1
|
Chavez C, Cruz-Becerra G, Fei J, Kassavetis GA, Kadonaga JT. The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. eLife 2019; 8:47682. [PMID: 31571581 PMCID: PMC6773438 DOI: 10.7554/elife.47682] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Tardigrades, also known as water bears, are animals that can survive extreme conditions. The tardigrade Ramazzottius varieornatus contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that R. varieornatus Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals. Moreover, a Dsup ortholog from the tardigrade Hypsibius exemplaris similarly binds to nucleosomes and protects DNA from hydroxyl radicals. Strikingly, a conserved region in Dsup proteins exhibits sequence similarity to the nucleosome-binding domain of vertebrate HMGN proteins and is functionally important for nucleosome binding and hydroxyl radical protection. These findings suggest that Dsup promotes the survival of tardigrades under diverse conditions by a direct mechanism that involves binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals. Tardigrades, also known as water bears and moss piglets, are small animals found in many different environments on land and sea. These animals have the remarkable ability to survive extremes including very low temperatures, high levels of radiation and exposure to chemicals that are harmful to other forms of life. Tardigrades have even been found to survive the harsh conditions of outer space. X-rays are a type of radiation naturally produced by lightning strikes and are also found in cosmic rays from outer space. High doses of X-rays can cause genetic mutations that may lead to serious illness or death. This is because when X-rays come into contact with water they split the water molecules to make particles known as hydroxyl radicals, which in turn damage the DNA inside cells. The genomes of animals and plants are made of DNA, which is packaged into a structure called chromatin. Previous studies identified a protein named Dsup in a tardigrade called Ramazzottius varieornatus that can protect human cells from damage by X-rays. However, it was not known whether Dsup binds directly to chromatin or plays a more indirect role in protecting DNA. Chavez, Cruz-Becerra, Fei, Kassavetis et al. used biochemical approaches to study Dsup. Their experiments revealed that Dsup from R. varieornatus binds to chromatin to protect the DNA from damage by hydroxyl radicals, and that the Dsup protein in another tardigrade species also works in a similar way. Further analysis showed that a region of Dsup that is needed to bind to chromatin is very similar to a region that had been previously found only in chromatin-binding proteins from humans and other vertebrates (animals with backbones). This connection between Dsup and vertebrate chromatin-binding proteins remains a mystery. The new findings about tardigrade Dsup may help researchers develop animal cells that live longer under normal or extreme environmental conditions. In this manner, Dsup could be used to expand the range of applications of cells in biotechnology. It could also increase the effectiveness of current methods, such as the production of some pharmaceuticals, that depend upon the use of cultured cells.
Collapse
Affiliation(s)
- Carolina Chavez
- Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - Grisel Cruz-Becerra
- Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - Jia Fei
- Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - George A Kassavetis
- Section of Molecular Biology, University of California, San Diego, San Diego, United States
| | - James T Kadonaga
- Section of Molecular Biology, University of California, San Diego, San Diego, United States
| |
Collapse
|
2
|
Zhang K, Yang W, Yu H, Fu C, Liu X, Liu J. Double mutation of BRF1 and BRF2 leads to sterility in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 516:969-975. [PMID: 31277948 DOI: 10.1016/j.bbrc.2019.06.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/22/2023]
Abstract
The TFIIB-related factor (BRF) family plays vital roles in RNA polymerase (Pol) III transcription initiation. However, little is known about the role of BRF in plants. Here, we report BRF1 and BRF2 are involved in Arabidopsis reproduction. In this study, we generated BRF1 and BRF2 double mutant plants. We found that no homozygous double mutants of brf1brf2 were obtained when brf1 and brf2 were crossed, although brf1 and brf2 mutants individually developed and reproduced normally. Further experiments revealed that heterozygous brf1/ + brf2/ + produced abnormal pollen and had no seeds in some placentas of siliques. Genetic data derived from reciprocal crosses showed that BRF2 plays a dominant role in Arabidopsis reproduction. Taken together, a double mutation of BRF1 and BRF2 results in a high degree of aborted macrogametes and microgametes and complete failure in zygote generation, ultimately leading to sterility.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Wenwen Yang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hongbin Yu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Can Fu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaxia Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
3
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
4
|
Kang JJ, Kang YS, Stumph WE. TFIIIB subunit locations on U6 gene promoter DNA mapped by site-specific protein-DNA photo-cross-linking. FEBS Lett 2016; 590:1488-97. [PMID: 27112515 DOI: 10.1002/1873-3468.12185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/05/2022]
Abstract
RNA polymerase III-transcribed U6 snRNA genes have gene-external promoters that contain TATA boxes. U6 TATA sequences are bound by TFIIIB that in Drosophila contains the three subunits TBP, Brf1, and Bdp1. The overall structure of TFIIIB is still not well understood. We have therefore studied the mode of TFIIIB binding to DNA by site-specific protein-DNA photo-cross-linking. The results indicate that a portion of Brf1 is sandwiched between Bdp1 and TBP upstream of the TATA box. Furthermore, Bdp1 traverses the DNA under the N-terminal stirrup of TBP to interact with the DNA (and very likely Brf1) downstream of the TATA sequence.
Collapse
Affiliation(s)
- Jin Joo Kang
- Department of Chemistry and Biochemistry, San Diego State University, CA, USA
| | - Yoon Soon Kang
- Department of Chemistry and Biochemistry, San Diego State University, CA, USA
| | - William E Stumph
- Department of Chemistry and Biochemistry, San Diego State University, CA, USA
| |
Collapse
|
5
|
Abstract
Reuter et al. show that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNA polymerase III (RNAPIII) transcribed genes. Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. RNA polymerase III (RNAPIII) synthesizes most small RNAs, the most prominent being tRNAs. Although the basic mechanism of RNAPIII transcription is well understood, recent evidence suggests that additional proteins play a role in RNAPIII transcription. Here, we discovered by a genome-wide approach that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNAPIII transcribed genes. The occupancy of Nab2 at RNAPIII transcribed genes is dependent on transcription. Using a novel temperature-sensitive allele of NAB2, nab2-34, we show that Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. Furthermore, Nab2 interacts with RNAPIII, TFIIIB, and RNAPIII transcripts. Importantly, impairment of Nab2 function causes an RNAPIII transcription defect in vivo and in vitro. Taken together, we establish Nab2, an important mRNA biogenesis factor, as a novel player required for RNAPIII transcription by stabilizing TFIIIB and RNAPIII at promoters.
