction and therefore affect the activity of the Asf1/Hir complex in vivo.
Collapse
Affiliation(s)
- Judith A Sharp
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
22
|
Radford SJ, Boyle ML, Sheely CJ, Graham J, Haeusser DP, Zimmerman L, Keeney JB. Increase in Ty1 cDNA recombination in yeast sir4 mutant strains at high temperature. Genetics 2005; 168:89-101. [PMID: 15454529 PMCID: PMC1448086 DOI: 10.1534/genetics.102.012708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposition of the Ty1 element of the yeast Saccharomyces cerevisiae is temperature sensitive. We have identified a null allele of the silent information regulator gene SIR4 as a host mutant that allows for transposition at high temperature. We show that the apparent increase in transposition activity in sir4 mutant strains at high temperature is dependent on the RAD52 gene and is thus likely resulting from an increase in Ty1 cDNA recombination, rather than in IN-mediated integration. General cellular recombination is not increased at high temperature, suggesting that the increase in recombination at high temperature in sir4 mutants is specific for Ty1 cDNA. Additionally, this high-temperature Ty1 recombination was found to be dependent on functional Sir2p and Sir3p. We speculate that the increase in recombination seen in sir4 mutants at high temperature may be due to changes in chromatin structure or Ty1 interactions with chromosomal structures resulting in higher recombination rates.
Collapse
Affiliation(s)
- Sarah J Radford
- Department of Biology, Juniata College, Huntingdon, Pennsylvania 16652, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Aye M, Irwin B, Beliakova-Bethell N, Chen E, Garrus J, Sandmeyer S. Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 2004; 168:1159-76. [PMID: 15579677 PMCID: PMC1448793 DOI: 10.1534/genetics.104.028126] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/18/2004] [Indexed: 11/18/2022] Open
Abstract
The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNA(Val(AAC)) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets.
Collapse
Affiliation(s)
- Michael Aye
- Department of Biological Chemistry, University of California College of Medicine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
24
|
Blackwell C, Martin KA, Greenall A, Pidoux A, Allshire RC, Whitehall SK. The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol Cell Biol 2004; 24:4309-20. [PMID: 15121850 PMCID: PMC400474 DOI: 10.1128/mcb.24.10.4309-4320.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIRA-like (Hir) proteins are evolutionarily conserved and are implicated in the assembly of repressive chromatin. In Saccharomyces cerevisiae, Hir proteins contribute to the function of centromeres. However, S. cerevisiae has point centromeres that are structurally different from the complex centromeres of metazoans. In contrast, Schizosaccharomyces pombe has complex centromeres whose domain structure is conserved with that of human centromeres. Therefore, we examined the functions of the fission yeast Hir proteins Slm9 and the previously uncharacterised protein Hip1. Deletion of hip1(+) resulted in phenotypes that were similar to those described previously for slm9 Delta cells: a cell cycle delay, synthetic lethality with cdc25-22, and poor recovery from nitrogen starvation. However, while it has previously been shown that Slm9 is not required for the periodic expression of histone H2A, we found that loss of Hip1 led to derepression of core histone genes expression outside of S phase. Importantly, we found that deletion of either hip1(+) or slm9(+) resulted in increased rates of chromosome loss, increased sensitivity to spindle damage, and reduced transcriptional silencing in the outer centromeric repeats. Thus, S. pombe Hir proteins contribute to pericentromeric heterochromatin, and our data thus suggest that Hir proteins may be required for the function of metazoan centromeres.
Collapse
Affiliation(s)
- Chris Blackwell
- Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. ACTA ACUST UNITED AC 2004; 1677:3-11. [PMID: 15020040 DOI: 10.1016/j.bbaexp.2003.09.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, highly basic histone proteins are associated with the DNA to form the nucleosome, the fundamental unit of chromatin. Histones are closely escorted by histone chaperones from their point of synthesis up to their delivery site. We will present an overview of the histone chaperones identified to date with their various roles, in an attempt to highlight their importance in cellular metabolism. Nucleoplasmin will illustrate a role in histone storage and Nap-1, a histone translocator. CAF-1 and Hira will provide examples of distinct histone deposition factors coupled to and uncoupled from DNA synthesis, respectively, while Asf1 could act as a histone donor. We then will illustrate with two examples how histone chaperones can be associated with chromatin remodeling activities. Finally, we will discuss how the RbAp46/48 proteins, as escort factors, are part of multiple complexes with various functions. Based on these examples, we will propose a scheme in which the diverse roles of histone chaperones are integrated within an assembly line for chromatin formation and regulation. Finally, we discuss how these chaperones may have more than a supporting role in a histone metabolic pathway.
