1
|
Li L, Zhu XM, Zhang YR, Cai YY, Wang JY, Liu MY, Wang JY, Bao JD, Lin FC. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Int J Mol Sci 2022; 23:ijms23094658. [PMID: 35563048 PMCID: PMC9104627 DOI: 10.3390/ijms23094658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi–plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
- Correspondence: ; Tel.: +86-571-88404007
| |
Collapse
|
2
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
3
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
4
|
Tang J, Wu M, Zhang J, Li G, Yang L. Botrytis cinerea G Protein β Subunit Bcgb1 Controls Growth, Development and Virulence by Regulating cAMP Signaling and MAPK Signaling. J Fungi (Basel) 2021; 7:jof7060431. [PMID: 34072395 PMCID: PMC8228952 DOI: 10.3390/jof7060431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
Botrytis cinerea is a necrotrophic phytopathogenic fungus that causes gray mold disease in many crops. To better understand the role of G protein signaling in the development and virulence of this fungus, the G protein β subunit gene Bcgb1 was knocked out in this study. The ΔBcgb1 mutants showed reduced mycelial growth rate, but increased aerial hyphae and mycelial biomass, lack of conidiation, failed to form sclerotia, increased resistance to cell wall and oxidative stresses, delayed formation of infection cushions, and decreased virulence. Deletion of Bcgb1 resulted in a significant reduction in the expression of several genes involved in cAMP signaling, and caused a notable increase in intracellular cAMP levels, suggesting that G protein β subunit Bcgb1 plays an important role in cAMP signaling. Furthermore, phosphorylation levels of MAP kinases (Bmp1 and Bmp3) were increased in the ΔBcgb1 mutants. Yeast two-hybrid assays showed that Bcgb1 interacts with MAPK (Bmp1 and Bmp3) cascade proteins (BcSte11, BcBck1, BcMkk1, and BcSte50), and the Bmp1-regulated gene Bcgas2 was up-regulated in the ΔBcgb1 mutant. These results indicated that Gβ protein Bcgb1 is involved in the MAPK signaling pathway in B. cinerea. In summary, our results revealed that Gβ protein Bcgb1 controls development and virulence through both the cAMP and MAPK (Bmp1 and Bmp3) signaling pathways in B. cinerea.
Collapse
|
5
|
|
6
|
Wang P. Genetic Transformation in Cryptococcus Species. J Fungi (Basel) 2021; 7:56. [PMID: 33467426 PMCID: PMC7829943 DOI: 10.3390/jof7010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Valle-Maldonado MI, Patiño-Medina JA, Pérez-Arques C, Reyes-Mares NY, Jácome-Galarza IE, Ortíz-Alvarado R, Vellanki S, Ramírez-Díaz MI, Lee SC, Garre V, Meza-Carmen V. The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell Microbiol 2020; 22:e13236. [PMID: 32562333 DOI: 10.1111/cmi.13236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.
Collapse
Affiliation(s)
- Marco Iván Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Nancy Yadira Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | | | - Rafael Ortíz-Alvarado
- Facultad de Quimico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
8
|
Liu KH, Shen WC. Sexual Differentiation Is Coordinately Regulated by Cryptococcus neoformans CRK1 and GAT1. Genes (Basel) 2020; 11:genes11060669. [PMID: 32575488 PMCID: PMC7349709 DOI: 10.3390/genes11060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
The heterothallic basidiomycetous fungus Cryptococcus neoformans has two mating types, MATa and MATα. Morphological progression of bisexual reproduction in C. neoformans is as follows: yeast to hyphal transition, filament extension, basidium formation, meiosis, and sporulation. C. neoformans Cdk-related kinase 1 (CRK1) is a negative regulator of bisexual mating. In this study, we characterized the morphological features of mating structures in the crk1 mutant and determined the genetic interaction of CRK1 in the regulatory networks of sexual differentiation. In the bilateral crk1 mutant cross, despite shorter length of filaments than in the wild-type cross, dikaryotic filaments and other structures still remained intact during bisexual mating, but the timing of basidium formation was approximately 18 h earlier than in the cross between wild type strains. Furthermore, gene expression analyses revealed that CRK1 modulated the expression of genes involved in the progression of hyphal elongation, basidium formation, karyogamy and meiosis. Phenotypic results showed that, although deletion of C. neoformans CRK1 gene increased the efficiency of bisexual mating, filamentation in the crk1 mutant was blocked by MAT2 or ZNF2 mutation. A bioinformatics survey predicted the C. neoformans GATA transcriptional factor Gat1 as a potential substrate of Crk1 kinase. Our genetic and phenotypic findings revealed that C. neoformansGAT1 and CRK1 formed a regulatory circuit to negatively regulate MAT2 to control filamentation progression and transition during bisexual mating.