Collapse
Affiliation(s)
- L Maximilian Reuter
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Dominik M Meinel
- Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft. Mol Cell Biol 2015; 35:2831-40. [PMID: 26055328 DOI: 10.1128/mcb.00263-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023] Open
Abstract
The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.
Collapse
|
7
|
Borck G, Hög F, Dentici ML, Tan PL, Sowada N, Medeira A, Gueneau L, Thiele H, Kousi M, Lepri F, Wenzeck L, Blumenthal I, Radicioni A, Schwarzenberg TL, Mandriani B, Fischetto R, Morris-Rosendahl DJ, Altmüller J, Reymond A, Nürnberg P, Merla G, Dallapiccola B, Katsanis N, Cramer P, Kubisch C. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res 2015; 25:155-66. [PMID: 25561519 PMCID: PMC4315290 DOI: 10.1101/gr.176925.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
Abstract
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Collapse
Affiliation(s)
- Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany;
| | - Friederike Hög
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | - Perciliz L Tan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | - Nadine Sowada
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Ana Medeira
- Serviço de Genética, Departamento de Pediatria, Hospital S. Maria, CHLN, 1649-035 Lisboa, Portugal
| | - Lucie Gueneau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | | | - Larissa Wenzeck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ian Blumenthal
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Antonio Radicioni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | | | - Barbara Mandriani
- IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy; PhD Program, Molecular Genetics applied to Medical Sciences, University of Brescia, 25121 Brescia, Italy
| | - Rita Fischetto
- U.O. Malattie Metaboliche PO Giovanni XXIII, AOU Policlinico Consorziale, 70120 Bari, Italy
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Institute for Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Giuseppe Merla
- IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol Cell Biol 2013; 34:551-9. [PMID: 24277937 DOI: 10.1128/mcb.00910-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TFIIB-related factor Brf1 is essential for RNA polymerase (Pol) III recruitment and open-promoter formation in transcription initiation. We site specifically incorporated a nonnatural amino acid cross-linker into Brf1 to map its protein interaction targets in the preinitiation complex (PIC). Our cross-linking analysis in the N-terminal domain of Brf1 indicated a pattern of multiple protein interactions reminiscent of TFIIB in the Pol active-site cleft. In addition to the TFIIB-like protein interactions, the Brf1 cyclin repeat subdomain is in contact with the Pol III-specific C34 subunit. With site-directed hydroxyl radical probing, we further revealed the binding between Brf1 cyclin repeats and the highly conserved region connecting C34 winged-helix domains 2 and 3. In contrast to the N-terminal domain of Brf1, the C-terminal domain contains extensive binding sites for TBP and Bdp1 to hold together the TFIIIB complex on the promoter. Overall, the domain architecture of the PIC derived from our cross-linking data explains how individual structural subdomains of Brf1 integrate the protein network from the Pol III active center to the promoter for transcription initiation.
Collapse
|
9
|
Niu QK, Liang Y, Zhou JJ, Dou XY, Gao SC, Chen LQ, Zhang XQ, Ye D. Pollen-expressed transcription factor 2 encodes a novel plant-specific TFIIB-related protein that is required for pollen germination and embryogenesis in Arabidopsis. MOLECULAR PLANT 2013; 6:1091-1108. [PMID: 23713077 DOI: 10.1093/mp/sst083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pollen germination and embryogenesis are important to sexual plant reproduction. The processes require a large number of genes to be expressed. Transcription of eukaryotic nuclear genes is accomplished by three conserved RNA polymerases acting in association with a set of auxiliary general transcription factors (GTFs), including B-type GTFs. The roles of B-type GTFs in plant reproduction remain poorly understood. Here we report functional characterization of a novel plant-specific TFIIB-related gene PTF2 in Arabidopsis. Mutation in PTF2 caused failure of pollen germination. Pollen-rescue revealed that the mutation also disrupted embryogenesis and resulted in seed abortion. PTF2 is expressed prolifically in developing pollen and the other tissues with active cell division and differentiation, including embryo and shoot apical meristem. The PTF2 protein shares a lower amino acid sequence similarity with other known TFIIB and TFIIB-related proteins in Arabidopsis. It can interact with TATA-box binding protein 2 (TBP2) and bind to the double-stranded DNA (dsDNA) as the other known TFIIB and TFIIB-related proteins do. In addition, PTF2 can form a homodimer and interact with the subunits of RNA polymerases (RNAPs), implying that it may be involved in the RNAPs transcription. These results suggest that PTF2 plays crucial roles in pollen germination and embryogenesis in Arabidopsis, possibly by regulating gene expression through interaction with TBP2 and the subunits of RNAPs.
