1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024:1-43. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 2023; 69:289-300. [PMID: 37947853 PMCID: PMC10716077 DOI: 10.1007/s00294-023-01277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal β-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.
Collapse
Affiliation(s)
- Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Stefan Hintze
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Munich, Germany
| | - Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
3
|
Isogai M, Suzuki H, Maeda R, Tamura TA. Ubiquitin-proteasome-dependent degradation of TBP-like protein is prevented by direct binding of TFIIA. Genes Cells 2016; 21:1223-1232. [PMID: 27696626 DOI: 10.1111/gtc.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/28/2016] [Indexed: 11/27/2022]
Abstract
Although the majority of gene expression is driven by TATA-binding protein (TBP)-based transcription machinery, it has been reported that TBP-related factors (TRFs) are also involved in the regulation of gene expression. TBP-like protein (TLP), which is one of the TRFs and exhibits the highest affinity to TFIIA among known proteins, has recently been showed to have significant roles in gene regulation. However, how the level of TLP is maintained in vivo has remained unknown. In this study, we explored the mechanism by which TLP protein is turned over in vivo and the factor that maintains the amount of TLP. We showed that TLP is rapidly degraded by the ubiquitin-proteasome system and that tight interaction with TFIIA results in protection of TLP from ubiquitin-proteasome-dependent degradation. The half-life of TLP was shown to be less than a few hours, and the proteasome inhibitor MG132 specifically suppressed TLP degradation. Moreover, knockdown and over-expression experiments showed that TFIIA is engaged in stabilization of TLPin vivo. Thus, we showed a novel characteristic of TLP, that is, interaction with TFIIA is essential to suppress proteasome-dependent turnover of TLP, providing a further insight into TLP-governed gene regulation.
Collapse
Affiliation(s)
- Momoko Isogai
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| |
Collapse
|
4
|
Protein kinase CK2 holoenzyme promotes start-specific transcription in Saccharomyces cerevisiae. EUKARYOTIC CELL 2013; 12:1271-80. [PMID: 23873864 DOI: 10.1128/ec.00117-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the entrance into S phase requires the activation of a specific burst of transcription, which depends on SBF (SCB binding factor, Swi4/Swi6) and MBF (MCB binding factor, Mbp1/Swi6) complexes. CK2 is a pleiotropic kinase involved in several cellular processes, including the regulation of the cell cycle. CK2 is composed of two catalytic subunits (α and α') and two regulatory subunits (β and β'), both of which are required to form the active holoenzyme. Here we investigate the function of the CK2 holoenzyme in Start-specific transcription. The ckb1Δ ckb2Δ mutant strain, bearing deletions of both genes encoding CK2 regulatory subunits, shows a delay of S-phase entrance due to a severe reduction of the expression of SBF- and MBF-dependent genes. This transcriptional defect is caused by an impaired recruitment of Swi6 and Swi4 to G1 gene promoters. Moreover, CK2 α and β' subunits interact with RNA polymerase II, whose binding to G1 promoters is positively regulated by the CK2 holoenzyme. Collectively, these findings suggest a novel role for the CK2 holoenzyme in the activation of G1 transcription.
Collapse
|
5
|
High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nat Struct Mol Biol 2013; 20:1008-14. [PMID: 23851461 PMCID: PMC4972576 DOI: 10.1038/nsmb.2611] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/14/2013] [Indexed: 02/04/2023]
Abstract
The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 when bound to yeast TBP, together with mutational data. The yTAF1-TAND1, which in itself acts as a transcriptional activator, binds into the DNA-binding TBP concave surface by presenting similar anchor residues to TBP as E. coli Mot1 but from a distinct structural scaffold. Furthermore, we show how yTAF1-TAND2 employs an aromatic and acidic anchoring pattern to bind a conserved yTBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides compelling insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.
Collapse
|
6
|
Structural bioinformatics of the general transcription factor TFIID. Biochimie 2013; 95:680-91. [DOI: 10.1016/j.biochi.2012.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
7
|
Kasahara K, Ki S, Aoyama K, Takahashi H, Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 2008; 36:1343-57. [PMID: 18187511 PMCID: PMC2275077 DOI: 10.1093/nar/gkm1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Δhmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Δhmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1ΔTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Δhmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Δhmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
8
|
Mabuchi T, Wakamatsu T, Nakadai T, Shimada M, Yamada K, Matsuda Y, Tamura TA. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA. Gene 2007; 397:94-100. [PMID: 17544229 DOI: 10.1016/j.gene.2007.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/14/2007] [Accepted: 04/13/2007] [Indexed: 11/18/2022]
Abstract
Transcription factor IIA (TFIIA) is one of the general transcription factors for RNA polymerase II and composed of three subunits, TFIIAalpha, TFIIAbeta and TFIIAgamma. TFIIAalpha and TFIIAbeta are encoded by a single gene (TFIIAalphabeta) and mature through internal cleavage of TFIIAalphabeta. In this study, we found that structures of TFIIAalphabeta and TFIIAgamma are highly homologous with each mammalian counterpart. Exon-intron organizations of the human and chicken TFIIA genes were also homologous. The sequence of the cleavage region of the chicken TFIIAalphabeta precursor protein was fitted to the consensus cleavage recognition site. It was thus demonstrated that TFIIA is conserved in vertebrates. TFIIA proteins are present ubiquitously in chicken tissues. Fluorescent in situ hybridization revealed that TFIIAalphabeta and TFIIAgamma genes are located in chromosome 5 and a mini-chromosome, respectively. We generated semi-knockout chicken DT40 cells for TFIIAalphabeta and TFIIAgamma genes with high homologous recombination efficiencies, whereas we failed to establish double-knockout cells for each gene. It is thought that both genes for TFIIA are required in vertebrates. TFIIA siRNA resulted in deceleration of cell growth rate, suggesting that, consistent with those of knockout assays, TFIIA is associated with cell growth regulation.