Collapse
|
9
|
Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens. Genes (Basel) 2020; 11:genes11010101. [PMID: 31963231 PMCID: PMC7017293 DOI: 10.3390/genes11010101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
Hybridization is increasingly recognized as an important force impacting adaptation and evolution in many lineages of fungi. During hybridization, divergent genomes and alleles are brought together into the same cell, potentiating adaptation by increasing genomic plasticity. Here, we review hybridization in fungi by focusing on two fungal pathogens of animals. Hybridization is common between the basidiomycete yeast species Cryptococcus neoformans × Cryptococcus deneoformans, and hybrid genotypes are frequently found in both environmental and clinical settings. The two species show 10-15% nucleotide divergence at the genome level, and their hybrids are highly heterozygous. Though largely sterile and unable to mate, these hybrids can propagate asexually and generate diverse genotypes by nondisjunction, aberrant meiosis, mitotic recombination, and gene conversion. Under stress conditions, the rate of such genetic changes can increase, leading to rapid adaptation. Conversely, in hybrids formed between lineages of the chytridiomycete frog pathogen Batrachochytrium dendrobatidis (Bd), the parental genotypes are considerably less diverged (0.2% divergent). Bd hybrids are formed from crosses between lineages that rarely undergo sex. A common theme in both species is that hybrids show genome plasticity via aneuploidy or loss of heterozygosity and leverage these mechanisms as a rapid way to generate genotypic/phenotypic diversity. Some hybrids show greater fitness and survival in both virulence and virulence-associated phenotypes than parental lineages under certain conditions. These studies showcase how experimentation in model species such as Cryptococcus can be a powerful tool in elucidating the genotypic and phenotypic consequences of hybridization.
Collapse
|
10
|
Yan H, Shim WB. Characterization of non-canonical G beta-like protein FvGbb2 and its relationship with heterotrimeric G proteins in Fusarium verticillioides. Environ Microbiol 2019; 22:615-628. [PMID: 31760684 DOI: 10.1111/1462-2920.14875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
Fusarium verticillioides is a fungal pathogen that is responsible for maize ear rot and stalk rot diseases worldwide. The fungus also produces carcinogenic mycotoxins, fumonisins on infested maize. Unfortunately, we still lack clear understanding of how the pathogen responds to host and environmental stimuli to trigger fumonisin biosynthesis. The heterotrimeric G protein complex, consisting of canonical Gα, Gβ and Gγ subunits, is involved in transducing signals from external stimuli to regulate downstream signal transduction pathways. Previously, we demonstrated that Gβ protein FvGbb1 directly impacts fumonisin regulation but not other physiological aspects in F. verticillioides. In this study, we identified and characterized a RACK1 (Receptor for Activated C Kinase 1) homolog FvGbb2 as a putative Gβ-like protein in F. verticillioides. The mutant exhibited severe defects not only in fumonisin biosynthesis but also vegetative growth and conidiation. FvGbb2 was positively associated with carbon source utilization and stress agents but negatively regulated general amino acid control. While FvGbb2 does not interact with canonical G protein subunits, it may associate with diverse proteins in the cytoplasm to regulate vegetative growth, virulence, fumonisin biosynthesis and stress response in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
11
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
12
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. mBio 2019; 10:mBio.00215-19. [PMID: 30914505 PMCID: PMC6437049 DOI: 10.1128/mbio.00215-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets. The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade.