Collapse
Affiliation(s)
- Qian-Kun Niu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
11
|
Fairley JA, Mitchell LE, Berg T, Kenneth NS, von Schubert C, Silljé HHW, Medema RH, Nigg EA, White RJ. Direct regulation of tRNA and 5S rRNA gene transcription by Polo-like kinase 1. Mol Cell 2012; 45:541-52. [PMID: 22281053 DOI: 10.1016/j.molcel.2011.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/27/2011] [Accepted: 11/23/2011] [Indexed: 12/29/2022]
Abstract
Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase III (pol III) through direct binding and phosphorylation of transcription factor Brf1. During interphase, Plk1 promotes tRNA and 5S rRNA expression by phosphorylating Brf1 directly on serine 450. However, this stimulatory modification is overridden at mitosis, when elevated Plk1 activity causes Brf1 phosphorylation on threonine 270 (T270), which prevents pol III recruitment. Thus, although Plk1 enhances net tRNA and 5S rRNA production, consistent with its proliferation-stimulating function, it also suppresses untimely transcription when cells divide. Genomic instability is apparent in cells with Brf1 T270 mutated to alanine to resist Plk1-directed inactivation, suggesting that chromosome segregation is vulnerable to inappropriate pol III activity.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
13
|
Naryshkin N, Druzhinin S, Revyakin A, Kim Y, Mekler V, Ebright RH. Static and kinetic site-specific protein-DNA photocrosslinking: analysis of bacterial transcription initiation complexes. Methods Mol Biol 2009; 543:403-437. [PMID: 19378179 PMCID: PMC2733221 DOI: 10.1007/978-1-60327-015-1_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking - involving rapid-quench-flow mixing and pulsed-laser irradiation - permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard H. Ebright
- To whom correspondence should be addressed [mailing address: HHMI, Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway NJ 08854; telephone: (732) 445-5179; telefax: (732) 445-5735; ]
| |
Collapse
|
14
|
Saïda F. Structural Characterization of the Interaction between TFIIIB Components Bdp1 and Brf1. Biochemistry 2008; 47:13197-206. [DOI: 10.1021/bi801406z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fakhri Saïda
- Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
| |
Collapse
|
15
|
Soragni E, Kassavetis GA. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 2008; 283:26568-76. [PMID: 18667429 PMCID: PMC2546553 DOI: 10.1074/jbc.m803769200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Indexed: 11/06/2022] Open
Abstract
A major limitation of chromatin immunoprecipitation lies in the challenge of measuring the immunoprecipitation effectiveness of different proteins and antibodies and the resultant inability to compare the occupancies of different DNA-binding proteins. Here we present the implementation of a quantitative chromatin immunoprecipitation assay in the RNA polymerase III (pol III) system that allowed us to measure the absolute in vivo occupancy of pol III and its two transcription factors, TFIIIC and TFIIIB, on a subset of pol III genes. The crucial point of our analysis was devising a method that allows the accurate determination of the immunoprecipitation efficiency for each protein. We achieved this by spiking every immunoprecipitation reaction with the formaldehyde cross-linked in vitro counterparts of TFIIIB-, TFIIIC-, and pol III-DNA complexes, measuring the in vitro occupancies of the corresponding factors on a DNA probe and determining probe recovery by quantitative PCR. Analysis of nine pol III-transcribed genes with diverse sequence characteristics showed a very high occupancy by TFIIIB and pol III (pol III occupancy being generally approximately 70% of TFIIIB occupancy) and a TFIIIC occupancy that ranged between approximately 5 and 25%. Current data suggest that TFIIIC is released during transcription in vitro, and it has been proposed that TFIIIB suffices for pol III recruitment in vivo. Our findings point to the transient nature of the TFIIIC-DNA interaction in vivo, with no significant counter-correlation between pol III and TFIIIC occupancy and instead to a dependence of TFIIIB-DNA and TFIIIC-DNA complex maintenance in vivo on pol III function.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| | - George A. Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| |
Collapse
|
16
|
Archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus. J Bacteriol 2007; 190:157-67. [PMID: 17965161 DOI: 10.1128/jb.01498-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription complexes formed with TFB2 at the strong gdh promoter are similar to the orientation and occupancy of transcription complexes formed with TFB1. Initiation complexes formed by TFB2 display a promoter opening defect that can be bypassed with a preformed transcription bubble, suggesting a mechanism to explain the low TFB2 transcription activity. Domain swaps between TFB1 and TFB2 showed that the low activity of TFB2 is determined mainly by its N terminus. The low activity of TFB2 in promoter opening and transcription can be partially relieved by transcription factor E (TFE). The results indicate that the TFB N-terminal region, containing conserved Zn ribbon and B-finger motifs, is important in promoter opening and that TFE can compensate for defects in the N terminus through enhancement of promoter opening.
Collapse
|
17
|
Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A. Mol Cell Biol 2007; 27:8492-501. [PMID: 17923679 DOI: 10.1128/mcb.01173-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates approximately 48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements.
Collapse
|
18
|
Liao Y, Moir RD, Willis IM. Interactions of Brf1 peptides with the tetratricopeptide repeat-containing subunit of TFIIIC inhibit and promote preinitiation complex assembly. Mol Cell Biol 2006; 26:5946-56. [PMID: 16880507 PMCID: PMC1592789 DOI: 10.1128/mcb.00689-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The binding of Brf1 to the tetratricopeptide repeat (TPR)-containing transcription factor IIIC (TFIIIC) subunit (Tfc4) represents a rate-limiting step in the ordered assembly of the RNA polymerase III initiation factor TFIIIB. Tfc4 contains multiple binding sites for Brf1 within its amino terminus and adjacent TPR arrays, but the access of Brf1 to these sites is limited by autoinhibition. Moreover, the Brf1 binding sites in Tfc4 overlap with sites important for the subsequent recruitment of another TFIIIB subunit, Bdp1, implying that repositioning of Brf1 is required after its initial interaction with Tfc4. As a starting point for dissecting the steps in TFIIIC-directed assembly of TFIIIB, we conducted yeast two-hybrid screens of Brf1 peptide libraries against different TPR-containing Tfc4 fragments. Short, biochemically active peptides were identified in three distinct regions of Brf1. Two peptides defined conserved but distal regions of Brf1 that participate in stable binding of Brf1 to TFIIIC-DNA. Remarkably, a third peptide that binds specifically to TPR6-9 of Tfc4 was found to promote the formation of both TFIIIC-DNA and Brf1-TFIIIC-DNA complexes and to reduce the mobility of these complexes in native gels. The data are consistent with this peptide causing a conformational change in TFIIIC that overcomes Tfc4 autoinhibition of Brf1 binding and suggest a structural model for the Brf1-Tfc4 interaction.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
19
|
Kassavetis GA, Driscoll R, Geiduschek EP. Mapping the Principal Interaction Site of the Brf1 and Bdp1 Subunits of Saccharomyces cerevisiae TFIIIB. J Biol Chem 2006; 281:14321-9. [PMID: 16551611 DOI: 10.1074/jbc.m601702200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
20
|
Saxena A, Ma B, Schramm L, Hernandez N. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription. Mol Cell Biol 2005; 25:9406-18. [PMID: 16227591 PMCID: PMC1265830 DOI: 10.1128/mcb.25.21.9406-9418.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Collapse
Affiliation(s)
- Ashish Saxena
- Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
21
|
Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP. Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Proc Natl Acad Sci U S A 2005; 102:15406-11. [PMID: 16227432 PMCID: PMC1266137 DOI: 10.1073/pnas.0507653102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor (TF) IIIB, the central transcription initiation factor of RNA polymerase III (pol III), is composed of three subunits, Bdp1, Brf1 and TATA-binding protein (TBP), all essential for normal function in vivo and in vitro. Brf1 is a modular protein: Its N-proximal half is related to TFIIB and binds similarly to the C-terminal stirrup of TBP; its C-proximal one-third provides most of the affinity for TBP by binding along the entire length of the convex surface and N-terminal lateral face of TBP. A structure-informed triple fusion protein, with TBP core placed between the N- and C-proximal domains of Brf1, has been constructed. The Brf1-TBP triple fusion protein effectively replaces both Brf1 and TBP in TFIIIC-dependent and -independent transcription in vitro, and forms extremely stable TFIIIB-DNA complexes that are indistinguishable from wild-type TFIIIB-DNA complexes by chemical nuclease footprinting. Unlike Brf1 and TBP, the triple fusion protein is able to recruit pol III for TATA box-directed transcription of linear and supercoiled DNA in the absence of Bdp1. The Brf1-TBP triple fusion protein also effectively replaces Brf1 function in vivo as the intact protein, creating a TBP paralogue in yeast that is privatized for pol III transcription.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | | | |
Collapse
|
22
|
Jambunathan N, Martinez AW, Robert EC, Agochukwu NB, Ibos ME, Dugas SL, Donze D. Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 2005; 171:913-22. [PMID: 16079223 PMCID: PMC1456849 DOI: 10.1534/genetics.105.046938] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.
