1
|
Wang JL, Zhong ZQ, He YZ, Tian JH, Wang YF, Raikhel AS. The ecdysone-induced bZIP transcription factor MafB establishes a positive feedback loop to enhance vitellogenesis and reproduction in the Aedes aegypti mosquito. Proc Natl Acad Sci U S A 2025; 122:e2411688122. [PMID: 39792288 PMCID: PMC11745349 DOI: 10.1073/pnas.2411688122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood. We found that the expression of Aedes aegypti muscle aponeurosis fibromatosis B (AaMafB), coding for a basic leucine zipper (bZIP) transcription factor, was significantly up-regulated after a blood meal. The 20E-bound ecdysone receptor-ultraspiracle heterodimer directly targeted the ecdysone response element in the promoter of AaMafB, activating its transcription. Coimmunoprecipitation assays illustrated the interaction between AaMafB and Cap "n" collar C (AaCncC), another bZIP transcription factor. RNA interference-mediated depletion of AaMafB or AaCncC led to impaired ovarian growth, decreased expression of AaVg and Halloween genes, and reduced 20E levels. The AaMafB-AaCncC heterodimer directly activated the transcription of AaVg and AaShade by targeting the antioxidant response element in their promoters. Together, our results indicate that AaMafB functions as an early 20E response gene, the product of which heterodimerizes with AaCncC to maintain high 20E levels and facilitates activation of AaVg in mosquitoes after a blood meal.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
| | - Zi-Qian Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
- College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan430022, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genomic Biology, University of California, Riverside, CA92521
| |
Collapse
|
2
|
Lin L, Li H, Zheng Q, Hu J, Wu W. Research Progress on the Regulation of Autophagy and Apoptosis in Insects by Sterol Hormone 20-Hydroxyecdysone. INSECTS 2023; 14:871. [PMID: 37999070 PMCID: PMC10672190 DOI: 10.3390/insects14110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
20E (20-Hydroxyecdysone) is a central steroid hormone that orchestrates developmental changes and metamorphosis in arthropods. While its molecular mechanisms have been recognized for some time, detailed elucidation has primarily emerged in the past decade. PCD (Programmed cell death), including apoptosis, necrosis, efferocytosis, pyroptosis, ferroptosis, and autophagy, plays a crucial role in regulated cell elimination, which is vital for cells' development and tissue homeostasis. This review summarizes recent findings on 20E signaling regulated autophagy and apoptosis in insects, including Drosophila melanogaster, Bombyx mori, Helicoverpa armigera, and other species. Firstly, we comprehensively explore the biosynthesis of the sterol hormone 20E and its subsequent signal transduction in various species. Then, we focus on the involvement of 20E in regulating autophagy and apoptosis, elucidating its roles in both developmental contexts and bacterial infection scenarios. Furthermore, our discussion unfolds as a panoramic exposition, where we delve into the fundamental questions with our findings, anchoring them within the grander scheme of our study in insects. Deepening the understanding of 20E-autophagy/apoptosis axis not only underscores the intricate tapestry of endocrine networks, but also offers fresh perspectives on the adaptive mechanisms that have evolved in the face of environmental challenges.
Collapse
Affiliation(s)
- Luobin Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| | - Huaqin Li
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou 510520, China;
| | - Qinzhou Zheng
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Wenmei Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.L.); (Q.Z.)
| |
Collapse
|
3
|
Knittel LM, Swanson TL, Lee HJ, Copenhaver PF. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta. Dev Biol 2023; 499:31-46. [PMID: 37121309 PMCID: PMC10247491 DOI: 10.1016/j.ydbio.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Hun Joo Lee
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Gu J, Ye Y, Zheng ZW, Luo W, Gong YJ, Feng QL, Li S, Huang LH. Cytoplasmic Hsp70s promote EcR transport into the nucleus by responding to various stimuli. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103964. [PMID: 37230333 DOI: 10.1016/j.ibmb.2023.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Metamorphosis is one of the most important physiological processes in insects, which is coordinated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Ecdysone receptor (EcR) is a steroid receptor (SR), which usually presents in cytoplasm and transfers into nucleus after binding to 20E. Heat shock proteins (Hsps) are suggested to be important members of the SR complex. However, their role in nucleocytoplasmic shuttle of the EcR remains unclear. In the present study, we found that apoptozole (Hsp70 inhibitor) suppressed the larval molting by decreasing the expression of ecdysone signaling genes. Two cytoplasmic (Cy) Hsp70s (Hsp72 and Hsp73) interacted with both EcR and ultraspiracle (USP, the heterodimer partner of EcR). By immunohistochemistry experiments, we revealed that CyHsp70 co-localized with EcR in the cytoplasm, and that both apoptozole and interfering of CyHsp70 significantly inhibited the process of EcR entering the nucleus under 20E induction, while reducing the expression of ecdysone signaling genes. Interestingly, the nuclear localization of EcR was also promoted by two other stimuli, including JH and heat stress, and this promotion was inhibited by apoptozole. This implies that various stimuli can induce EcR entry into the nucleus, and that this process is mediated by CyHsp70. Curiously, neither JH nor heat stress activated the ecdysone signaling genes; instead, they have a significant inhibitory effect on them. Taken together, it seems that Cytoplasmic Hsp70s promote EcR transport into the nucleus by responding to various stimuli, and that the biological effects of various stimuli passing through the EcR are different. Thus, our data provide a new viewpoint to understand the mechanism of nucleocytoplasmic shuttle of EcR.
Collapse
Affiliation(s)
- Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yan Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zi-Wen Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yan-Jun Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qi-Li Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Du J, Zhao P, Wang J, Ma S, Yao L, Zhu X, Yang X, Zhang X, Sun Z, Liang S, Xing D, Duan J. Pupal Diapause Termination and Transcriptional Response of Antheraea pernyi (Lepidoptera: Saturniidae) Triggered by 20-Hydroxyecdysone. Front Physiol 2022; 13:888643. [PMID: 35721532 PMCID: PMC9204484 DOI: 10.3389/fphys.2022.888643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
The pupal diapause of univoltine Antheraea pernyi hampers sericultural and biotechnological applications, which requires a high eclosion incidence after artificial diapause termination to ensure production of enough eggs. The effect of pupal diapause termination using 20-hydroxyecdysone (20E) on the eclosion incidence has not been well-documented in A. pernyi. Here, the dosage of injected 20E was optimized to efficiently terminate pupal diapause of A. pernyi, showing that inappropriate dosage of 20E can cause pupal lethality and a low eclosion incidence. The optimal ratio of 20E to 1-month-old pupae was determined as 6 μg/g. Morphological changes showed visible tissue dissociation at 3 days post-injection (dpi) and eye pigmentation at 5 dpi. Comprehensive transcriptome analysis identified 1,355/1,592, 494/203, 584/297, and 1,238/1,404 upregulated and downregulated genes at 1, 3, 6, and 9 dpi, respectively. The 117 genes enriched in the information processing pathways of “signal transduction” and “signaling molecules and interaction” were upregulated at 1 and 3 dpi, including the genes involved in FOXO signaling pathway. One chitinase, three trehalase, and five cathepsin genes related to energy metabolism and tissue dissociation showed high expression levels at the early stage, which were different from the upregulated expression of four other chitinase genes at the later stage. Simultaneously, the expression of several genes involved in molting hormone biosynthesis was also activated between 1 and 3 dpi. qRT-PCR further verified the expression patterns of two ecdysone receptor genes (EcRB1 and USP) and four downstream response genes (E93, Br-C, βFTZ-F1, and cathepsin L) at the pupal and pharate stages, respectively. Taken together, these genes serve as a resource for unraveling the mechanism underlying pupal-adult transition; these findings facilitate rearing of larvae more than once a year and biotechnological development through efficient termination of pupal diapause in A. pernyi in approximately half a month.