Collapse
|
14
|
Yang X, Al-Attala MN, Zhang Y, Zhang AF, Zang HY, Gu CY, Gao TC, Chen Y, Al-Attala MN, Ali F, Li YF, Yao J, Zhu JG. Rapid Detection of Ustilaginoidea virens from Rice using Loop-Mediated Isothermal Amplification Assay. PLANT DISEASE 2018; 102:1741-1747. [PMID: 30125168 DOI: 10.1094/pdis-01-18-0065-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ustilaginoidea virens is an important fungus that causes rice false smut disease. This disease significantly reduces both grain yield and quality. Various methods have been developed for the detection of U. virens but most of these methods need sophisticated equipment such as a thermal cycler. Here, we present a loop-mediated isothermal amplification (LAMP) assay for the specific detection of U. virens. This assay used a specific region of the UvG-β1 gene (212-bp region) to design six LAMP primers. The LAMP assay was optimized by the combination of rapidity, simplicity, and high sensitivity for the detection of about 1 pg of target genomic DNA in the reaction whereas, with polymerase chain reaction (PCR), there was no amplification of DNA with concentrations less than 1 ng. Among the genomic DNA of 22 fungus species and two strains of U. virens, only the tube containing the DNA of U. virens changed to yellowish green with SYBR Green I. The color change was indicative of DNA amplification. No DNA was amplified from either the other 22 fungus species or the negative control. Moreover, 20 spikelets and 22 rice seed samples were used for the detection of rice false smut via LAMP. The results were comparable with conventional PCR. We conclude that gene UvG-β1 coupled with LAMP assay, can be used for the detection and identification of U. virens gene via LAMP.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Mohamed N Al-Attala
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Yong Zhang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Ai-Fang Zhang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Hao-Yu Zang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Chun-Yan Gu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Tong-Chun Gao
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Yu Chen
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China; and Laboratory of Quality & Safety Risk Assessment for Agro-Products, Hefei, Ministry of Agriculture, China; and Key Laboratory of Anhui Agricultural Sciences
| | - Mohamed N Al-Attala
- Plant Pathology Unit, Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Farman Ali
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences; and Department of Agriculture, Abdul Wali Khan University Mardan, Pakistan
| | - Yun-Fei Li
- Anhui Entry-Exit Inspection and Quarantine Bureau, Hefei 230022, China
| | - Jian Yao
- Anhui Entry-Exit Inspection and Quarantine Bureau, Hefei 230022, China
| | - Jin-Guo Zhu
- Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha 410004, China
| |
Collapse
|
15
|
Wilson AM, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Pheromone expression reveals putative mechanism of unisexuality in a saprobic ascomycete fungus. PLoS One 2018; 13:e0192517. [PMID: 29505565 PMCID: PMC5837088 DOI: 10.1371/journal.pone.0192517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Homothallism (self-fertility) describes a wide variety of sexual strategies that enable a fungus to reproduce in the absence of a mating partner. Unisexual reproduction, a form of homothallism, is a process whereby a fungus can progress through sexual reproduction in the absence of mating genes previously considered essential for self-fertility. In this study, we consider the molecular mechanisms that allow for this unique sexual behaviour in the saprotrophic ascomycete; Huntiella moniliformis. These molecular mechanisms are also compared to the underlying mechanisms that control sex in Huntiella omanensis, a closely related, but self-sterile, species. The main finding was that H. omanensis displayed mating-type dependent expression of the a- and α-pheromones. This was in contrast to H. moniliformis where both pheromones were co-expressed during vegetative growth and sexual development. Furthermore, H. moniliformis also expressed the receptors of both pheromones. Consequently, this fungus is likely able to recognize and respond to the endogenously produced pheromones, allowing for self-fertility in the absence of other key mating genes. Overall, these results are concomitant with those reported for other unisexual species, but represent the first detailed study considering the unisexual behaviour of a filamentous fungus.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Xu X, Lin J, Zhao Y, Kirkman E, So YS, Bahn YS, Lin X. Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation. PLoS Genet 2017; 13:e1006982. [PMID: 28898238 PMCID: PMC5595294 DOI: 10.1371/journal.pgen.1006982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Morphotype switch is a cellular response to external and internal cues. The Cryptococcus neoformans species complex can undergo morphological transitions between the yeast and the hypha form, and such morphological changes profoundly affect cryptococcal interaction with various hosts. Filamentation in Cryptococcus was historically considered a mating response towards pheromone. Recent studies indicate the existence of pheromone-independent signaling pathways but their identity or the effectors remain unknown. Here, we demonstrated that glucosamine stimulated the C. neoformans species complex to undergo self-filamentation. Glucosamine-stimulated filamentation was independent of the key components of the pheromone pathway, which is distinct from pheromone-elicited filamentation. Glucosamine stimulated self-filamentation in H99, a highly virulent serotype A clinical isolate and a widely used reference strain. Through a genetic screen of the deletion sets made in the H99 background, we found that Crz1, a transcription factor downstream of calcineurin, was essential for glucosamine-stimulated filamentation despite its dispensability for pheromone-mediated