Collapse
Affiliation(s)
- Nithya Jambunathan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ. Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 2004; 14:1537-47. [PMID: 15289474 PMCID: PMC509262 DOI: 10.1101/gr.2256604] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Giardia lamblia genome sequencing project affords us a unique opportunity to conduct comparative analyses of core cellular systems between early and late-diverging eukaryotes on a genome-wide scale. We report a survey to identify canonical transcription components in Giardia, focusing on RNA polymerase (RNAP) subunits and transcription-initiation factors. Our survey revealed that Giardia contains homologs to 21 of the 28 polypeptides comprising eukaryal RNAPI, RNAPII, and RNAPIII; six of the seven RNAP subunits without giardial homologs are polymerase specific. Components of only four of the 12 general transcription initiation factors have giardial homologs. Surprisingly, giardial TATA-binding protein (TBP) is highly divergent with respect to archaeal and higher eukaryotic TBPs, and a giardial homolog of transcription factor IIB was not identified. We conclude that Giardia represents a transition during the evolution of eukaryal transcription systems, exhibiting a relatively complete set of RNAP subunits and a rudimentary basal initiation apparatus for each transcription system. Most class-specific RNAP subunits and basal initiation factors appear to have evolved after the divergence of Giardia from the main eukaryotic line of descent. Consequently, Giardia is predicted to be unique in many aspects of transcription initiation with respect to paradigms derived from studies in crown eukaryotes.
Collapse
Affiliation(s)
- Aaron A Best
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
24
|
Shivaswamy S, Kassavetis GA, Bhargava P. High-level activation of transcription of the yeast U6 snRNA gene in chromatin by the basal RNA polymerase III transcription factor TFIIIC. Mol Cell Biol 2004; 24:3596-606. [PMID: 15082757 PMCID: PMC387771 DOI: 10.1128/mcb.24.9.3596-3606.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription of the U6 snRNA gene (SNR6) in Saccharomyces cerevisiae by RNA polymerase III (pol III) requires TFIIIC and its box A and B binding sites. In contrast, TFIIIC has little or no effect on SNR6 transcription with purified components in vitro due to direct recognition of the SNR6 TATA box by TFIIIB. When SNR6 was assembled into chromatin in vitro by use of the Drosophila melanogaster S-190 extract, transcription of these templates with highly purified yeast pol III, TFIIIC, and TFIIIB displayed a near-absolute requirement for TFIIIC but yielded a 5- to 15-fold-higher level of transcription relative to naked DNA (>100-fold activation over repressed chromatin). Analysis of chromatin structure demonstrated that TFIIIC binding leads to remodeling of U6 gene chromatin, resulting in positioning of a nucleosome between boxes A and B. The resulting folding of the intervening DNA into the nucleosome could bring the suboptimally spaced SNR6 box A and B elements into greater proximity and thus facilitate activation of transcription. In the absence of ATP, however, the binding of TFIIIC to box B in chromatin was not accompanied by remodeling and the transcription activation was approximately 35% of that seen in its presence, implying that both TFIIIC binding and ATP-dependent chromatin remodeling were required for the full activation of the gene. Our results suggest that TFIIIC, which is a basal transcription factor of pol III, also plays a direct role in remodeling chromatin on the SNR6 gene.
Collapse
Affiliation(s)
- Sushma Shivaswamy
- Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | | | | |
Collapse
|
25
|
Alexander DE, Kaczorowski DJ, Jackson-Fisher AJ, Lowery DM, Zanton SJ, Pugh BF. Inhibition of TATA binding protein dimerization by RNA polymerase III transcription initiation factor Brf1. J Biol Chem 2004; 279:32401-6. [PMID: 15190063 DOI: 10.1074/jbc.m405782200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Brf1 subunit of TFIIIB plays an important role in recruiting the TATA-binding protein (TBP) to the up-stream region of genes transcribed by RNA polymerase III. When TBP is not bound to promoters, it sequesters its DNA binding domain through dimerization. Promoter assembly factors therefore might be required to dissociate TBP into productively binding monomers. Here we show that Saccharomyces cerevisiae Brf1 induces TBP dimers to dissociate. The high affinity TBP binding domain of Brf1 is not sufficient to promote TBP dimer dissociation but in addition requires the TFIIB homology domain of Brf1. A model is proposed to explain how two distinct functional domains of Brf1 work in concert to dissociate TBP into monomers.