Collapse
Affiliation(s)
- Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jiazhen Wang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Xuwei Zhu
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Zhenbo Sun
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
6
|
Wang GJ, Wang WW, Liu Y, Chai LQ, Wang GX, Liu XS, Wang YF, Wang JL. Steroid hormone 20-hydroxyecdysone promotes CTL1-mediated cellular immunity in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1399-1413. [PMID: 32677271 DOI: 10.1111/1744-7917.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Mermithid nematodes, such as Ovomermis sinensis, are used as biological control agents against many insect pests, including cotton bollworm (Helicoverpa armigera). However, given the host's robust immune system, the infection rate of O. sinensis is low, thus restricting its widespread use. To understand the host defense mechanisms against mermithid nematodes, we identified and characterized a protein involved in the recognition of O. sinensis, the potential O. sinensis-binding protein C-type lectin 1 (HaCTL1a and/or HaCTL1b), which was eluted from the surface of O. sinensis after incubation with H. armigera plasma. HaCTL1b is homologous to the previously reported HaCTL1a protein. HaCTL1 was predominantly expressed in hemocytes and was induced by the steroid hormone 20-hydroxyecdysone through ecdysone receptor (HaEcR) or ultraspiracle (HaUSP), or both. Binding assays confirmed the interactions of the HaCTL1 proteins with O. sinensis but not with Romanomermis wuchangensis, a parasitic nematode of mosquito. Moreover, the HaCTL1 proteins were secreted into the hemocoel and promoted hemocyte-mediated encapsulation and phagocytosis. A knockdown of HaEcR and/or HaUSP resulted in compromised encapsulation and phagocytosis. Thus, HaCTL1 appears to modulate cellular immunity in the defense against parasitic nematodes, and the 20-hydroxyecdysone-HaEcR-HaUSP complex is involved in regulating the process.
Collapse
Affiliation(s)
- Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
7
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Chen CH, Di YQ, Shen QY, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone induces phosphorylation and aggregation of stromal interacting molecule 1 for store-operated calcium entry. J Biol Chem 2019; 294:14922-14936. [PMID: 31413111 DOI: 10.1074/jbc.ra119.008484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Oligomerization of stromal interacting molecule 1 (STIM1) promotes store-operated calcium entry (SOCE); however, the mechanism of STIM1 aggregation is unclear. Here, using the lepidopteran insect and agricultural pest cotton bollworm (Helicoverpa armigera) as a model and immunoblotting, RT-qPCR, RNA interference (RNAi), and ChIP assays, we found that the steroid hormone 20-hydroxyecdysone (20E) up-regulates STIM1 expression via G protein-coupled receptors (GPCRs) and the 20E nuclear receptor (EcRB1). We also identified an ecdysone-response element (EcRE) in the 5'-upstream region of the STIM1 gene and also noted that STIM1 is located in the larval midgut during metamorphosis. STIM1 knockdown in larvae delayed pupation time, prevented midgut remodeling, and decreased 20E-induced gene transcription. STIM1 knockdown in a H. armigera epidermal cell line, HaEpi, repressed 20E-induced calcium ion influx and apoptosis. Moreover, 20E-induced STIM1 clustering to puncta and translocation toward the cell membrane. Inhibitors of GPCRs, phospholipase C (PLC), and inositol trisphosphate receptor (IP3R) repressed 20E-induced STIM1 phosphorylation, and we found that two GPCRs are involved in 20E-induced STIM1 phosphorylation. 20E-induced STIM1 phosphorylation on Ser-485 through protein kinase C (PKC), and we observed that Ser-485 phosphorylation is critical for STIM1 clustering, interaction with calcium release-activated calcium channel modulator 1 (Orai1), calcium ion influx, and 20E-induced apoptosis. These results suggest that 20E up-regulates STIM1 phosphorylation for aggregation via GPCRs, followed by interaction with Orai1 to induce SOCE, thereby promoting apoptosis in the midgut during insect metamorphosis.
Collapse
Affiliation(s)
- Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.,Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Qin-Yong Shen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Kang XL, Zhang JY, Wang D, Zhao YM, Han XL, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet 2019; 15:e1008331. [PMID: 31412019 PMCID: PMC6693746 DOI: 10.1371/journal.pgen.1008331] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Holometabolous insects stop feeding at the final larval instar stage and then undergo metamorphosis; however, the mechanism is unclear. In the present study, using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20-hydroxyecdysone (20E) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor, to stop larval feeding and promote pupation. DopEcR was expressed in various tissues and its level increased during metamorphic molting under 20E regulation. The 20E titer was low during larval feeding stages and high during wandering stages. By contrast, the dopamine (DA) titer was high during larval feeding stages and low during the wandering stages. Injection of 20E or blocking dopamine receptors using the inhibitor flupentixol decreased larval food consumption and body weight. Knockdown of DopEcR repressed larval feeding, growth, and pupation. 20E, via DopEcR, promoted apoptosis; and DA, via DopEcR, induced cell proliferation. 20E opposed DA function by repressing DA-induced cell proliferation and AKT phosphorylation. 20E, via DopEcR, induced gene expression and a rapid increase in intracellular calcium ions and cAMP. 20E induced the interaction of DopEcR with G proteins αs and αq. 20E, via DopEcR, induced protein phosphorylation and binding of the EcRB1-USP1 transcription complex to the ecdysone response element. DopEcR could bind 20E inside the cell membrane or after being isolated from the cell membrane. Mutation of DopEcR decreased 20E binding levels and related cellular responses. 20E competed with DA to bind to DopEcR. The results of the present study suggested that 20E, via binding to DopEcR, arrests larval feeding and promotes pupation. The steroid hormone 20-hydroxyecdysone (20E) represses insect larval feeding and promotes metamorphosis; however, the mechanism is unclear. The dopamine receptor plays important roles in animal motor function and reward-motivated behavior. Using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20E binds to DopEcR to block the dopamine pathway and initiates the 20E pathway. Dopamine (DA) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor (GPCR), to regulate cell proliferation, larval feeding, and growth. However, 20E competes with DA to bind to DopEcR, which represses larval feeding and triggers the 20E-pathway, leading to metamorphosis. The results suggested that 20E, via binding to DopEcR, stops larval feeding and promotes pupation, which presented an example of the steroid hormone regulating dopamine receptor and behavior. Our study showed that GPCRs can bind 20E and function as 20E cell membrane receptors.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Jun-Ying Zhang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Di Wang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Xiao-Lin Han
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
10
|
Pan J, Di YQ, Li YB, Chen CH, Wang JX, Zhao XF. Insulin and 20-hydroxyecdysone oppose each other in the regulation of phosphoinositide-dependent kinase-1 expression during insect pupation. J Biol Chem 2018; 293:18613-18623. [PMID: 30305395 DOI: 10.1074/jbc.ra118.004891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin promotes larval growth of insects by stimulating the synthesis of the steroid hormone 20-hydroxyecdysone (20E), which induces pupation and apoptosis. However, the mechanism underlying the coordinate regulation of insect pupation and apoptosis by these two functionally opposing hormones is still unclear. Here, using the lepidopteran insect and serious agricultural pest Helicoverpa armigera (cotton bollworm) as a model, we report that phosphoinositide-dependent kinase-1 (PDK1) and forkhead box O (FoxO) play key roles in these processes. We found that the transcript levels of the PDK1 gene are increased during the larval feeding stages. Moreover, PDK1 expression was increased by insulin, but repressed by 20E. dsRNA-mediated PDK1 knockdown in the H. armigera larvae delayed pupation and resulted in small pupae and also decreased Akt/protein kinase B expression and increased FoxO expression. Furthermore, the PDK1 knockdown blocked midgut remodeling and decreased 20E levels in the larvae. Of note, injecting larvae with 20E overcame the effect of the PDK1 knockdown and restored midgut remodeling. FoxO overexpression in an H. armigera epidermal cell line (HaEpi) did not induce apoptosis, but promoted autophagy and repressed cell proliferation. These results reveal cross-talk between insulin and 20E and that both hormones oppose each other's activities in the regulation of insect pupation and apoptosis by controlling PDK1 expression and, in turn, FoxO expression. We conclude that sufficiently high 20E levels are a key factor for inducing apoptosis during insect pupation.