Collapse
Affiliation(s)
- Alejandra Loyola
- Institut Curie/Section de Recherche, UMR 21826, rue d'Ulm, 75231 Paris Cedex 05, France
| | | |
Collapse
|
26
|
Griffith JL, Coleman LE, Raymond AS, Goodson SG, Pittard WS, Tsui C, Devine SE. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 2003; 164:867-79. [PMID: 12871900 PMCID: PMC1462630 DOI: 10.1093/genetics/164.3.867] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviruses and their relatives, the long terminal repeat (LTR) retrotransposons, carry out complex life cycles within the cells of their hosts. We have exploited a collection of gene deletion mutants developed by the Saccharomyces Genome Deletion Project to perform a functional genomics screen for host factors that influence the retrovirus-like Ty1 element in yeast. A total of 101 genes that presumably influence many different aspects of the Ty1 retrotransposition cycle were identified from our analysis of 4483 homozygous diploid deletion strains. Of the 101 identified mutants, 46 had significantly altered levels of Ty1 cDNA, whereas the remaining 55 mutants had normal levels of Ty1 cDNA. Thus, approximately half of the mutants apparently affected the early stages of retrotransposition leading up to the assembly of virus-like particles and cDNA replication, whereas the remaining half affected steps that occur after cDNA replication. Although most of the mutants retained the ability to target Ty1 integration to tRNA genes, 2 mutants had reduced levels of tRNA gene targeting. Over 25% of the gene products identified in this study were conserved in other organisms, suggesting that this collection of host factors can serve as a starting point for identifying host factors that influence LTR retroelements and retroviruses in other organisms. Overall, our data indicate that Ty1 requires a large number of cellular host factors to complete its retrotransposition cycle efficiently.
Collapse
Affiliation(s)
- Jacqulyn L Griffith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
28
|
Chang M, Bellaoui M, Boone C, Brown GW. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc Natl Acad Sci U S A 2002; 99:16934-9. [PMID: 12482937 PMCID: PMC139247 DOI: 10.1073/pnas.262669299] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We performed a systematic screen of the set of approximately 5,000 viable Saccharomyces cerevisiae haploid gene deletion mutants and have identified 103 genes whose deletion causes sensitivity to the DNA-damaging agent methyl methanesulfonate (MMS). In total, 40 previously uncharacterized alkylation damage response genes were identified. Comparison with the set of genes known to be transcriptionally induced in response to MMS revealed surprisingly little overlap with those required for MMS resistance, indicating that transcriptional regulation plays little, if any, role in the response to MMS damage. Clustering of the MMS response genes on the basis of their cross-sensitivities to hydroxyurea, UV radiation, and ionizing radiation revealed a DNA damage core of genes required for responses to a broad range of DNA-damaging agents. Of particular significance, we identified a subset of genes that show a specific MMS response, displaying defects in S phase progression only in the presence of MMS. These genes may promote replication fork stability or processivity during encounters between replication forks and DNA damage.
Collapse
Affiliation(s)
- Michael Chang
- Departments of Biochemistry and Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
29
|
Abstract
An unexpected new role for the chromatin assembly factor CAF-1 and the histone-regulating Hir proteins has been discovered in budding yeast. Both protein complexes are required together for building functional kinetochores.