Collapse
Affiliation(s)
- Tomoko Mabuchi
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Cabrejos ME, Allende CC, Maldonado E. Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery. J Cell Biochem 2005; 93:2-10. [PMID: 15352156 DOI: 10.1002/jcb.20209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have investigated the role of phosphorylation by vertebrate protein kinase CK2 on the activity of the General Transcription Factors TFIIA, TFIIE, TFIIF, and RNAPII. The largest subunits of TFIIA, TFIIE, and TFIIF were phosphorylated by CK2 holoenzyme. Also, RNA polymerase II was phosphorylated by CK2 in the 214,000 and 20,500 daltons subunits. Our results show that phosphorylation of TFIIA, TFIIF, and RNAPII increase the formation of complexes on the TATA box of the Ad-MLP promoter. Also, phosphorylation of TFIIF increases the formation of transcripts, where as phosphorylation of RNA polymerase II dramatically inhibits transcript formation. Furthermore, we demonstrate that CK2 beta directly interacts with RNA polymerase II, TFIIA, TFIIF, and TBP. These results strongly suggest that CK2 may play a role in regulating transcription of protein coding genes.
Collapse
Affiliation(s)
- María Eugenia Cabrejos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | | | | |
Collapse
|
10
|
Carrasco JL, Ancillo G, Mayda E, Vera P. A novel transcription factor involved in plant defense endowed with protein phosphatase activity. EMBO J 2003; 22:3376-84. [PMID: 12839999 PMCID: PMC165647 DOI: 10.1093/emboj/cdg323] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Revised: 05/12/2003] [Accepted: 05/13/2003] [Indexed: 11/15/2022] Open
Abstract
In plants, expression of a disease-resistance character following perception of a pathogen involves massive deployment of transcription-dependent defenses. Thus, if rapid and effective defense responses have to be achieved, it is crucial that the pathogenic signal is transduced and amplified through pre-existing signaling pathways. Reversible phosphorylation of specific transcription factors, by a concerted action of protein kinases and phosphatases, may represent a mechanism for rapid and flexible regulation of selective gene expression by environmental stimuli. Here we identified a novel DNA-binding protein from tobacco plants, designated DBP1, with protein phosphatase activity, which binds in a sequence-specific manner to a cis- acting element of a defense-related gene and participates in its transcriptional regulation. This finding helps delineate a terminal event in a signaling pathway for the selective activation of early transcription-dependent defense responses in plants, and suggests that stimulus-dependent reversible phosphorylation of regulatory proteins may occur directly in a transcription protein-DNA complex.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
11
|
Johannessen M, Olsen PA, Johansen B, Seternes OM, Moens U. Activation of the coactivator four-and-a-half-LIM-only protein FHL2 and the c-fos promoter through inhibition of protein phosphatase 2A. Biochem Pharmacol 2003; 65:1317-28. [PMID: 12694872 DOI: 10.1016/s0006-2952(03)00071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have demonstrated that the serine/threonine protein phosphatase 2A (PP2A) can modulate the transcriptional activity of several sequence-specific DNA-binding proteins. However, less is known about the effect of PP2A on the activities of general transcription factors and transcriptional coregulators. Here we describe that the activity of a general coactivator, the four-and-a-half-LIM-only protein 2 (FHL2), is regulated in a PP2A-dependent manner. Specific inhibition of PP2A by simian virus 40 (SV40) small t-antigen (st-ag) stimulated the intrinsic transcriptional activity of FHL2 more than 10-fold, while a st-ag mutant unable to bind PP2A had no effect. Overexpression of the B56 subunits alpha, beta, and gamma1 of PP2A impaired the induction of FHL2 by st-ag. FHL2 functioned as a coactivator for CREB-mediated transcription, and inactivation of PP2A further increased FHL2-induced CREB-directed transcription. Overexpression of FHL2 readily enhanced the transcription of the luciferase reporter gene driven by the c-fos promoter, and inhibition of PP2A further stimulated FHL2-induced transactivation of this promoter. These results suggest that dephosphorylation of the general coactivator FHL2 may represent a novel mechanism by which PP2A modulates the transcription of FHL2-responsive genes.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
12
|