filamentation. Glucosamine promoted Crz1 translocation from the cytoplasm to the nucleus. Interestingly, multiple components of the high osmolality glycerol response (HOG) pathway, consisting of the phosphorelay system and some of the Hog1 MAPK module, acted as repressors of glucosamine-elicited filamentation through their calcineurin-opposing effect on Crz1’s nuclear translocation. Surprisingly, glucosamine-stimulated filamentation did not require Hog1 itself and was distinct from the conventional general stress response. The results demonstrate that Cryptococcus can resort to multiple genetic pathways for morphological transition in response to different stimuli. Given that the filamentous form attenuates cryptococcal virulence and is immune-stimulatory in mammalian models, the findings suggest that morphogenesis is a fertile ground for future investigation into novel means to compromise cryptococcal pathogenesis. Cryptococcal meningitis claims half a million lives each year. There is no clinically available vaccine and the current antifungal therapies have serious limitations. Thus identifying cryptococcal specific programs that can be targeted for antifungal or vaccine development is of great value. We have shown previously that switching from the yeast to the hypha form drastically attenuates/abolishes cryptococcal virulence. Cryptococcal cells in the filamentous form also trigger host immune responses that can protect the host from a subsequent lethal challenge. However, self-filamentation is rarely observed in serotype A isolates that are responsible for the vast majority of cryptococcosis cases. In this study, we found that glucosamine stimulated self-filamentation in genetically distinct strains of the Cryptococcus species complex, including the most commonly used serotype A reference strain H99. We demonstrated that filamentation elicited by glucosamine did not depend on the pheromone pathway, but it requires the calcineurin transcription factor Crz1. Glucosamine promotes nuclear translocation of Crz1, which is positively controlled by the phosphatase calcineurin and is suppressed by the HOG pathway. These findings raise the possibility of manipulating genetic pathways controlling fungal morphogenesis against diseases caused by the Cryptococcus species complex.
Collapse
Affiliation(s)
- Xinping Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (XL); (XX)
| | - Jianfeng Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Elyssa Kirkman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (XL); (XX)
| |
Collapse
|
17
|
Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li W, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldón T, Grigoriev IV. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Curr Biol 2016; 26:1577-1584. [PMID: 27238284 DOI: 10.1016/j.cub.2016.04.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 04/13/2016] [Indexed: 02/03/2023]
Abstract
Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.
Collapse
Affiliation(s)
- Luis M Corrochano
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain.
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Silvia Polaino
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - M Isabel Álvarez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Avalos
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ernesto P Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Río Duero 12, 37185 Salamanca, Spain
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Gertraud Burger
- Universite de Montreal, Pavillon Roger-Gaudry, Biochimie, CP 6128, Succursale Centre-Ville, Montreal QC, H3C 3J7, Canada
| | - Lola P Camino
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - David Cánovas
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Enrique Cerdá-Olmedo
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Angel Domínguez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Fabian Glaser
- Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Gabriel Gutiérrez
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Enrique A Iturriaga
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - B Franz Lang
- Universite de Montreal, Pavillon Roger-Gaudry, Biochimie, CP 6128, Succursale Centre-Ville, Montreal QC, H3C 3J7, Canada
| | - José L Lavín
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Sergio López-García
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Eva M Luque
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Ana T Marcos
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Joel Martin
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Kevin McCluskey
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - Humberto R Medina
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | | | - Atsushi Miyazaki
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Ishinomaki 986-8580, Japan
| | - Elisa Muñoz-Torres
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Avenida Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José A Oguiza
- Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | - Robin A Ohm
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - María Olmedo
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Margarita Orejas
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avenida Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antonio G Pisabarro
- Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | - Julio Rodríguez-Romero
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Rosa Ruiz-Vázquez
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Catalina Sanz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Wendy Schackwitz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Mahdi Shahriari
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Ekaterina Shelest
- Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Fátima Silva-Franco
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Darren Soanes
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267-0056, USA
| | - Víctor G Tagua
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Nicholas J Talbot
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Michael R Thon