Collapse
Affiliation(s)
- Torsten Krude
- University of Cambridge, Department of Zoology, Downing Street, CB2 3EJ, Cambridge, UK.
| |
Collapse
|
30
|
Krawitz DC, Kama T, Kaufman PD. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 2002; 22:614-25. [PMID: 11756556 PMCID: PMC139734 DOI: 10.1128/mcb.22.2.614-625.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin assembly factor I (CAF-I) is a conserved histone H3/H4 deposition complex. Saccharomyces cerevisiae mutants lacking CAF-I subunit genes (CAC1 to CAC3) display reduced heterochromatic gene silencing. In a screen for silencing-impaired cac1 alleles, we isolated a mutation that reduced binding to the Cac3p subunit and another that impaired binding to the DNA replication protein PCNA. Surprisingly, mutations in Cac1p that abolished PCNA binding resulted in very minor telomeric silencing defects but caused silencing to be largely dependent on Hir proteins and Asf1p, which together comprise an alternative silencing pathway. Consistent with these phenotypes, mutant CAF-I complexes defective for PCNA binding displayed reduced nucleosome assembly activity in vitro but were stimulated by Asf1p-histone complexes. Furthermore, these mutant CAF-I complexes displayed a reduced preference for depositing histones onto newly replicated DNA. We also observed a weak interaction between Asf1p and Cac2p in vitro, and we hypothesize that this interaction underlies the functional synergy between these histone deposition proteins.
Collapse
Affiliation(s)
- Denise C Krawitz
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
31
|
Sharp JA, Franco AA, Osley MA, Kaufman PD. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 2002; 16:85-100. [PMID: 11782447 PMCID: PMC155315 DOI: 10.1101/gad.925302] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Budding yeast centromeres are comprised of approximately 125-bp DNA sequences that direct formation of the kinetochore, a specialized chromatin structure that mediates spindle attachment to chromosomes. We report here a novel role for the histone deposition complex chromatin assembly factor I (CAF-I) in building centromeric chromatin. The contribution of CAF-I to kinetochore function overlaps that of the Hir proteins, which have also been implicated in nucleosome formation and heterochromatic gene silencing. cacDelta hirDelta double mutant cells lacking both CAF-I and Hir proteins are delayed in anaphase entry in a spindle assembly checkpoint-dependent manner. Further, cacDelta and hirDelta deletions together cause increased rates of chromosome missegregation, genetic synergies with mutations in kinetochore protein genes, and alterations in centromeric chromatin structure. Finally, CAF-I subunits and Hir1 are enriched at centromeres, indicating that these proteins make a direct contribution to centromeric chromatin structures.
Collapse
Affiliation(s)
- Judith A Sharp
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
32
|
Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 2001; 159:1449-65. [PMID: 11779788 PMCID: PMC1461915 DOI: 10.1093/genetics/159.4.1449] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.
Collapse
Affiliation(s)
- D T Scholes
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
33
|
Sutton A, Bucaria J, Osley MA, Sternglanz R. Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 2001; 158:587-96. [PMID: 11404324 PMCID: PMC1461693 DOI: 10.1093/genetics/158.2.587] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription of the four yeast histone gene pairs (HTA1-HTB1, HTA2-HTB2, HHT1-HHF1, and HHT2-HHF2) is repressed during G1, G2, and M. For all except HTA2-HTB2, this repression requires several trans-acting factors, including the products of the HIR genes, HIR1, HIR2, and HIR3. ASF1 is a highly conserved protein that has been implicated in transcriptional silencing and chromatin assembly. In this analysis, we show that HIR1 interacts with ASF1 in a two-hybrid analysis. Further, asf1 mutants, like hir mutants, are defective in repression of histone gene transcription during the cell cycle and in cells arrested in early S phase in response to hydroxyurea. asf1 and hir1 mutations also show very similar synergistic interactions with mutations in cac2, a subunit of the yeast chromatin assembly factor CAF-I. The results suggest that ASF1 and HIR1 function in the same pathway to create a repressive chromatin structure in the histone genes during the cell cycle.