Collapse
Affiliation(s)
- Diane E Alexander
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moir RD, Willis IM. Tetratricopeptide repeats of Tfc4 and a limiting step in the assembly of the initiation factor TFIIIB. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:93-121. [PMID: 14969725 DOI: 10.1016/s0065-3233(04)67004-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
27
|
Zhao X, Herr W. Role of the inhibitory DNA-binding surface of human TATA-binding protein in recruitment of human TFIIB family members. Mol Cell Biol 2003; 23:8152-60. [PMID: 14585974 PMCID: PMC262358 DOI: 10.1128/mcb.23.22.8152-8160.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA box recognition by TATA-binding protein (TBP) is a key step in transcriptional initiation complex assembly on TATA-box-containing RNA polymerase (Pol) II and III promoters. This process is inhibited by the inhibitory DNA-binding (IDB) surface on the human TBP core domain (TBP(CORE)) and is stimulated by promoter-specific basal transcription factors, such as two human TFIIB family members, the Pol II factor TFIIB and the Pol III factor Brf2, which is required for transcription from TATA-box-containing Pol III promoters. In contrast, the third TFIIB family member, Brf1, which is required for transcription from TATA-less Pol III promoters, does not stimulate TBP binding to the TATA box. We show here that in addition to its role in regulating TBP binding to a TATA box, the TBP IDB surface is unexpectedly involved in TBP association with all three TFIIB family members. Interestingly, the loss of IDB function has specific and diverse effects on each TFIIB family member. Indeed, the IDB and prototypical TFIIB contact surfaces of TBP, which lie on opposite sides of the TBP(CORE), cooperate to form the wild-type TFIIB-TBP-TATA box complex. These results reveal how, through differential usage of opposite surfaces of the TBP(CORE), TBP can achieve versatility in the assembly of Pol II and Pol III promoter complexes with TFIIB family proteins.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
28
|
Schröder O, Bryant GO, Geiduschek EP, Berk AJ, Kassavetis GA. A common site on TBP for transcription by RNA polymerases II and III. EMBO J 2003; 22:5115-24. [PMID: 14517249 PMCID: PMC204460 DOI: 10.1093/emboj/cdg476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The TATA-binding protein (TBP) is involved in all nuclear transcription. We show that a common site on TBP is used for transcription initiation complex formation by RNA polymerases (pols) II and III. TBP, the transcription factor IIB (TFIIB)-related factor Brf1 and the pol III-specific factor Bdp1 constitute TFIIIB. A photochemical cross-linking approach was used to survey a collection of human TBP surface residue mutants for their ability to form TFIIIB-DNA complexes reliant on only the TFIIB-related part of Brf1. Mutations impairing complex formation and transcription were identified and mapped on the surface of TBP. The most severe effects were observed for mutations in the C-terminal stirrup of TBP, which is the principal site of interaction between TBP and TFIIB. Structural modeling of the Brf1-TBP complex and comparison with its TFIIB-TBP analog further rationalizes the close resemblance of the TBP interaction with the N-proximal part of Brf1 and TFIIB, and establishes the conserved usage of a TBP surface in pol II and pol III transcription for a conserved function in the initiation of transcription.
Collapse
Affiliation(s)
- Oliver Schröder
- Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | | | | | |
Collapse
|
29
|
Martinez MJ, Sprague KU. Cloning of a putative Bombyx mori TFIIB-related factor (BRF). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 54:55-67. [PMID: 14518004 DOI: 10.1002/arch.10120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To identify the protein domains responsible for its conserved and specialized functions, putative TFIIB-Related Factor (BRF) from the silkworm (Bombyx mori) was compared with BRFs from other organisms. The Bombyx BRF coding region was assembled from three separate and overlapping cDNA fragments. Fragments encoding the middle portion and the 3' end were discovered in the Bombyx mori Genome Project "Silkbase" collection through sequence homology with human BRF1, and the fragment encoding the N-terminus was isolated in our laboratory using the 5' RACE method. Southern analysis showed that silkworm BRF is encoded by a single-copy gene. Bombyx BRF contains the following domains that have been noted in all other BRFs, and that are likely, therefore, to provide highly conserved functions: a zinc finger domain, an imperfect repeat, three "BRF Homology" domains, and an acidic domain at the C-terminus. As expected from the evolutionary relationships among insects and mammals, Bombyx BRF is more similar overall to Drosophila BRF (55% identical) than to human BRF1 (42% identical). Detailed examination of individual domains reveals a remarkable exception, however. Domain II of Bombyx BRF is more similar to its human counterpart than to Drosophila Domain II. This result indicates that Domain II has undergone unusual divergence in Drosophila, and suggests a structural basis for Drosophila BRF's unique pattern of interaction with other transcription factors.
Collapse
Affiliation(s)
- M Juanita Martinez
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
30
|
Ishiguro A, Kassavetis GA. A gene-specific effect of an internal deletion in the Bdp1 subunit of the RNA polymerase III transcription initiation factor TFIIIB. FEBS Lett 2003; 548:33-6. [PMID: 12885403 DOI: 10.1016/s0014-5793(03)00724-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Saccharomyces cerevisiae RPR1 gene encodes the RNA subunit of its RNase P, which processes RNA polymerase (pol) III primary transcripts. RPR1, which is transcribed by pol III, has been isolated as a multicopy suppressor of a specific small internal deletion (amino acids 253-269) in the Bdp1 subunit of transcription factor TFIIIB, the core pol III transcription factor. The selective effect of this Bdp1 deletion on RPR1 transcription has been analyzed in vitro. It is shown that TFIIIC-dependent assembly of TFIIIB on the RPR1 promoter is specifically sensitive to this Bdp1 deletion, leading to gene-specifically defective single-round and multiple-round transcription.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
31
|
Huang Y, McGillicuddy E, Weindel M, Dong S, Maraia RJ. The fission yeast TFIIB-related factor limits RNA polymerase III to a TATA-dependent pathway of TBP recruitment. Nucleic Acids Res 2003; 31:2108-16. [PMID: 12682361 PMCID: PMC153730 DOI: 10.1093/nar/gkg301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA polymerase (pol) III-transcribed (e.g. tRNA and 5S rRNA) genes of traditionally studied organisms rely on gene-internal promoters that precisely position the initiation factor, TFIIIB, on the upstream promoter-less DNA. This is accomplished by the ability of the TFIIIB subunit, TFIIB-related factor (Brf1), to make stable protein-protein interactions with TATA-binding protein (TBP) and place it on the promoter-less upstream DNA. Unlike traditional model organisms, Schizosaccharomyces pombe tRNA and 5S rRNA genes contain upstream TATA promoters that are required to program functional pol III initiation complexes. In this study we demonstrate that S.pombe (Sp)Brf does not form stable interactions with TBP in the absence of DNA using approaches that do reveal stable association of TBP and S.cerevisiae (Sc)Brf1. Gel mobility analyses demonstrate that a TBP-TATA DNA complex can recruit SpBrf to a Pol III promoter. Consistent with this, overproduction of SpBrf in S.pombe increases the expression of a TATA-dependent, but not a TATA-less, suppressor tRNA gene. Since previous whole genome analysis also revealed TATA elements upstream of tRNA genes in Arabidopsis, this pathway may be more widespread than appreciated previously.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | |
Collapse
|
32
|
Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 2003; 422:534-9. [PMID: 12660736 DOI: 10.1038/nature01534] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 03/11/2003] [Indexed: 11/09/2022]
Abstract
Transcription factor IIIB (TFIIIB), consisting of the TATA-binding protein (TBP), TFIIB-related factor (Brf1) and Bdp1, is a central component in basal and regulated transcription by RNA polymerase III. TFIIIB recruits its polymerase to the promoter and subsequently has an essential role in the formation of the open initiation complex. The amino-terminal half of Brf1 shares a high degree of sequence similarity with the polymerase II general transcription factor TFIIB, but it is the carboxy-terminal half of Brf1 that contributes most of its binding affinity with TBP. The principal anchoring region is located between residues 435 and 545 of yeast Brf1, comprising its homology domain II. The same region also provides the primary interface for assembling Bdp1 into the TFIIIB complex. We report here a 2.95 A resolution crystal structure of the ternary complex containing Brf1 homology domain II, the conserved region of TBP and 19 base pairs of U6 promoter DNA. The structure reveals the core interface for assembly of TFIIIB and demonstrates how the loosely packed Brf1 domain achieves remarkable binding specificity with the convex and lateral surfaces of TBP.