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Río Duero 12, 37185 Salamanca, Spain
| | - Hope Tice
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ronald P de Vries
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ad Wiebenga
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jagjit S Yadav
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267-0056, USA
| | - Edward L Braun
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Scott E Baker
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Alexander Idnurm
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
18
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
19
|
Choi J, Jung WH, Kronstad JW. The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: Connections with iron homeostasis. J Microbiol 2015; 53:579-87. [PMID: 26231374 DOI: 10.1007/s12275-015-5247-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022]
Abstract
A number of pathogenic species of basidiomycete fungi are either life-threatening pathogens of humans or major economic pests for crop production. Sensing the host is a key aspect of pathogen proliferation during disease, and signal transduction pathways are critically important for detecting environmental conditions and facilitating adaptation. This review focuses on the contributions of the cAMP/protein kinase A (PKA) signaling pathway in Cryptococcus neoformans, a species that causes meningitis in humans, and Ustilago maydis, a model phytopathogen that causes a smut disease on maize. Environmental sensing by the cAMP/PKA pathway regulates the production of key virulence traits in C. neoformans including the polysaccharide capsule and melanin. For U. maydis, the pathway controls the dimorphic transition from budding growth to the filamentous cell type required for proliferation in plant tissue. We discuss recent advances in identifying new components of the cAMP/PKA pathway in these pathogens and highlight an emerging theme that pathway signaling influences iron acquisition.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, and Culture Collection and DNA Bank of Mushrooms, Incheon National University, Incheon, 406-772, Republic of Korea
| | | | | |
Collapse
|
20
|
Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. mBio 2015. [PMID: 26199329 PMCID: PMC4513080 DOI: 10.1128/mbio.00918-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants.
Collapse
|
21
|
Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Sci Rep 2015; 5:8688. [PMID: 25732347 PMCID: PMC4894404 DOI: 10.1038/srep08688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
The atypical Gβ-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed β transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.
Collapse
|
22
|
Heitman J, Carter DA, Dyer PS, Soll DR. Sexual reproduction of human fungal pathogens. Cold Spring Harb Perspect Med 2014; 4:4/8/a019281. [PMID: 25085958 DOI: 10.1101/cshperspect.a019281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dee A Carter
- School of Molecular Bioscience, University of Sydney, Sydney NSW 2006, Australia
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - David R Soll
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
23
|
A Ric8/synembryn homolog promotes Gpa1 and Gpa2 activation to respectively regulate cyclic AMP and pheromone signaling in Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:1290-9. [PMID: 25084863 DOI: 10.1128/ec.00109-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1(Q284L) allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1(Q284L) negatively affected its interaction with Ric8, whereas the activated Gpa2(Q203L) allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans.
Collapse
|
24
|
Wang Y, Shen G, Gong J, Shen D, Whittington A, Qing J, Treloar J, Boisvert S, Zhang Z, Yang C, Wang P. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans. J Biol Chem 2014; 289:12202-16. [PMID: 24659785 DOI: 10.1074/jbc.m113.537183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.
Collapse
Affiliation(s)
- Yanli Wang
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bloom ALM, Panepinto JC. RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:393-406. [PMID: 24497369 DOI: 10.1002/wrna.1219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 01/26/2023]
Abstract
Cryptococcus neoformans is an environmental fungus that can cause severe disease in humans. C. neoformans encounters a multitude of stresses within the human host to which it must adapt in order to survive and proliferate. Upon stressful changes in the external milieu, C. neoformans must reprogram its gene expression to properly respond to and combat stress in order to maintain homeostasis. Several studies have investigated the changes that occur in response to these stresses to begin to unravel the mechanisms of adaptation in this organism. Here, we review studies that have explored stress-induced changes in gene expression with a focus on host temperature adaptation. We compare global messenger RNA (mRNA) expression data compiled from several studies and identify patterns that suggest that orchestrated, transient responses occur. We also utilize the available expression data to explore the possibility of a common stress response that may contribute to cellular protection against a variety of stresses in C. neoformans. In addition, we review studies that have revealed the significance of post-transcriptional mechanisms of mRNA regulation in response to stress, and discuss how these processes may contribute to adaptation and virulence.
Collapse
Affiliation(s)
- Amanda L M Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
26
|
Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. J Microbiol 2014; 52:35-43. [DOI: 10.1007/s12275-014-3072-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
|
27
|
Ramanujam R, Calvert ME, Selvaraj P, Naqvi NI. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae. PLoS Pathog 2013; 9:e1003527. [PMID: 23935502 PMCID: PMC3731250 DOI: 10.1371/journal.ppat.1003527] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.