Collapse
Affiliation(s)
- Jing Pan
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Qin Di
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
11
|
Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros VID, Zhang Q, Liu X. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 2018; 27:459-475. [PMID: 29219212 DOI: 10.1111/mec.14457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Baculoviruses manipulate host climbing behaviour to ensure that the hosts die at elevated positions on host plants to facilitate virus proliferation and transmission, which is a process referred to as tree-top disease. However, the detailed molecular mechanism underlying tree-top disease has not been elucidated. Using transcriptome analysis, we showed that two hormone signals, juvenile hormone (JH) and 20-hydroxyecdysone (20E), are key components involved in HaSNPV-induced tree-top disease in Helicoverpa armigera larvae. RNAi-mediated knockdown and exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced tree-top disease, while JH mediates tree-top disease behaviour. Knockdown of BrZ2, a downstream signal of JH and 20E, promoted HaSNPV-induced tree-top disease. We also found that two miRNAs target BrZ2 and are involved in the cross-talk regulation between 20E and JH manipulating HaSNPV replication, time to death and HaSNPV-induced tree-top disease.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
13
|
Goncu E, Uranlı R, Selek G, Parlak O. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew061. [PMID: 27620558 PMCID: PMC5019025 DOI: 10.1093/jisesa/iew061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors.
Collapse
Affiliation(s)
- Ebru Goncu
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; ),
| | - Ramazan Uranlı
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Gozde Selek
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Osman Parlak
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| |
Collapse
|
14
|
Pupal diapause termination in Bactrocera minax: an insight on 20-hydroxyecdysone induced phenotypic and genotypic expressions. Sci Rep 2016; 6:27440. [PMID: 27273028 PMCID: PMC4897610 DOI: 10.1038/srep27440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/17/2016] [Indexed: 11/08/2022] Open
Abstract
The Chinese citrus fruit fly, Bactrocera minax, is an economically important pest of citrus. It exhibits pupal diapause from November to May to combat harsh environmental conditions. Such a long pupal diapause is a barrier for laboratory rearing and development of control strategies against this pest. In the present study, 20-hydroxyecdysone (20E) was used to break pupal diapause of B. minax by topical application. After diapause termination by 20E treated, the pupal ontogenetic processes were observed along the temporal trajectory. The pupal response time to 20E was estimated by detecting the relative expression of 20E responsive genes at different times after 20E-treatment. Results revealed that 20E could effectively terminate the pupal diapause in a dose-dependent manner and significantly shorten the time for 50% adult emergence (Et50). 20E response genes, including ecr, broad and foxo, were up-regulated within 72h, indicating these genes are involved in pupal metamorphosis and diapause termination processes. Morphological changes showed the pupal metamorphosis began ~7 days after 20E-treatment at 22 °C. This study does not only pave the way for artificial rearing in the laboratory through manipulating of pupal diapause termination, but also deepens our understanding of the underlying pupal diapause termination mechanism of B. minax.
Collapse
|
15
|
Jing YP, Wang D, Han XL, Dong DJ, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Enhances Gene Transcription through the cAMP Response Element-binding Protein (CREB) Signaling Pathway. J Biol Chem 2016; 291:12771-12785. [PMID: 27129227 DOI: 10.1074/jbc.m115.706028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
Animal steroid hormones regulate gene transcription through genomic pathways by binding to nuclear receptors. These steroid hormones also rapidly increase intracellular calcium and cyclic adenosine monophosphate (cAMP) levels and activate the protein kinase C (PKC) and protein kinase A (PKA) nongenomic pathways. However, the function and mechanism of the nongenomic pathways of the steroid hormones are unclear, and the relationship between the PKC and PKA pathways is also unclear. We propose that the steroid hormone 20-hydroxyecdysone (20E) activates the PKA pathway to enhance 20E-induced gene transcription in the lepidopteran insect Helicoverpa armigera The expression of the catalytic subunit 1 of PKA (PKAC1) increased during metamorphosis, and PKAC1 knockdown blocked pupation and repressed 20E-responsive gene expression. 20E regulated PKAC1 phosphorylation at threonine 200 and nuclear translocation through an ecdysone-responsive G-protein-coupled receptor 2. PKAC1 induced cAMP response element-binding protein (CREB) phosphorylation at serine 143, which bound to the cAMP response element on DNA to enhance 20E-responsive gene transcription. Through ecdysone-responsive G-protein-coupled receptor 2, 20E increased cAMP levels, which induced CREB PKA phosphorylation and 20E-responsive gene expression. This study demonstrates that the PKA/CREB pathway tightly and critically regulates 20E-induced gene transcription as well as its relationship with the 20E-induced PKC pathway.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Lin Han
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Du-Juan Dong
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
16
|
Cao J, Liu Y, Yang Y, Zhang H, Li Z, Yang Q, Zhang S, Zhang Q, Liu X. Molecular characterization and functional analysis of the ultraspiracle (USP) in the oriental fruit moth Grapholita molesta (Lepidoptera: Olethreutidae). Comp Biochem Physiol B Biochem Mol Biol 2015; 190:54-62. [DOI: 10.1016/j.cbpb.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
|
17
|
Wang D, Zhao WL, Cai MJ, Wang JX, Zhao XF. G-protein-coupled receptor controls steroid hormone signaling in cell membrane. Sci Rep 2015; 5:8675. [PMID: 25728569 DOI: 10.1038/srep08675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamorphosis. ErGPCR-2 was located in the cell surface and was internalized by 20E induction. GPCR kinase 2 participated in 20E-induced ErGPCR-2 phosphorylation and internalization. The internalized ErGPCR-2 was degraded by proteases to desensitize 20E signaling. ErGPCR-2 knockdown suppressed the entrance of 20E analog [(3)H] ponasterone A ([(3)H]Pon A) into the cells. ErGPCR-2 overexpression or blocking of ErGPCR-2 internalization increased the entrance of [(3)H]Pon A into the cells. However, ErGPCR-2 did not bind to [(3)H]Pon A. Results suggest that ErGPCR-2 transmits steroid hormone 20E signaling and controls 20E entrance into cells in the cell membrane.