Collapse
Affiliation(s)
- A Sutton
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
34
|
Sharp JA, Fouts ET, Krawitz DC, Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 2001; 11:463-73. [PMID: 11412995 DOI: 10.1016/s0960-9822(01)00140-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Position-dependent gene silencing in yeast involves many factors, including the four HIR genes and nucleosome assembly proteins Asf1p and chromatin assembly factor I (CAF-I, encoded by the CAC1-3 genes). Both cac Delta asfl Delta and cac Delta hir Delta double mutants display synergistic reductions in heterochromatic gene silencing. However, the relationship between the contributions of HIR genes and ASF1 to silencing has not previously been explored. RESULTS Our biochemical and genetic studies of yeast Asf1p revealed links to Hir protein function. In vitro, an active histone deposition complex was formed from recombinant yeast Asf1p and histones H3 and H4 that lack a newly synthesized acetylation pattern. This Asf1p/H3/H4 complex generated micrococcal nuclease--resistant DNA in the absence of DNA replication and stimulated nucleosome assembly activity by recombinant yeast CAF-I during DNA synthesis. Also, Asf1p bound to the Hir1p and Hir2p proteins in vitro and in cell extracts. In vivo, the HIR1 and ASF1 genes contributed to silencing the heterochromatic HML locus via the same genetic pathway. Deletion of either HIR1 or ASF1 eliminated telomeric gene silencing in combination with pol30--8, encoding an altered form of the DNA polymerase processivity factor PCNA that prevents CAF-I from contributing to silencing. Conversely, other pol30 alleles prevented Asf1/Hir proteins from contributing to silencing. CONCLUSIONS Yeast CAF-I and Asf1p cooperate to form nucleosomes in vitro. In vivo, Asf1p and Hir proteins physically interact and together promote heterochromatic gene silencing in a manner requiring PCNA. This Asf1/Hir silencing pathway functionally overlaps with CAF-I activity.
Collapse
Affiliation(s)
- J A Sharp
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
35
|
Johnston SD, Enomoto S, Schneper L, McClellan MC, Twu F, Montgomery ND, Haney SA, Broach JR, Berman J. CAC3(MSI1) suppression of RAS2(G19V) is independent of chromatin assembly factor I and mediated by NPR1. Mol Cell Biol 2001; 21:1784-94. [PMID: 11238915 PMCID: PMC86735 DOI: 10.1128/mcb.21.5.1784-1794.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cac3p/Msi1p, the Saccharomyces cerevisiae homolog of retinoblastoma-associated protein 48 (RbAp48), is a component of chromatin assembly factor I (CAF-I), a complex that assembles histones H3 and H4 onto replicated DNA. CAC3 overexpression also suppresses the RAS/cyclic AMP (cAMP) signal transduction pathway by an unknown mechanism. We investigated this mechanism and found that CAC3 suppression of RAS/cAMP signal transduction was independent of either CAC1 or CAC2, subunits required for CAF-I function. CAC3 suppression was also independent of other chromatin-modifying activities, indicating that Cac3p has at least two distinct, separable functions, one in chromatin assembly and one in regulating RAS function. Unlike Cac1p, which localizes primarily to the nucleus, Cac3p localizes to both the nucleus and the cytoplasm. In addition, Cac3p associates with Npr1p, a cytoplasmic kinase that stablizes several nutrient transporters by antagonizing a ubiquitin-mediated protein degradation pathway. Deletion of NPR1, like overexpression of Cac3p, suppressed the RAS/cAMP pathway. Furthermore, NPR1 overexpression interfered with the ability of CAC3 to suppress the RAS/cAMP pathway, indicating that extra Cac3p suppresses the RAS/cAMP pathway by sequestering Npr1p. Deletion of NPR1 did not affect the quantity, phosphorylation state, or localization of Ras2p. Consistent with the idea that Npr1p exerts its effect on the RAS/cAMP pathway by antagonizing a ubiquitin-mediated process, excess ubiquitin suppressed both the heat shock sensitivity and the sporulation defects caused by constitutive activation of the RAS/cAMP pathway. Thus, CAC3/MSI1 regulates the RAS/cAMP pathway via a chromatin-independent mechanism that involves the sequestration of Npr1p and may be due to the increased ubiquitination of an Npr1p substrate.