Collapse
Affiliation(s)
- Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Meredith E. Calvert
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Fu J, Morris IR, Wickes BL. The production of monokaryotic hyphae by Cryptococcus neoformans can be induced by high temperature arrest of the cell cycle and is independent of same-sex mating. PLoS Pathog 2013; 9:e1003335. [PMID: 23658522 PMCID: PMC3642078 DOI: 10.1371/journal.ppat.1003335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/18/2013] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus neoformans is a heterothallic fungal pathogen of humans and animals. Although the fungus grows primarily as a yeast, hyphae are produced during the sexual phase and during a process called monokaryotic fruiting, which is also believed to involve sexual reproduction, but between cells of the same mating type. Here we report a novel monokaryotic fruiting mechanism that is dependent on the cell cycle and occurs in haploid cells in the absence of sexual reproduction. Cells grown at 37°C were found to rapidly produce hyphae (∼4 hrs) and at high frequency (∼40% of the population) after inoculation onto hyphae-inducing agar. Microscopic examination of the 37°C seed culture revealed a mixture of normal-sized and enlarged cells. Micromanipulation of single cells demonstrated that only enlarged cells were able to produce hyphae and genetic analysis confirmed that hyphae did not arise from α-α mating or endoduplication. Cell cycle analysis revealed that cells grown at 37°C had an increased population of cells in G2 arrest, with the proportion correlated with the frequency of monokaryotic fruiting. Cell sorting experiments demonstrated that enlarged cells were only found in the G2-arrested population and only this population contained cells able to produce hyphae. Treatment of cells at low temperature with the G2 cell cycle arrest agent, nocodazole, induced hyphal growth, confirming the role of the cell cycle in this process. Taken together, these results reveal a mating-independent mechanism for monokaryotic fruiting, which is dependent on the cell cycle for induction of hyphal competency. Fungi typically grow vegetatively as either yeast or hyphae. Many of the major human fungal pathogens can generate both morphologies and are referred to as the dimorphic fungi. Cryptococcus neoformans is a yeast-like fungus that has not been traditionally thought to be dimorphic since hyphae production typically occurs during the mating process between cells of opposite mating types. However, C. neoformans also can generate the hyphal state from haploid cells (called monokaryotic or haploid fruiting) in the absence of the opposite mating type. Recent studies have shown that the mechanism behind this process also involves mating, however, the mating reaction occurs between cells of the same mating type. Here we describe a unique mechanism responsible for monokaryotic fruiting that is independent of mating and does not proceed through a diploid intermediate. Instead, the key requirement for hyphal induction appears to be cell cycle arrest. Importantly, arrested cells display an enlarged cell phenotype, which has been observed in vivo in recent reports and has been hypothesized to be a novel protection strategy against host defenses. C. neoformans appears to have an extensive morphological repertoire, which likely contributes to its success as both a pathogen and a saprophyte.
Collapse
Affiliation(s)
- Jianmin Fu
- The Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ian R. Morris
- The Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brian L. Wickes
- The Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Henk DA, Shahar-Golan R, Devi KR, Boyce KJ, Zhan N, Fedorova ND, Nierman WC, Hsueh PR, Yuen KY, Sieu TPM, Kinh NV, Wertheim H, Baker SG, Day JN, Vanittanakom N, Bignell EM, Andrianopoulos A, Fisher MC. Clonality despite sex: the evolution of host-associated sexual neighborhoods in the pathogenic fungus Penicillium marneffei. PLoS Pathog 2012; 8:e1002851. [PMID: 23055919 PMCID: PMC3464222 DOI: 10.1371/journal.ppat.1002851] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/25/2012] [Indexed: 12/04/2022] Open
Abstract
Molecular genetic approaches typically detect recombination in microbes regardless of assumed asexuality. However, genetic data have shown the AIDS-associated pathogen Penicillium marneffei to have extensive spatial genetic structure at local and regional scales, and although there has been some genetic evidence that a sexual cycle is possible, this haploid fungus is thought to be genetically, as well as morphologically, asexual in nature because of its highly clonal population structure. Here we use comparative genomics, experimental mixed-genotype infections, and population genetic data to elucidate the role of recombination in natural populations of P. marneffei. Genome wide comparisons reveal that all the genes required for meiosis are present in P. marneffei, mating type genes are arranged in a similar manner to that found in other heterothallic fungi, and there is evidence of a putatively meiosis-specific mutational process. Experiments suggest that recombination between isolates of compatible mating types may occur during mammal infection. Population genetic data from 34 isolates from bamboo rats in India, Thailand and Vietnam, and 273 isolates from humans in China, India, Thailand, and Vietnam show that recombination is most likely to occur across spatially and genetically limited distances in natural populations resulting in highly clonal population structure yet sexually reproducing populations. Predicted distributions of three different spatial genetic clusters within P. marneffei overlap with three different bamboo rat host distributions suggesting that recombination within hosts may act to maintain population barriers within P. marneffei.