Collapse
Affiliation(s)
- Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen-Li Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Jing YP, Liu W, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca2+/calmodulin-dependent protein kinase II to regulate gene expression. J Biol Chem 2015; 290:8469-81. [PMID: 25670853 DOI: 10.1074/jbc.m114.622696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) triggers calcium signaling pathway to regulate 20E response gene expression, but the mechanism underlying this process remains unclear. We propose that the 20E-induced phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) serves an important function in 20E response gene transcription in the lepidopteran insect Helicoverpa armigera. CaMKII showed increased expression and phosphorylation during metamorphosis. 20E elevated CaMKII phosphorylation. However, the G protein-coupled receptor (GPCR) and ryanodine receptor inhibitor suramin, the phospholipase C inhibitor U73122, and the inositol 1,4,5-triphosphate receptor inhibitor xestospongin C suppressed 20E-induced CaMKII phosphorylation. Two ecdysone-responsible GPCRs and Gαq protein were involved in 20E-induced CaMKII phosphorylation by RNA interference analysis. 20E regulated CaMKII threonine phosphorylation at amino acid 290, thereby inducing CaMKII nuclear translocation. CaMKII knockdown by dsCaMKII injection into the larvae prevented the occurrence of larval-pupal transition and suppressed 20E response gene expression. CaMKII phosphorylation and nuclear translocation maintained USP1 lysine acetylation at amino acid 303 by inducing histone deacetylase 3 phosphorylation and nuclear export. The lysine acetylation of USP1 was necessary for the interaction of USP1 with EcRB1 and their binding to the ecdysone response element. Results suggest that 20E (via GPCR activation and calcium signaling) activates CaMKII phosphorylation and nuclear translocation, which regulate USP1 lysine acetylation to form an EcRB1-USP1 complex for 20E response gene transcription.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Huang LX, Gong YJ, Gu J, Zeng BJ, Huang LH, Feng QL. Expression, subcellular localization and protein-protein interaction of four isoforms of EcR/USP in the common cutworm. INSECT SCIENCE 2015; 22:95-105. [PMID: 24395766 DOI: 10.1111/1744-7917.12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Ecdysone receptor (EcR) and ultraspiracle (USP) form heterodimers to mediate ecdysteroid signaling during molting and metamorphosis. Various EcR/USP heterodimers have been reported. However, it is unclear what kind of EcR/USP combination is adopted by lepidopteran insects during the larval-pupal metamorphosis and whether the EcR/USP heterodimer varies among different tissues. To address these questions, two isoforms of each EcR and USP were cloned from the common cutworm, their messenger RNA expression patterns were examined by real-time quantitative polymerase chain reaction in different tissues during the larval-pupal metamorphosis and in the midgut in response to hormonal induction. Furthermore, their subcellular localization and protein-protein interaction were explored by transient expression and far-western blotting, respectively. All the four genes were significantly up-regulated in prepuae and/or pupae. The expression profiles of EcRB1 and USP1 were nearly identical to each other in the epidermis, fat body and midgut, and a similar situation also applied to EcRA and USP2. The three genes responded to 20-hydroxyecdysone (20E) induction except for USP2, and USP1 could be up-regulated by both 20E and juvenile hormone. The four proteins mainly localized in the nucleus and the nuclear localization was promoted by 20E. The protein-protein interaction between each EcR and USP was found in vitro. These results suggest that two types of EcR/USP heterodimer (EcRA/USP2 and EcRB1/USP1) may exist simultaneously in the common cutworm, and the latter should play more important roles during the larval-pupal metamorphosis. In addition, the types of EcR/USP heterodimer do not vary in the tissues which undergo histolysis and regeneration during metamorphosis.
Collapse
Affiliation(s)
- Li-Xia Huang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
20
|
Ren J, Li XR, Liu PC, Cai MJ, Liu W, Wang JX, Zhao XF. G-protein αq participates in the steroid hormone 20-hydroxyecdysone nongenomic signal transduction. J Steroid Biochem Mol Biol 2014; 144 Pt B:313-23. [PMID: 25125388 DOI: 10.1016/j.jsbmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
Abstract
The nuclear receptor-mediated genomic pathways of the animal steroid hormones are well known. However, the cell membrane receptor-mediated nongenomic pathways of the animal steroid hormones are little understood. In this study, we report the participation of a G-protein alpha q (Gαq)(1) subunit in the 20E nongenomic pathway in the cell membrane and regulating gene expression during molting and metamorphosis in a lepidopteran insect, Helicoverpa armigera. 20E-induced phosphorylation of Gαq was detected using two-dimensional electrophoresis techniques. Knockdown of Gαq by injecting double-stranded RNA suppressed the development of larvae, delayed metamorphosis, and inhibited 20E-induced gene expression. Gαq was distributed throughout the cell, and migrated toward the plasma membrane upon 20E induction. Gαq was necessary in the 20E-induced intracellular Ca(2+) release and extracellular Ca(2+) influx. The protein kinase C (PKC) inhibitor could repress 20E-induced phosphorylation of cyclin-dependent kinase 10 (CDK10) and transcription factor ultraspiracle (USP1). PKC inhibitor could repress the Gαq phosphorylation and membrane trafficking. These results suggest that Gαq participates in 20E signaling in the cell membrane at the pre-genomic stage by modulating the increase of the intracellular Ca(2+) and phosphorylation of CDK10 and USP1 in 20E transcription complex to regulate gene transcription.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Peng-Cheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
21
|
Cai MJ, Liu W, Pei XY, Li XR, He HJ, Wang JX, Zhao XF. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein. J Biol Chem 2014; 289:26630-26641. [PMID: 25096576 DOI: 10.1074/jbc.m114.581876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hong-Juan He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
22
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
Affiliation(s)
- Wen-Li Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chun-Yan Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Nishita Y. Ecdysone response elements in the distal promoter of the Bombyx Broad-Complex gene, BmBR-C. INSECT MOLECULAR BIOLOGY 2014; 23:341-356. [PMID: 24576019 DOI: 10.1111/imb.12085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Bombyx mori silkworm's homologue of the Broad-Complex gene (BmBR-C) is transcribed from two promoters: a distal promoter (Pdist) and a proximal promoter (Pprox). As determined by a luciferase assay, the transcriptional activity of Pdist, but not Pprox, was activated by ecdysone. Further analyses using reporters driven by sequential deletion Pdist mutants indicated that two regions, ecdysone responsive element (EcRE)-D and EcRE-P, -4950 bp and -3480 bp upstream from the distal transcription start site, respectively, were important in the responsiveness of Pdist to 20-hydroxyecdysone (20E); however, no significant sequence similarities were found between the canonical EcRE and the EcRE-D or EcRE-P regions. Electrophoretic mobility shift assays showed that both the EcRE-D and -P sequences specifically bound to Bombyx protein(s). Sequence analyses and competition assays suggested that the protein(s) bound to EcRE-P might include components other than the ecdysone receptor (EcR), suggesting that BmBR-C transcription was indirectly activated by ecdysone through the EcRE-P. Remarkably, protein binding to the mid-region of the EcRE-D, EcRE-Db, was competitively inhibited by an oligonucleotide containing the Drosophila hsp27 EcRE sequence. Furthermore, an anti-EcR antibody interfered with the formation of the protein-EcRE-Db complex. These results indicated that a functional Bombyx ecdysone receptor binds to EcRE-D and activates the expression of BmBR-C.