Collapse
Affiliation(s)
- Z Sean Juo
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520-8114, USA.
| | | | | | | | | |
Collapse
|
33
|
Zhao X, Schramm L, Hernandez N, Herr W. A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members. Mol Cell 2003; 11:151-61. [PMID: 12535529 DOI: 10.1016/s1097-2765(02)00797-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TATA box binding protein TBP is highly conserved and the only known basal factor that is involved in transcription by all three eukaryotic nuclear RNA polymerases from promoters with or without a TATA box. By mutagenesis and analysis on a selected set of four model pol II and pol III TATA box-containing and TATA-less promoters, we demonstrate that human TBP utilizes two modes to achieve its versatile functions. First, it uses a different set of surfaces on the conserved and structured TBP core domain to direct transcription from each of the four model promoters. Second, unlike yeast TBP, human TBP can use a shared surface to interact with two different TFIIB family members--TFIIB and Brf2--to initiate transcription by different RNA polymerases.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
35
|
Moir RD, Puglia KV, Willis IM. A gain-of-function mutation in the second tetratricopeptide repeat of TFIIIC131 relieves autoinhibition of Brf1 binding. Mol Cell Biol 2002; 22:6131-41. [PMID: 12167707 PMCID: PMC134014 DOI: 10.1128/mcb.22.17.6131-6141.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC, TFIIIC131, and the TFIIB-related factor Brf1 represents a limiting step in the assembly of the RNA polymerase III (pol III) initiation factor TFIIIB. This assembly reaction is facilitated by dominant mutations that map in and around TPR2. Structural modeling of TPR1 to TPR3 from TFIIIC131 shows that one such mutation, PCF1-2, alters a residue in the ligand-binding groove of the TPR superhelix whereas another mutation, PCF1-1, changes a surface-accessible residue on the back side of the TPR superhelix. In this work, we show that the PCF1-1 mutation (H190Y) increases the binding affinity for Brf1, but does not affect the binding affinity for Bdp1, in the TFIIIC-dependent assembly of TFIIIB. Interestingly, binding studies with TFIIIC131 fragments indicate that Brf1 does not interact directly at the site of the PCF1-1 mutation. Rather, the data suggest that the mutation overcomes the previously documented autoinhibition of Brf1 binding. These findings together with the results from site-directed mutagenesis support the hypothesis that gain-of-function mutations at amino acid 190 in TPR2 stabilize an alternative conformation of TFIIIC131 that promotes its interaction with Brf1.
Collapse
MESH Headings
- Amino Acid Substitution
- DNA, Fungal/metabolism
- Genes, Dominant
- Ligands
- Macromolecular Substances
- Models, Molecular
- Mutation, Missense
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- RNA Polymerase III/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Repetitive Sequences, Amino Acid/physiology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII/chemistry
- Transcription Factors, TFIII/genetics
- Transcription Factors, TFIII/metabolism
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB. Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 2002; 277:25920-8. [PMID: 11994300 DOI: 10.1074/jbc.m202729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ty3 retrovirus-like element inserts preferentially at the transcription initiation sites of genes transcribed by RNA polymerase III. The requirements for transcription factor (TF) IIIC and TFIIIB in Ty3 integration into the two initiation sites of the U6 gene carried on pU6LboxB were previously examined. Ty3 integrates at low but detectable frequencies in the presence of TFIIIB subunits Brf1 and TATA-binding protein. Integration increases in the presence of the third subunit, Bdp1. TFIIIC is not essential, but the presence of TFIIIC specifies an orientation of TFIIIB for transcriptional initiation and directs integration to the U6 gene-proximal initiation site. In the current study, recombinant wild type TATA-binding protein, wild type and mutant Brf1, and Bdp1 proteins and highly purified TFIIIC were used to investigate the roles of specific protein domains in Ty3 integration. The amino-terminal half of Brf1, which contains a TFIIB-like repeat, contributed more strongly than the carboxyl-terminal half of Brf1 to Ty3 targeting. Each half of Bdp1 split at amino acid 352 enhanced integration. In the presence of TFIIIB and TFIIIC, the pattern of integration extended downstream by several base pairs compared with the pattern observed in vitro in the absence of TFIIIC and in vivo, suggesting that TFIIIC may not be present on genes targeted by Ty3 in vivo. Mutations in Bdp1 that affect its interaction with TFIIIC resulted in TFIIIC-independent patterns of Ty3 integration. Brf1 zinc ribbon and Bdp1 internal deletion mutants that are competent for polymerase III recruitment but defective in promoter opening were competent for Ty3 integration irrespective of the state of DNA supercoiling. These results extend the similarities between the TFIIIB domains required for transcription and Ty3 integration and also reveal requirements that are specific to transcription.