Collapse
Affiliation(s)
- S D Johnston
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Behrens R, Hayles J, Nurse P. Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames. Nucleic Acids Res 2000; 28:4709-16. [PMID: 11095681 PMCID: PMC115174 DOI: 10.1093/nar/28.23.4709] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Collapse
Affiliation(s)
- R Behrens
- Imperial Cancer Research Fund, Cell Cycle Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
37
|
Morillon A, Springer M, Lesage P. Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:5766-76. [PMID: 10891512 PMCID: PMC86054 DOI: 10.1128/mcb.20.15.5766-5776.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a set of genomic TY1A-lacZ fusions, we show that Ste12 and Tec1, two transcription factors of the Kss1 mitogen-activated protein kinase (MAPK) cascade activate Ty1 transcription in Saccharomyces cerevisiae. This result strongly suggests that the invasive-filamentous pathway regulates Ty1 transcription. Since this pathway is active in diploid cells, we suspected that Ty1 transposition might occur in this cell type, despite the fact that this event has been never reported before (unless activated by heterologous promoters such as that of GAL1). We demonstrate here that constitutive activation of the invasive-filamentous pathway by the STE11-4 allele or by growth in low-nitrogen medium induces Ty1 transcription and retrotransposition in diploid cells. We show that Ty1 retrotransposition can be activated by STE11-4 in haploid cells as well. Our findings provide the first evidence that Ty1 retrotransposition can be activated by environmental signals that affect differentiation. Activation of the Kss1 MAPK cascade by stress is known to cause filament formation that permits the search for nutrients away from the colonization site. We propose that activation of Ty1 retrotransposition by this cascade could play a role in adaptive mutagenesis in response to stress.
Collapse
Affiliation(s)
- A Morillon
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
38
|
|
39
|
Park Y, Lustig AJ. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics 2000; 154:587-98. [PMID: 10655213 PMCID: PMC1460967 DOI: 10.1093/genetics/154.2.587] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres, the protein-DNA structures present at the termini of linear chromosomes, are capable of conferring a reversible repression of Pol II- and Pol III-transcribed genes positioned in adjacent subtelomeric regions. This phenomenon, termed telomeric silencing, is likely to be the consequence of a more global telomere position effect at the level of chromatin structure. To understand the role of telomere structure in this position effect, we have developed an assay to distinguish between the heritability of transcriptionally repressed and derepressed states in yeast. We have previously demonstrated that an elongated telomeric tract leads to hyperrepression of telomere-adjacent genes. We show here that the predominant effect of elongated telomeres is to increase the inheritance of the repressed state in cis. Interestingly, the presence of elongated telomeres overcomes the partial requirement of yCAF-1 in silencing. We propose that the formation of a specific telomeric structure is necessary for the heritability of repressed subtelomeric chromatin.
Collapse
Affiliation(s)
- Y Park
- Department of Biochemistry, Tulane University Medical Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
40
|
Sun ZW, Hampsey M. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 1999; 152:921-32. [PMID: 10388812 PMCID: PMC1460667 DOI: 10.1093/genetics/152.3.921] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Sin3-Rpd3 histone deacetylase complex, conserved between human and yeast, represses transcription when targeted by promoter-specific transcription factors. SIN3 and RPD3 also affect transcriptional silencing at the HM mating loci and at telomeres in yeast. Interestingly, however, deletion of the SIN3 and RPD3 genes enhances silencing, implying that the Sin3-Rpd3 complex functions to counteract, rather than to establish or maintain, silencing. Here we demonstrate that Sin3, Rpd3, and Sap30, a novel component of the Sin3-Rpd3 complex, affect silencing not only at the HMR and telomeric loci, but also at the rDNA locus. The effects on silencing at all three loci are dependent upon the histone deacetylase activity of Rpd3. Enhanced silencing associated with sin3Delta, rpd3Delta, and sap30Delta is differentially dependent upon Sir2 and Sir4 at the telomeric and rDNA loci and is also dependent upon the ubiquitin-conjugating enzyme Rad6 (Ubc2). We also show that the Cac3 subunit of the CAF-I chromatin assembly factor and Sin3-Rpd3 exert antagonistic effects on silencing. Strikingly, deletion of GCN5, which encodes a histone acetyltransferase, enhances silencing in a manner similar to deletion of RPD3. A model that integrates the effects of rpd3Delta, gcn5Delta, and cac3Delta on silencing is proposed.