Collapse
Affiliation(s)
- Y Nishita
- Department of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Liu W, Cai MJ, Wang JX, Zhao XF. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology 2014; 155:1738-50. [PMID: 24517229 DOI: 10.1210/en.2013-2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insect steroid hormone 20-hydroxyecdysone (20E) regulates gene transcription via a genomic pathway by forming a transcription complex that binds to DNA with the help of the chaperone proteins, heat shock proteins (Hsps) Hsc70 and Hsp90. However, the nongenomic mechanisms by which 20E regulates gene expression remain unclear. In this study, we found that 20E regulated the phosphorylation of serine/threonine protein kinase cyclin-dependent kinase 10 (CDK10) through a nongenomic pathway to mediate gene transcription in the lepidopteran Helicoverpa armigera. The down-regulation of CDK10 by RNA interference in larvae and the epidermal cell line delayed development and suppressed 20E-induced gene transcription. CDK10 was localized to the nucleus via its KKRR motif, and this nuclear localization and the ATPase motif were necessary for the efficient expression of the 20E-inducible gene. The rapid phosphorylation of CDK10 was induced by 20E, whereas it was repressed by the inhibitors of G-protein-coupled receptors, phospholipase C, and Ca²⁺ channels. Phosphorylated CDK10 exhibited increased interactions with Hsps Hsc70 and Hsp90 and then promoted the interactions between Hsps and ecdysone receptor EcRB1 and the binding of the Hsps-EcRB1 complex to the 20E response element for the regulation of gene transcription. CDK10 depletion suppressed the formation of the Hsps-EcRB1 complex at the hormone receptor 3 promoter. These results suggest that 20E induces CDK10 phosphorylation via a nongenomic pathway to regulate gene transcription in the nucleus.
Collapse
Affiliation(s)
- Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|
25
|
Liu W, Cai MJ, Zheng CC, Wang JX, Zhao XF. Phospholipase Cγ1 connects the cell membrane pathway to the nuclear receptor pathway in insect steroid hormone signaling. J Biol Chem 2014; 289:13026-41. [PMID: 24692553 DOI: 10.1074/jbc.m113.547018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In addition to the classical nuclear receptor pathway, there is a nongenomic pathway in the cell membrane that regulates gene expression in animal steroid hormone signaling; however, this mechanism is unclear. Here, we report that the insect steroid hormone 20-hydroxyecdysone (20E) regulates calcium influx via phospholipase Cγ1 (PLCG1) to modulate the protein kinase C phosphorylation of the transcription factor ultraspiracle (USP1) in the lepidopteran insect Helicoverpa armigera. The PLCG1 mRNA levels are increased during the molting and metamorphic stages. The depletion of PLCG1 by RNA interference can block 20E-enhanced pupation, cause larvae death and pupation defects, and repress 20E-induced gene expression. 20E may induce the tyrosine phosphorylation of PLCG1 at the cytosolic tyrosine kinase (Src) homology 2 domains and then determine the migration of PLCG1 toward the plasma membrane. The G-protein-coupled receptor (GPCR) inhibitor suramin, Src family kinase inhibitor PP2, and the depletions of ecdysone-responsible GPCR (ErGPCR) and Gαq restrain the 20E-induced tyrosine phosphorylation of PLCG1. PLCG1 participates in the 20E-induced Ca(2+) influx. The inhibition of GPCR, PLC, inositol 1,4,5-trisphosphate receptor, and calcium channels represses the 20E-induced Ca(2+) influx. Through calcium signaling, PLCG1 mediates the transcriptional activation driven by the ecdysone-response element. Through PLCG1 and calcium signaling, 20E regulates PKC phosphorylation of USP1 at Ser-21 to determine its ecdysone-response element binding activity. These results suggest that 20E activates PLCG1 via the ErGPCR and Src family kinases to regulate Ca(2+) influx and PKC phosphorylation of USP1 to subsequently modulate gene transcription for metamorphosis.
Collapse
Affiliation(s)
- Wen Liu
- From the Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|
26
|
Cai MJ, Dong DJ, Wang Y, Liu PC, Liu W, Wang JX, Zhao XF. G-protein-coupled receptor participates in 20-hydroxyecdysone signaling on the plasma membrane. Cell Commun Signal 2014; 12:9. [PMID: 24507557 PMCID: PMC3937218 DOI: 10.1186/1478-811x-12-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/03/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Animal steroid hormones are conventionally known to initiate signaling via a genomic pathway by binding to the nuclear receptors. The mechanism by which 20E initiates signaling via a nongenomic pathway is unclear. RESULTS We illustrate that 20E triggered the nongenomic pathway through a plasma membrane G-protein-coupled receptor (named ErGPCR) in the lepidopteran insect Helicoverpa armigera. The transcript of ErGPCR was increased at the larval molting stage and metamorphic molting stage by 20E regulation. Knockdown of ErGPCR via RNA interference in vivo blocked larval-pupal transition and suppressed 20E-induced gene expression. ErGPCR overexpression in the H. armigera epidermal cell line increased the 20E-induced gene expression. Through ErGPCR, 20E modulated Calponin nuclear translocation and phosphorylation, and induced a rapid increase in cytosolic Ca2+ levels. The inhibitors of T-type voltage-gated calcium channels and canonical transient receptor potential calcium channels repressed the 20E-induced Ca2+ increase. Truncation of the N-terminal extracellular region of ErGPCR inhibited its localization on the plasma membrane and 20E-induced gene expression. ErGPCR was not detected to bind with the steroid hormone analog [3H]Pon A. CONCLUSION These results suggest that ErGPCR participates in 20E signaling on the plasma membrane.
Collapse
Affiliation(s)
- Mei-Juan Cai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Du-Juan Dong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Yu Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Peng-Cheng Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
27
|
The hormone-dependent function of Hsp90 in the crosstalk between 20-hydroxyecdysone and juvenile hormone signaling pathways in insects is determined by differential phosphorylation and protein interactions. Biochim Biophys Acta Gen Subj 2013; 1830:5184-92. [DOI: 10.1016/j.bbagen.2013.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/05/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
|
28
|
Shirai H, Kamimura M, Yamaguchi J, Imanishi S, Kojima T, Fujiwara H. Two adjacent cis-regulatory elements are required for ecdysone response of ecdysone receptor (EcR) B1 transcription. PLoS One 2012; 7:e49348. [PMID: 23166644 PMCID: PMC3498158 DOI: 10.1371/journal.pone.0049348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022] Open
Abstract
Three distinct classes of nuclear receptors, EcR, E75, and HR3, are key regulators in the ecdysone-inducible gene activation cascade in insects. The transcription of these genes is induced by ecdysone (20E) differently, although the detailed mechanisms underlying their responses to 20E are largely unknown. We identified ecdysone response elements (EcREs) present in the promoters of genes coding BmEcR-B1, BmE75-A, and BHR3-B isoforms from Bombyx mori employing luciferase reporter assays in an ecdysteroid-responsive cultured cell line, NIAS-Bm-aff3 (aff3). The EcRE of BmEcR-B1 at −2800 comprises of two adjacent elements separated by 5 bp, E1 (15 bp) and E2 (21 bp), both of which are required for the 20E response. Further analysis using electrophoretic mobility shift assays showed that E1 binds to the EcR/USP heterodimer and that E2 may bind to the E-box (CACGTG) binding factor such as bHLH protein. The unique E1+E2-type EcRE is also detected in the promoter upstream regions of EcR-B1 from seven lepidopteran species studied. In contrast, both a 20 bp EcRE identified in the promoter of BmE75-A and a 18 bp EcRE identified in the BHR3-B promoter, contained only E1-type EcR/USP binding element but the E2 type element was not in the promoter regions of these genes. The combination of presence of the E2 element or other cis-regulatory elements in promoter regions explains the different 20E response of each class of nuclear receptor genes. Furthermore, the E1+E2 structure for EcR-B1 can be involved in a possible cross-talk between ecdysteroid and other regulatory pathways.