Collapse
Affiliation(s)
- Lynn Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
37
|
Ishiguro A, Kassavetis GA, Geiduschek EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 2002; 22:3264-75. [PMID: 11971960 PMCID: PMC133792 DOI: 10.1128/mcb.22.10.3264-3275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The essential Saccharomyces cerevisiae gene BDP1 encodes a subunit of RNA polymerase III (Pol III) transcription factor (TFIIIB); TATA box binding protein (TBP) and Brf1 are the other subunits of this three-protein complex. Deletion analysis defined three segments of Bdp1 that are essential for viability. A central segment, comprising amino acids 327 to 353, was found to be dispensable, and cells making Bdp1 that was split within this segment, at amino acid 352, are viable. Suppression of bdp1 conditional viability by overexpressing SPT15 and BRF1 identified functional interactions of specific Bdp1 segments with TBP and Brf1, respectively. A Bdp1 deletion near essential segment I was synthetically lethal with overexpression of PCF1-1, a dominant gain-of-function mutation in the second tetracopeptide repeat motif (out of 11) of the Tfc4 (tau(131)) subunit of TFIIIC. The analysis also identifies a connection between Bdp1 and posttranscriptional processing of Pol III transcripts. Yeast genomic library screening identified RPR1 as the specific overexpression suppressor of very slow growth at 37 degrees C due to deletion of Bdp1 amino acids 253 to 269. RPR1 RNA, a Pol III transcript, is the RNA subunit of RNase P, which trims pre-tRNA transcript 5' ends. Maturation of tRNA was found to be aberrant in bdp1-Delta 253-269 cells, and RPR1 transcription with the highly resolved Pol III transcription system in vitro was also diminished when recombinant Bdp1 Delta 253-269 replaced wild-type Bdp1. Physical interaction of RNase P with Bdp1 was demonstrated by coimmunoprecipitation and pull-down assays.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
38
|
Grove A, Adessa MS, Geiduschek E, Kassavetis GA. Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand. EMBO J 2002; 21:704-14. [PMID: 11847118 PMCID: PMC125851 DOI: 10.1093/emboj/21.4.704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/13/2001] [Accepted: 12/13/2001] [Indexed: 01/22/2023] Open
Abstract
The effects of breaks in the individual strands of an RNA polymerase III promoter on initiation of transcription have been examined. Single breaks have been introduced at 2 bp intervals in a 24 bp segment that spans the transcriptional start site of the U6 snRNA gene promoter. Their effects on transcription are asymmetrically distributed: transcribed (template) strand breaks downstream of bp-14 (relative to the normal start as +1) systematically shift the start site, evidently by disrupting the normal mechanism that measures distance from DNA-bound TBP. Breaks placed close to the normal start site very strongly inhibit transcription. Breaks in the non-transcribed strand generate only minor effects on transcription. A structure-based model interprets these observations and explains how the transcribed strand is used to locate the transcriptional start site.
Collapse
Affiliation(s)
- Anne Grove
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| | | | | | - George A. Kassavetis
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| |
Collapse
|
39
|
Moir RD, Puglia KV, Willis IM. Autoinhibition of TFIIIB70 binding by the tetratricopeptide repeat-containing subunit of TFIIIC. J Biol Chem 2002; 277:694-701. [PMID: 11684692 DOI: 10.1074/jbc.m108924200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in the assembly of RNA polymerase (pol) III transcription complexes on tRNA and 5 S genes is the interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC (TFIIIC131) and the TFIIB-related subunit of TFIIIB (TFIIIB70/Brf1). A fragment of TFIIIC131 that contains the hydrophilic amino terminus and two TPR arrays, with five and four repeats, respectively (Nt-TPR9), is sufficient to support an interaction with TFIIIB70. Here we evaluate the contribution of each TPR array to TFIIIB70 binding. Both TPR arrays bind independently to TFIIIB70 with TPR6-9 having a 4-fold higher apparent affinity than TPR1-5. However, the TPR arrays are not sufficient for a high affinity interaction with TFIIIB70. The addition of amino-terminal sequences increases the affinity of TPR1-5 18-fold to create a high affinity TFIIIB70 binding site (Nt-TPR5, 44 +/- 6 nm). Although the Nt-TPR5 and TPR6-9 fragments are contained entirely within the Nt-TPR9 fragment, the affinity of the latter is significantly lower than either of these smaller fragments. The results demonstrate that the TFIIIB70 binding sites in TFIIIC131 are subject to autoinhibition. We propose that the binding of TFIIIB70 to these sites within the TFIIIC complex may proceed in an ordered fashion.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
40
|
Hamada M, Huang Y, Lowe TM, Maraia RJ. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 2001; 21:6870-81. [PMID: 11564871 PMCID: PMC99864 DOI: 10.1128/mcb.21.20.6870-6881.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Conserved Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Genome, Fungal
- Immunoblotting
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/metabolism
- Schizosaccharomyces/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
41
|
Cloutier TE, Librizzi MD, Mollah AK, Brenowitz M, Willis IM. Kinetic trapping of DNA by transcription factor IIIB. Proc Natl Acad Sci U S A 2001; 98:9581-6. [PMID: 11481428 PMCID: PMC55495 DOI: 10.1073/pnas.161292298] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High levels of RNA polymerase III gene transcription are achieved by facilitated recycling of the polymerase on transcription factor IIIB (TFIIIB)-DNA complexes that are stable through multiple rounds of initiation. TFIIIB-DNA complexes in yeast comprise the TATA-binding protein (TBP), the TFIIB-related factor TFIIIB70, and TFIIIB90. The high stability of the TFIIIB-DNA complex is conferred by TFIIIB90 binding to TFIIIB70-TBP-DNA complexes. This stability is thought to result from compound bends introduced in the DNA by TBP and TFIIIB90 and by protein-protein interactions that obstruct DNA dissociation. Here we present biochemical evidence that the high stability of TFIIIB-DNA complexes results from kinetic trapping of the DNA. Thermodynamic analysis shows that the free energies of formation of TFIIIB70-TBP-DNA (DeltaG degrees = -12.10 +/- 0.12 kcal/mol) and TFIIIB-DNA (DeltaG degrees = -11.90 +/- 0.14 kcal/mol) complexes are equivalent whereas a kinetic analysis shows that the half-lives of these complexes (46 +/- 3 min and 95 +/- 6 min, respectively) differ significantly. The differential stability of these isoenergetic complexes demonstrates that TFIIIB90 binding energy is used to drive conformational changes and increase the barrier to complex dissociation.
Collapse
Affiliation(s)
- T E Cloutier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
42
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
44
|
Kassavetis GA, Letts GA, Geiduschek EP. The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening. EMBO J 2001; 20:2823-34. [PMID: 11387215 PMCID: PMC125488 DOI: 10.1093/emboj/20.11.2823] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Evidence for post-recruitment functions of yeast transcription factor (TF)IIIB in initiation of transcription was first provided by the properties of TFIIIB-RNA polymerase III-promoter complexes assembled with deletion mutants of its Brf and B" subunits that are transcriptionally inactive because they fail to open the promoter. The experiments presented here show that these defects can be repaired by unpairing short (3 or 5 bp) DNA segments spanning the transcription bubble of the open promoter complex. Analysis of this suppression phenomenon indicates that TFIIIB participates in two steps of promoter opening by RNA polymerase III that are comparable to the successive steps of promoter opening by bacterial RNA polymerase holoenzyme. B" deletions between amino acids 355 and 421 interfere with the initiating step of DNA strand separation at the upstream end of the transcription bubble. Removing an N-terminal domain of Brf interferes with downstream propagation of the transcription bubble to and beyond the transcriptional start site.