Rings EH, Boudreau F, Taylor JK, Moffett J, Suh ER, Traber PG. Phosphorylation of the serine 60 residue within the Cdx2 activation domain mediates its transactivation capacity. Gastroenterology 2001; 121:1437-50. [PMID: 11729123 DOI: 10.1053/gast.2001.29618] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cdx2 is critical in intestinal proliferation and differentiation. Modulation of Cdx2 function in response to cellular signaling is to be elucidated. We hypothesize that phosphorylation of the Cdx2 activation domain can modulate its function. METHODS The Cdx2 activation domain was delineated in transient transfections using different portions of Cdx2 fused to the Gal4-DNA binding domain. In vivo phosphorylation was studied by metabolic labeling with (32)P-orthophosphate. To study a potential phosphorylation site, polyclonal antibodies were generated: CNL was raised against amino acids 54-66 of Cdx2 and P-Cdx2-S60 against the same epitope in which serine 60 was phosphorylated. RESULTS A critical region for transactivation resides within amino acids 60-70. Substitution of serine 60 with alanine reduces incorporation of (32)P-orthophosphate substantially. S60-phosphorylation decreases Cdx2 transactivation. Phosphorylation of serine 60 can be inhibited with the mitogen-activated protein kinase inhibitors PD98059 or UO126. P-Cdx2-S60 recognizes phosphorylated serine 60 mainly in proliferative compartment of the intestinal epithelial layer. In contrast, CNL recognizes Cdx2 predominantly in the differentiated compartment. CONCLUSIONS The Cdx2 activation domain is phosphorylated at serine 60 via the mitogen-activated protein kinase pathway. S60-phosphorylated and S60-nonphosphorylated Cdx2 have different transcriptional activity, as well as different spatial expression patterns in the intestinal epithelium.
Collapse
Affiliation(s)
- E H Rings
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 2001; 276:15886-92. [PMID: 11278496 DOI: 10.1074/jbc.m009385200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
Collapse
Affiliation(s)
- S Solow
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
14
|
Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex. EMBO J 2000; 19:282-94. [PMID: 10637232 PMCID: PMC305562 DOI: 10.1093/emboj/19.2.282] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1999] [Revised: 11/08/1999] [Accepted: 11/11/1999] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae SCF(Met30) ubiquitin-protein ligase controls cell cycle function and sulfur amino acid metabolism. We report here that the SCF(Met30 )complex mediates the transcriptional repression of the MET gene network by triggering degradation of the transcriptional activator Met4p when intracellular S-adenosylmethionine (AdoMet) increases. This AdoMet-induced Met4p degradation is dependent upon the 26S proteasome function. Unlike Met4p, the other components of the specific transcriptional activation complexes that are assembled upstream of the MET genes do not appear to be regulated at the protein level. We provide evidence that the interaction between Met4p and the F-box protein Met30p occurs irrespective of the level of intracellular AdoMet, suggesting that the timing of Met4p degradation is not controlled by its interaction with the SCF(Met30) complex. We also demonstrate that Met30p is a short-lived protein, which localizes within the nucleus. Furthermore, transcription of the MET30 gene is regulated by intracellular AdoMet levels and is dependent upon the Met4p transcription activation function. Thus Met4p appears to control its own degradation by regulating the amount of assembled SCF(Met30) ubiquitin ligase.
Collapse
Affiliation(s)
- A Rouillon
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
Phosphorylation appears to be one mechanism in the regulation of transcription. Indeed, a multitude of factors involved in distinct steps of transcription, including RNA polymerase II, the general transcription factors, pre-mRNA processing factors, and transcription activators/repressors are phosphoproteins and serve as substrates for multiple kinases. Among these substrates, most attention has been paid in recent years to the phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II and its role in transcription regulation. Kinases responsible for such CTD phosphorylation that are associated with RNA polymerase II at distinct steps of transcription, such as cdk7 and cdk8, also phosphorylate some other components of the transcription machinery in a regulatory manner. These observations enlighten the pivotal role of such kinases in an entangled regulation of transcription by phosphorylation. Summarizing the phosphorylation of various components of the transcription machinery, we point out the variety of steps in transcription that are regulated by such protein modifications, envisioning an interconnection of the several stages of mRNA synthesis by phosphorylation.
Collapse
Affiliation(s)
- Thilo Riedl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
- Address correspondence to Jean Marc Egly, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 ILLKIRCH Cedex, France. Tel: (33) 3 88 65 34 47; Fax: (33) 3 88 65 32 01; E-mail:
| |
Collapse
|
16
|
Liu Q, Gabriel SE, Roinick KL, Ward RD, Arndt KM. Analysis of TFIIA function In vivo: evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol Cell Biol 1999; 19:8673-85. [PMID: 10567590 PMCID: PMC85009 DOI: 10.1128/mcb.19.12.8673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|