Collapse
Affiliation(s)
- Hiroyuki Shirai
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manabu Kamimura
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Junichi Yamaguchi
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shigeo Imanishi
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
29
|
Fu Q, Lynn-Miller A, Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2011; 20:541-52. [PMID: 21699592 PMCID: PMC3139008 DOI: 10.1111/j.1365-2583.2011.01087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expression was induced by a bloodmeal. Furthermore, over-expression of AeORPs facilitated [(3)H]-cholesterol uptake in Ae. aegypti cultured Aag -2 cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ace Lynn-Miller
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
30
|
Liu PC, Wang JX, Song QS, Zhao XF. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 2011; 6:e19776. [PMID: 21625546 PMCID: PMC3098250 DOI: 10.1371/journal.pone.0019776] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to mediate insect development, but the mechanism of this interaction is poorly understood. Here, a calponin homologue domain (Chd) containing protein (HaCal) is reported to play a key role in the cross talk between 20E and JH signaling by varying its phosphorylation. Chd is known as an actin binding domain present in many proteins including some signaling proteins. Using an epidermal cell line (HaEpi), HaCal was found to be up-regulated by either 20E or the JH analog methoprene (JHA). 20E induced rapid phosphorylation of HaCal whereas no phosphorylation occurred with JHA. HaCal could be quickly translocated into the nuclei through 20E or JH signaling but interacted with USP1 only under the mediation of JHA. Knockdown of HaCal by RNAi blocked the 20E inducibility of USP1, PKC and HR3, and also blocked the JHA inducibility of USP1, PKC and JHi. After gene silencing of HaCal by ingestion of dsHaCal expressed by Escherichia coli, the larval development was arrested and the gene expression of USP1, PKC, HR3 and JHi were blocked. These composite data suggest that HaCal plays roles in hormonal signaling by quickly transferring into nucleus to function as a phosphorylated form in the 20E pathway and as a non-phosphorylated form interacting with USP1 in the JH pathway to facilitate 20E or JH signaling cascade, in short, by switching its phosphorylation status to regulate insect development.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
31
|
Peng R, Maklokova VI, Chandrashekhar JH, Lan Q. In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. PLoS One 2011; 6:e18030. [PMID: 21437205 PMCID: PMC3060925 DOI: 10.1371/journal.pone.0018030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes.
Collapse
Affiliation(s)
- Rong Peng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Vilena I. Maklokova
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hiruma K, Riddiford LM. Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1390-5. [PMID: 20361974 DOI: 10.1016/j.jinsphys.2010.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 05/21/2023]
Abstract
This paper provides a compilation of diagrammatic representations of the expression profiles of epidermal and fat body mRNAs during the last two larval instars and metamorphosis of the tobacco hornworm, Manduca sexta. Included are those encoding insecticyanin, three larval cuticular proteins, dopa decarboxylase, moling, and the juvenile hormone-binding protein JP29 produced by the dorsal abdominal epidermis, and arylphorin and the methionine-rich storage proteins made by the fat body. The mRNA profiles of the ecdysteroid-regulated cascade of transcription factors in the epidermis during the larval molt and the onset of metamorphosis and in the pupal wing during the onset of adult development are also shown. These profiles are accompanied by a brief summary of the current knowledge about the regulation of these mRNAs by ecdysteroids and juvenile hormone based on experimental manipulations, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | |
Collapse
|
33
|
Vyazunova I, Lan Q. Yellow fever mosquito sterol carrier protein-2 gene structure and transcriptional regulation. INSECT MOLECULAR BIOLOGY 2010; 19:205-215. [PMID: 20002221 PMCID: PMC2862845 DOI: 10.1111/j.1365-2583.2009.00959.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
AeSCP-2, a sterol carrier protein, is involved in sterol trafficking in mosquitoes. The activity of the AeSCP-2 gene is important for mosquito development. An earlier study demonstrated that the transcription of this gene was upregulated by 20-hydroxyecdysone (20E) in cultured gut tissues. To investigate 20E-regulated transcription of the AeSCP-2 gene we truncated the upstream flanking region of AeSCP-2 gene and linked it to a reporter gene. The mosquito Aag-2 cell line was transfected with these promoter/reporter constructs and treated with 20E at various concentrations. Expression vectors of different transcription factors such as HR3 and beta FTZ-F1 were also co-transfected with the AeSCP-2 promoter/reporter constructs. The observed results demonstrated that varied combinations of transcription factors produce different promoter activities of the AeSCP-2 gene. This observation leads us to the conclusion that the partnership of transcription factors is crucial in regulating the transcriptional activity of the AeSCP-2 gene.
Collapse
Affiliation(s)
| | - Que Lan
- Correspondent author Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, Telephone: (608) 263-7924, Fax: (608) 262-3322,
| |
Collapse
|
34
|
Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 2010; 315:282-91. [PMID: 19897013 DOI: 10.1016/j.mce.2009.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
To probe the specific functions of the chaperone protein Hsc70 in 20-hydroxyecdysone signaling, we report on the roles of the Hsc70 from Helicoverpa armigera. RT-PCR analysis revealed that the genes for HaEcRB1 and HaUSP1 were upregulated in 5th molting and metamorphic molting larvae, whereas HaHsc70 maintained a constitutive expression level throughout larval development. Silencing HaEcRB1, HaUSP1 or HaHsc70 by RNAi inhibited the expression of a set of 20E-responsive genes. Immunocytochemical assay demonstrated that HaHsc70 is located predominantly in the cytoplasm of unstimulated cells and partially translocated to the nucleus after stimulation by 20E. Knockdown of HaHsc70 by RNAi decreased the amount of both HaEcRB1 and HaUSP1 in the nucleus. HaHsc70 was capable of binding to HaUSP1 in pull-down assays. These data suggest that Hsc70 participates in the 20E signal transduction pathway via binding to USP1 and mediating the expression of EcRB1, USP1 and then a set of 20E-responsive genes.
Collapse
Affiliation(s)
- Wei-Wei Zheng
- School of Life Sciences, the Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong University, Shanda Road 27, Jinan 250100, Shandong, China
| | | | | | | | | | | |
Collapse
|
35
|
Braun S, Azoitei A, Spindler-Barth M. DNA-binding properties of Drosophila ecdysone receptor isoforms and their modification by the heterodimerization partner ultraspiracle. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:172-191. [PMID: 19750549 DOI: 10.1002/arch.20328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transcriptional activity of ecdysone receptor (EcR) isoforms varies considerably and is modified further by the heterodimerization partner and hormone treatment. To investigate whether differences in DNA binding of receptor complexes are responsible for these variations in transcriptional activity, interaction of Drosophila EcR isoforms, and variants of Ultraspiracle (Usp), the orthologue of RXR, with the ecdysone response elements (EcRE) hsp 27, PAL-1, and DR-1, were determined by electrophoretic mobility shift assays. Receptor proteins were expressed in vertebrate cells (CHO-K1) in order to rule out an influence of endogenous receptor proteins. In the absence of a heterodimerization partner, weak DNA binding of EcR was detected even without hormone with EcR-A and -B1, but not EcR-B2. In the presence of hormone, all three isoforms show increased binding to the hsp 27 EcRE. The heterodimerization partner Usp increased DNA binding considerably. The hormone effect of heterodimers is more pronounced with both EcR-B isoforms compared to EcR-A. Two specific bands were obtained for EcR-A and B1 but only one band is visible with EcR-B2. Deletion of the C-domain of Usp still allows basal DNA binding of the heterodimer, but in contrast to full-length Usp, addition of hormone decreases the intensity of the retarded receptor band of all EcR isoforms and the EcREs hsp27 and DR-1 considerably, whereas interaction with the EcRE PAL-1 is only slightly affected. Synergistic effects on transcriptional activity are associated with the formation of different receptor DNA-complexes observed with 1xhsp27 and 3xhsp27. Comparison of DNA-binding properties of EcR isoforms and EcR/Usp heterodimers revealed that binding of receptor complexes to hsp 27 EcRE is dependent on the AB domain of EcR and the AB-, C-, and D-domains of the heterodimerization partner. Interaction with the hsp 27 EcRE correlates neither with ligand binding nor with transcriptional activity of the various receptor complexes. We, therefore, conclude that the different receptor functions are regulated separately, for example, by interaction with co-modulators or post-transcriptional modifications.