Collapse
Affiliation(s)
- Z W Sun
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
41
|
Dimova D, Nackerdien Z, Furgeson S, Eguchi S, Osley MA. A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol Cell 1999; 4:75-83. [PMID: 10445029 DOI: 10.1016/s1097-2765(00)80189-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic and biochemical studies indicate that the evolutionarily conserved Swi/Snf complex acts at a subset of genes to help transcriptional activators function on chromatin templates. The mechanism by which this complex is targeted to specific chromosomal loci remains unknown. We show that Swi/Snf is required for expression of the yeast histone HTA1-HTB1 locus because of the role of Hir1p and Hir2p corepressors in negatively regulating transcription. Snf5p, Snf2p/Swi2p, and Swi3p, three components of the yeast Swi/Snf complex, coimmunoprecipitate with each Hir protein, and Snf5p is maximally associated with the HTA1-HTB1 promoter when the Hir-based repression system is intact and the Swi/Snf complex is functional. The data support a role for the Hir repressors in the gene-specific targeting of Swi/Snf.
Collapse
Affiliation(s)
- D Dimova
- Program in Molecular Biology, Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Newly replicated DNA is assembled into chromatin through two principle pathways. Firstly, parental nucleosomes segregate to replicated DNA, and are transferred directly to one of the two daughter strands during replication fork passage. Secondly, chromatin assembly factors mediate de-novo assembly of nucleosomes on replicating DNA using newly synthesized and acetylated histone proteins. In somatic cells, chromatin assembly factor 1 (CAF-1) appears to be a key player in assembling new nucleosomes during DNA replication. It provides a molecular connection between newly synthesized histones and components of the DNA replication machinery during the S phase of the cell division cycle.
Collapse
Affiliation(s)
- T Krude
- University of Cambridge, Wellcome/CRC Institute, UK.
| |
Collapse
|
43
|
Smith JS, Caputo E, Boeke JD. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 1999; 19:3184-97. [PMID: 10082585 PMCID: PMC84112 DOI: 10.1128/mcb.19.4.3184] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genetic loci, including the ribosomal DNA (rDNA). Silencing at telomeres (telomere position effect [TPE]) and the cryptic mating-type loci (HML and HMR) depends on the silent information regulator genes, SIR1, SIR2, SIR3, and SIR4. However, silencing of polymerase II-transcribed reporter genes integrated within the rDNA locus (rDNA silencing) requires only SIR2. The mechanism of rDNA silencing is therefore distinct from TPE and HM silencing. Few genes other than SIR2 have so far been linked to the rDNA silencing process. To identify additional non-Sir factors that affect rDNA silencing, we performed a genetic screen designed to isolate mutations which alter the expression of reporter genes integrated within the rDNA. We isolated two classes of mutants: those with a loss of rDNA silencing (lrs) phenotype and those with an increased rDNA silencing (irs) phenotype. Using transposon mutagenesis, lrs mutants were found in 11 different genes, and irs mutants were found in 22 different genes. Surprisingly, we did not isolate any genes involved in rRNA transcription. Instead, multiple genes associated with DNA replication and modulation of chromatin structure were isolated. We describe these two gene classes, and two previously uncharacterized genes, LRS4 and IRS4. Further characterization of the lrs and irs mutants revealed that many had alterations in rDNA chromatin structure. Several lrs mutants, including those in the cdc17 and rfc1 genes, caused lengthened telomeres, consistent with the hypothesis that telomere length modulates rDNA silencing. Mutations in the HDB (RPD3) histone deacetylase complex paradoxically increased rDNA silencing by a SIR2-dependent, SIR3-independent mechanism. Mutations in rpd3 also restored mating competence selectively to sir3Delta MATalpha strains, suggesting restoration of silencing at HMR in a sir3 mutant background.