Collapse
Affiliation(s)
- G A Kassavetis
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
45
|
Donze D, Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 2001; 20:520-31. [PMID: 11157758 PMCID: PMC133458 DOI: 10.1093/emboj/20.3.520] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The chromosomes of eukaryotes are organized into structurally and functionally discrete domains. Several DNA elements have been identified that act to separate these chromatin domains. We report a detailed characterization of one of these elements, identifying it as a unique tRNA gene possessing the ability to block the spread of silent chromatin in Saccharomyces cerevisiae efficiently. Transcriptional potential of the tRNA gene is critical for barrier activity, as mutations in the tRNA promoter elements, or in extragenic loci that inhibit RNA polymerase III complex assembly, reduce barrier activity. Also, we have reconstituted the Drosophila gypsy element as a heterochromatin barrier in yeast, and have identified other yeast sequences, including the CHA1 upstream activating sequence, that function as barrier elements. Extragenic mutations in the acetyltransferase genes SAS2 and GCN5 also reduce tRNA barrier activity, and tethering of a GAL4/SAS2 fusion creates a robust barrier. We propose that silencing mediated by the Sir proteins competes with barrier element-associated chromatin remodeling activity.
Collapse
Affiliation(s)
| | - Rohinton T. Kamakaka
- Unit on Chromatin and Transcription, NICHD/NIH, Bldg 18T, Room 106, 18 Library Drive, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
46
|
Yieh L, Kassavetis G, Geiduschek EP, Sandmeyer SB. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem 2000; 275:29800-7. [PMID: 10882723 DOI: 10.1074/jbc.m003149200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ty3 integrates into the transcription initiation sites of genes transcribed by RNA polymerase III. It is known that transcription factors (TF) IIIB and IIIC are important for recruiting Ty3 to its sites of integration upstream of tRNA genes, but that RNA polymerase III is not required. In order to investigate the respective roles of TFIIIB and TFIIIC, we have developed an in vitro integration assay in which Ty3 is targeted to the U6 small nuclear RNA gene, SNR6. Because TFIIIB can bind to the TATA box upstream of the U6 gene through contacts mediated by TATA-binding protein (TBP), TFIIIC is dispensable for in vitro transcription. Thus, this system offers an opportunity to test the role of TFIIIB independent of a requirement of TFIIIC. We demonstrate that the recombinant Brf and TBP subunits of TFIIIB, which interact over the SNR6 TATA box, direct integration at the SNR6 transcription initiation site in the absence of detectable TFIIIC or TFIIIB subunit B". These findings suggest that the minimal requirements for pol III transcription and Ty3 integration are very similar.
Collapse
Affiliation(s)
- L Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
47
|
Moir RD, Puglia KV, Willis IM. Interactions between the tetratricopeptide repeat-containing transcription factor TFIIIC131 and its ligand, TFIIIB70. Evidence for a conformational change in the complex. J Biol Chem 2000; 275:26591-8. [PMID: 10859316 DOI: 10.1074/jbc.m003991200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the transcription of tRNA and 5 S genes by RNA polymerase III, recruitment of the transcription factor (TF)IIIB is mediated by the promoter-bound assembly factor TFIIIC. A critical limiting step in this process is the interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC (TFIIIC131) and the TFIIB-related factor Brf1p/TFIIIB70. To facilitate biochemical studies of this interaction, we expressed a fragment of TFIIIC131, TFIIIC131-(1-580), that includes the minimal TFIIIB70 interaction domain defined by two-hybrid studies together with adjacent sequences, up to the end of TPR9, implicated in the assembly reaction. TFIIIC131-(1-580) interacts with TFIIIB70 in solution and inhibits the formation of TFIIIB70.TFIIIC.DNA complexes. In a coupled equilibrium binding assay, the formation of TFIIIC131-(1-580).TFIIIB70 complexes was adequately described by a single-site binding model and yielded an apparent equilibrium dissociation constant of 334 +/- 23 nm. CD spectroscopy and limited proteolysis experiments defined a well structured and largely protease-resistant core in TFIIIC131-(1-580) comprising part of the hydrophilic amino terminus, TPR1-5, the intervening non-TPR region, and TPR6-8. CD spectra showed that trifluoroethanol induced significant alpha-helical structure in TFIIIC131-(1-580). A more modest monovalent ion-dependent CD difference was observed in mixtures of TFIIIC131-(1-580) and TFIIIB70, suggesting that formation of the binary complex may proceed with the acquisition of alpha-helicity.
Collapse
Affiliation(s)
- R D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
48
|
McCulloch V, Hardin P, Peng W, Ruppert JM, Lobo-Ruppert SM. Alternatively spliced hBRF variants function at different RNA polymerase III promoters. EMBO J 2000; 19:4134-43. [PMID: 10921893 PMCID: PMC306597 DOI: 10.1093/emboj/19.15.4134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, a single form of TFIIIB is required for transcription of all RNA polymerase III (pol III) genes. It consists of three subunits: the TATA box-binding protein (TBP), a TFIIB-related factor, BRF, and B". Human TFIIIB is not as well defined and human pol III promoters differ in their requirements for this activity. A human homolog of yeast BRF was shown to be required for transcription at the gene-internal 5S and VA1 promoters. Whether or not it was also involved in transcription from the gene-external human U6 promoter was unclear. We have isolated cDNAs encoding alternatively spliced forms of human BRF that can complex with TBP. Using immunopurified complexes containing the cloned hBRFs, we show that while hBRF1 functions at the 5S, VA1, 7SL and EBER2 promoters, a different variant, hBRF2, is required at the human U6 promoter. Thus, pol III utilizes different TFIIIB complexes at structurally distinct promoters.
Collapse
Affiliation(s)
- V McCulloch
- Department of Medical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
50
|
Ferri ML, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, Sentenac A. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol 2000; 20:488-95. [PMID: 10611227 PMCID: PMC85110 DOI: 10.1128/mcb.20.2.488-495.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated extinction caused a selective defect in transcription of class III genes in vivo. Two-hybrid and coimmunoprecipitation experiments indicated that C17 interacts with two Pol III subunits, one of which, C31, is important for the initiation reaction. C17 also interacted with TFIIIB70, the TFIIB-related component of TFIIIB. The interaction domain was found to be in the N-terminal, TFIIB-like half of TFIIIB70, downstream of the zinc ribbon and first imperfect repeat. Although Pol II similarly interacts with TFIIB, it is notable that C17 has no similarity to any Pol II subunit. The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex.
Collapse
Affiliation(s)
- M L Ferri
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|