Collapse
Affiliation(s)
- Simone Braun
- Institute of General Zoology and Endocrinology, University of Ulm, 89081 Ulm, Germany
| | | | | |
Collapse
|
36
|
Reverse signaling by glycosylphosphatidylinositol-linked Manduca ephrin requires a SRC family kinase to restrict neuronal migration in vivo. J Neurosci 2009; 29:3404-18. [PMID: 19295147 DOI: 10.1523/jneurosci.5464-08.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reverse signaling via glycosylphosphatidylinositol (GPI)-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), whereas adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways.
Collapse
|
37
|
Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e003. [PMID: 19381306 PMCID: PMC2670432 DOI: 10.1621/nrs.07003] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORα, -β, and -γ (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORα plays a critical role in the development of the cerebellum, that both RORα and RORβ are required for the maturation of photoreceptors in the retina, and that RORγ is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORγ in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
38
|
Hiruma K, Riddiford LM. The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:245-253. [PMID: 19552890 DOI: 10.1016/j.ibmb.2009.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 01/13/2009] [Indexed: 05/28/2023]
Abstract
Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Japan.
| | | |
Collapse
|
39
|
Hopkins PM, Durica D, Washington T. RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:602-14. [DOI: 10.1016/j.cbpa.2008.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
40
|
Tan A, Palli SR. Ecdysone [corrected] receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol 2008; 291:42-9. [PMID: 18583027 PMCID: PMC2595142 DOI: 10.1016/j.mce.2008.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
Ecdysteroids regulate insect growth and development through a heterodimeric complex of nuclear receptors consisting of ecdysone receptor (EcR) and ultraspiracle (USP). In the red flour beetle, Tribolium castaneum, two isoforms each of EcR and USP have been identified. Quantitative real-time reverse-transcriptase PCR (qRT-PCR) analysis showed isoform-specific developmental expression of both EcR and USP in the epidermis and the midgut dissected from the final instar larvae and pupae. Injection of double-stranded RNA (dsRNA) prepared using the common or isoform-specific regions of EcR or USP as templates caused derailment of development. EcR common region (EcRC) or EcRA dsRNA caused more severe effects, and most of the treated larvae died prior to pupation. EcRB dsRNA caused less severe effects and most of the treated larvae became pupae but showed developmental defects. Only dsRNA prepared against USP common region but not against USPA or USPB isoform-specific region caused developmental defects during larval-pupal metamorphosis. Determination of mRNA levels of EcR isoforms and 20-hydroxyecdysone-response (20E) genes (broad, E75, E74, HR3 and FTZ-F1) by qRT-PCR in the larvae injected with EcRA, EcRB or EcRC dsRNA showed that EcRA initiates ecdysteroid action by regulation the expression of EcRB and 20E-response genes. These data suggest that the EcR but not USP isoforms play distinct roles during the larval-pupal metamorphosis and EcRA plays a dominant role in transduction of ecdysteroid response in T. castaneum.
Collapse
Affiliation(s)
| | - Subba Reddy Palli
- Corresponding Author. Tel: +1 859 257 4962; fax: +1859 323 1120. E-mail address:
| |
Collapse
|
41
|
Shao HL, Zheng WW, Liu PC, Wang Q, Wang JX, Zhao XF. Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS One 2008; 3:e3127. [PMID: 18769621 PMCID: PMC2518862 DOI: 10.1371/journal.pone.0003127] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022] Open
Abstract
When an insect molts, old cuticle on the outside of the integument is shed by apolysis and a new cuticle is formed under the old one. This process is completed by the epidermal cells which are controlled by 20-hydroxyecdysone (20E) and juvenile hormone. To understand the molecular mechanisms of integument remolding and hormonal regulation on the gene expression, an epidermal cell line from the 5th instar larval integument of Helicoverpa armigera was established and named HaEpi. The cell line has been cultured continuously for 82 passages beginning on June 30, 2005 until now. Cell doubling time was 64 h. The chromosomes were granular and the chromosome mode was from 70 to 76. Collagenase I was used to detach the cells from the flask bottom. Non-self pathogen AcMNPV induced the cells to apoptosis. The cell line was proved to be an epidermal cell line based on its unique gene expression pattern. It responded to 20E and the non-steroidal ecdysone agonist RH-2485. Its gene expression could be knocked down using RNA interference. Various genes in the cell line were investigated based on their response to 20E. This new cell line represents a platform for investigating the 20E signaling transduction pathway, the immune response mechanism in lepidopteran epidermis and interactions of the genes.
Collapse
Affiliation(s)
- Hong-Lian Shao
- School of Life Sciences, Shandong University, Jinan, China
| | - Wei-Wei Zheng
- School of Life Sciences, Shandong University, Jinan, China
| | - Peng-Cheng Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - Qian Wang
- School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
42
|
Sok AJ, Andruszewska G, Niewiadomska-Cimicka A, Grad I, Rymarczyk G, Pajdzik D, Orłowski M, Schmidt MT, Grajek W, Ożyhar A, Kochman M. Regulatory elements in the juvenile hormone binding protein gene from Galleria mellonella — Topography of binding sites for Usp and EcRDBD. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:390-401. [DOI: 10.1016/j.bbagrm.2008.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/12/2008] [Accepted: 04/29/2008] [Indexed: 11/16/2022]
|
43
|
Siaussat D, Bozzolan F, Porcheron P, Debernard S. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:529-539. [PMID: 18405831 DOI: 10.1016/j.ibmb.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 05/26/2023]
Abstract
The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.