Collapse
MESH Headings
- Chromatin/metabolism
- Chromatin/ultrastructure
- DNA Replication
- DNA, Ribosomal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Mating Type, Fungal
- Histone Deacetylases
- Models, Genetic
- Mutation
- Phenotype
- RNA, Ribosomal/biosynthesis
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Selection, Genetic
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Sirtuin 2
- Sirtuins
- Telomere/genetics
- Telomere-Binding Proteins
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J S Smith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
44
|
Huang H, Hong JY, Burck CL, Liebman SW. Host genes that affect the target-site distribution of the yeast retrotransposon Ty1. Genetics 1999; 151:1393-407. [PMID: 10101165 PMCID: PMC1460544 DOI: 10.1093/genetics/151.4.1393] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report here a simple genetic system for investigating factors affecting Ty1 target-site preference within an RNAP II transcribed gene. The target in this system is a functional fusion of the regulatable MET3 promoter with the URA3 gene. We found that the simultaneous inactivation of Hir3 (a histone transcription regulator) and Cac3 (a subunit of the chromatin assembly factor I), which was previously shown by us to increase the Ty1 transposition rate, eliminated the normally observed bias for Ty1 elements to insert into the 5' vs. 3' regions of the MET3-URA3 and CAN1 genes. The double cac3 hir3 mutation also caused the production of a short transcript from the MET3-URA3 fusion under both repressed and derepressed conditions. In a hir3Delta single-mutant strain, the Ty1 target-site distribution into MET3-URA3 was altered only when transposition occurred while the MET3-URA3 fusion was actively transcribed. In contrast, transcription of the MET3-URA3 fusion did not alter the Ty1 target-site distribution in wild-type or other mutant strains. Deletion of RAD6 was shown to alter the Ty1 target-site preference in the MET3-URA3 fusion and the LYS2 gene. These data, together with previous studies of Ty1 integration positions at CAN1 and SUP4, indicate that the rad6 effect on Ty1 target-site selection is not gene specific.
Collapse
Affiliation(s)
- H Huang
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
45
|
Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999; 96:575-85. [PMID: 10052459 DOI: 10.1016/s0092-8674(00)80661-3] [Citation(s) in RCA: 516] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin assembly factor 1 (CAF-1) is required for inheritance of epigenetically determined chromosomal states in vivo and promotes assembly of chromatin during DNA replication in vitro. Herein, we demonstrate that after DNA replication, replicated, but not unreplicated, DNA is also competent for CAF-1-dependent chromatin assembly. The proliferating cell nuclear antigen (PCNA), a DNA polymerase clamp, is a component of the replication-dependent marking of DNA for chromatin assembly. The clamp loader, replication factor C (RFC), can reverse this mark by unloading PCNA from the replicated DNA. PCNA binds directly to p150, the largest subunit of CAF-1, and the two proteins colocalize at sites of DNA replication in cells. We suggest that PCNA and CAF-1 connect DNA replication to chromatin assembly and the inheritance of epigenetic chromosome states.
Collapse
Affiliation(s)
- K Shibahara
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
46
|
Kaufman PD, Cohen JL, Osley MA. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 1998; 18:4793-806. [PMID: 9671489 PMCID: PMC109065 DOI: 10.1128/mcb.18.8.4793] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1998] [Accepted: 05/14/1998] [Indexed: 02/08/2023] Open
Abstract
Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacDelta mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIR genes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacDelta mutants, although hirDelta mutants had no silencing defects when CAF-I was intact. Therefore, Hir proteins are required for an alternative silencing pathway that becomes important in the absence of CAF-I. Because Hir proteins regulate expression of histone genes, we tested the effects of histone gene deletion and overexpression on telomeric silencing and found that alterations in histone H3 and H4 levels or in core histone stoichiometry reduced silencing in cacDelta mutants but not in wild-type cells. We therefore propose that Hir proteins contribute to silencing indirectly via regulation of histone synthesis. However, deletion of combinations of CAC and HIR genes also affected the growth rate and in some cases caused partial temperature sensitivity, suggesting that global aspects of chromosome function may be affected by the loss of members of both gene families.
Collapse
Affiliation(s)
- P D Kaufman
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
| | | | | |
Collapse
|