Collapse
Affiliation(s)
- David Siaussat
- UMR 1272A Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | |
Collapse
|
44
|
Horigane M, Ogihara K, Nakajima Y, Taylor D. Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2008; 156:298-311. [PMID: 18342313 DOI: 10.1016/j.ygcen.2008.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXR) exist broadly from invertebrates to vertebrates, and play essential roles in physiological processes of these organisms. In arthropods, RXRs form a complex with the ecdysteroid receptor (EcR) and ecdysteroids to mediate the regulation of ecdysis and reproduction. Compared to EcR, RXR and its homologue ultraspiracle (USP) are much less well understood. Therefore, we identified RXR of the soft tick Ornithodoros moubata (OmRXR) and used real-time PCR to examine the expression of OmRXR. This is the first report of RXR from a soft tick. OmRXR showed higher homology to hard tick, crustacean and vertebrate RXRs than insect RXRs and USPs. OmRXR expression was observed during molting in the last instar nymphs coinciding with EcR expression and increases in ecdysteroid titers. Tick vitellogenesis normally occurs soon after engorgement and OmRXR expression coinciding with EcR expression and ecdysteroid titers in engorged females occurred before vitellogenin (Vg) synthesis and egg maturation. The ecdysteroid/EcR/RXR complex appears to be important in the regulation of molting and vitellogenesis of soft ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
45
|
Dyer DH, Wessely V, Forest KT, Lan Q. Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J Lipid Res 2008; 49:644-53. [DOI: 10.1194/jlr.m700460-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
46
|
Hiruma K, Riddiford LM. The coordination of the sequential appearance of MHR4 and dopa decarboxylase during the decline of the ecdysteroid titer at the end of the molt. Mol Cell Endocrinol 2007; 276:71-9. [PMID: 17706862 DOI: 10.1016/j.mce.2007.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 07/01/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
During the last larval molt in Manduca sexta, in response to an increasing, then decreasing ecdysteroid titer, a number of transcription factors such as E75B, MHR3, MHR4, and betaFTZ-F1 appear and disappear in the abdominal epidermis leading to dopa decarboxylase (DDC) expression. Messenger RNAs for both the 20E-induced transcription factors, MHR3 and E75B, are maximal near the peak of the ecdysteroid titer with MHR4 mRNA appearing as the titer declines followed by betaFTZ-F1 and DDC mRNAs. E75B and MHR4 mRNA were not expressed in Manduca GV1 cells, either during exposure to 20E or after its removal. When either MHR3 dsRNA was transfected or E75B was constitutively expressed in these cells, MHR4 mRNA appeared in response to 20E by 6h. E75B was found to form a heterodimer with MHR3 using the BacterioMatch II two-hybrid assay. We conclude that MHR3 apparently suppresses MHR4 expression in the presence of 20E; the appearance of E75B then removes MHR3 by dimerization, allowing MHR4 to be expressed. Because of significant basal activity of the ddc promoter in the GV1 cells, we could perform rescue experiments by adding various factors. Constitutive expression of either E75B or MHR4 in the cells suppressed the significant basal activity of the 3.2kb ddc promoter in the GV1 cells, but 20E had no effect on this activity. Thus, E75B and MHR4 are 20E-induced inhibitory factors that suppress ddc expression and therefore act as ecdysteroid-regulated timers to coordinate the onset of ddc expression at the end of the molt.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan.
| | | |
Collapse
|
47
|
Sekimoto T, Iwami M, Sakurai S. Coordinate responses of transcription factors to ecdysone during programmed cell death in the anterior silk gland of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2006; 15:281-92. [PMID: 16756547 DOI: 10.1111/j.1365-2583.2006.00641.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Programmed cell death (PCD) in Bombyx mori anterior silk glands (ASGs) is triggered by 20-hydroxyecdysone (20E). We examined the expression profiles and effects of 20E on 11 transcription factor genes in the fifth instar to determine whether they demonstrate the hierarchical control seen in Drosophila PCD. Results indicate that EcR-A and usp-2, but not EcR-B1 or usp-1, may be components of the ecdysone receptor complex. Up-regulation of E75A, BHR3, and three BR-C isoforms, but not E75B, appeared to be associated with the induction of PCD. betaFTZ-F1 was not expressed during PCD execution. Thus, gene control in B. mori ASGs differs from that in Drosophila salivary glands, despite both tissues undergoing PCD in response to 20E at pupal metamorphosis.
Collapse
Affiliation(s)
- T Sekimoto
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Japan
| | | | | |
Collapse
|
48
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|
49
|
Roxström-Lindquist K, Assefaw-Redda Y, Rosinska K, Faye I. 20-Hydroxyecdysone indirectly regulates Hemolin gene expression in Hyalophora cecropia. INSECT MOLECULAR BIOLOGY 2005; 14:645-52. [PMID: 16313564 DOI: 10.1111/j.1365-2583.2005.00593.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Development and innate immune defence are two vital processes that have been demonstrated to use the same or similar molecules and signalling pathways in insects. Hemolin is a moth haemolymph protein belonging to the immunoglobulin superfamily. It is strongly induced upon bacterial infection. However, recent studies indicate a developmental regulation of hemolin. We show that the steroid hormone 20-hydroxyecdysone (20E) can activate the expression of Hyalophora cecropia Hemolin (HcHemolin) in the fat body of diapausing pupae. Using the protein synthesis inhibitor cycloheximide we demonstrate that Hemolin up-regulation by 20E requires ongoing protein synthesis. Moreover, 20E enhances transcription of the Hemolin gene in response to bacteria. Comparing the upstream regions of Manduca sexta Hemolin (MsHemolin) and HcHemolin, we identified four putative regulatory sites. Two are putative hormone response elements (HREs), one with an imperfect inverted repeat (HRE-IR) and one with a monomeric site (HRE-M). An additional monomeric hormone receptor site (MRE) is present only in HcHemolin. The third conserved motif is similar to the interferon (IFN) regulatory factor binding element (IRF-E) and IFN-stimulated response element (ISRE). The fourth conserved element is a kappaB motif situated between the Cap-site and the TATA-box. Finally, by electrophoresis mobility shift assay we demonstrate that the HRE-IR forms specific complexes with nuclear extract proteins of normal pupae that increase after 20E stimulation.
Collapse
Affiliation(s)
- K Roxström-Lindquist
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
50
|
Ogura T, Minakuchi C, Nakagawa Y, Smagghe G, Miyagawa H. Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspiracle from the Colorado potato beetle Leptinotarsa decemlineata. FEBS J 2005; 272:4114-28. [PMID: 16098194 DOI: 10.1111/j.1742-4658.2005.04823.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
cDNA cloning of ecdysone receptor (EcR) and ultraspiracle (USP) of the coleopteran Colorado potato beetle Leptinotarsa decemlineata (LdEcR and LdUSP) was conducted. Amino-acid sequences of the proteins deduced from cDNA sequences showed striking homology to those of other insects, especially the coleopteran yellow mealworm Tenebrio molitor. Northern hybridization analysis showed a 12.4-kb message for the LdEcR A-isoform, a 10.5-kb message for the LdEcR B1-isoform and a 5.7-kb message for the LdUSP, in fat body, gut, integument, testis and ovaries. In developmental profile studies, expression of both the LdEcR and LdUSP transcript in integument changed dramatically. In gel mobility shift assays, in vitro translated LdEcR alone bound weakly to the pal1 ecdysone response element, although LdUSP alone did not, and this binding was dramatically enhanced by the addition of LdUSP. LdEcR/LdUSP complex also showed significant binding to an ecdysone agonist, ponasterone A (K(D) = 2.8 nm), while LdEcR alone showed only weak binding (K(D) = 73.4 nm), and LdUSP alone did not show any binding. The receptor-binding affinity of various ecdysone agonists to LdEcR/LdUSP was not correlated to their larvicidal activity to L. decemlineata. From these results, it was suggested that multiple factors including the receptor binding affinity are related to the determination of the larvicidal activity of nonsteroidal ecdysone agonists in L. decemlineata.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cloning, Molecular
- Coleoptera
- DNA, Complementary
- Electrophoresis, Polyacrylamide Gel
- Ligands
- Molecular Sequence Data
- Protein Binding
- Protein Biosynthesis
- RNA, Messenger/genetics
- Receptors, Steroid/agonists
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Takehiko Ogura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|