Collapse
Affiliation(s)
- Daniel A Henk
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang L, Zhai B, Lin X. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002765. [PMID: 22737071 PMCID: PMC3380952 DOI: 10.1371/journal.ppat.1002765] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/07/2012] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans is a ubiquitous human fungal pathogen. This pathogen can undergo morphotype transition between the yeast and the filamentous form and such morphological transition has been implicated in virulence for decades. Morphotype transition is typically observed during mating, which is governed by pheromone signaling. Paradoxically, components specific to the pheromone signaling pathways play no or minimal direct roles in virulence. Thus, the link between morphotype transition and virulence and the underlying molecular mechanism remain elusive. Here, we demonstrate that filamentation can occur independent of pheromone signaling and mating, and both mating-dependent and mating-independent morphotype transition require the transcription factor Znf2. High expression of Znf2 is necessary and sufficient to initiate and maintain sex-independent filamentous growth under host-relevant conditions in vitro and during infection. Importantly, ZNF2 overexpression abolishes fungal virulence in murine models of cryptococcosis. Thus, Znf2 bridges the sex-independent morphotype transition and fungal pathogenicity. The impacts of Znf2 on morphological switch and pathogenicity are at least partly mediated through its effects on cell adhesion property. Cfl1, a Znf2 downstream factor, regulates morphogenesis, cell adhesion, biofilm formation, and virulence. Cfl1 is the first adhesin discovered in the phylum Basidiomycota of the Kingdom Fungi. Together with previous findings in other eukaryotic pathogens, our findings support a convergent evolution of plasticity in morphology and its impact on cell adhesion as a critical adaptive trait for pathogenesis. Although morphogenesis and virulence are commonly associated in many eukaryotic pathogens, the nature of such association is often unknown. For example, Cryptococcus neoformans, a fungal pathogen that causes cryptococcal meningitis, typically undergoes morphological transition between the yeast and the filamentous form during mating. However, molecules that are critical for mating do not directly impact fungal virulence. Thus, the nature of the long observed association between morphotype and virulence in this microbe remains elusive despite decades of effort. Here we demonstrate that constitutively activated pheromone signaling is insufficient to drive morphological transition under mating-suppressing conditions, including those relevant to host physiology. Rather, we demonstrate that sex-independent morphological switching is driven by the transcription factor Znf2 and this regulator controls the ability of this fungus to cause disease. Znf2 governs Cryptococcus morphotype and virulence potential at least partly through its effects on cell surface proteins. One novel adhesin Cfl1functions downstream of Znf2 and it orchestrates morphological switch, cell adhesion, biofilm formation, and pathogenicity. Thus, cell adhesion at least partly underlies the link between morphological transition and pathogenicity in C. neoformans. Our findings provide a platform for further elucidation of the impact of morphotype on virulence in this ubiquitous pathogen. The discovery of Cfl1 and other novel adhesins in Cryptococcus could lay a foundation for the development of vaccines or alternative therapies to combat the fatal diseases caused by this fungus.
Collapse
Affiliation(s)
- Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | | |
Collapse
|
31
|
Jeraj N, Stilla A, Petrič S, Di Girolamo M, Crešnar B, Lenasi H. Identification and partial characterization of Rhizopus nigricans Gβ proteins and their expression in the presence of progesterone. J Steroid Biochem Mol Biol 2012; 129:99-105. [PMID: 21195176 DOI: 10.1016/j.jsbmb.2010.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 12/18/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
The mammalian steroid hormone progesterone actuates a signalling pathway in the zygomycete Rhizopus nigricans which includes heterotrimeric G proteins. To investigate the possibility that the Gβ subunit of these proteins is involved in the signalling, a cDNA library from R. nigricans exposed to progesterone was prepared and a sequence coding for a Gβ subunit was searched for. Using degenerate primers, two sequences, RnGPB1 and RnGPB2, were identified that exhibited a high degree of identity with those for Gβ from other filamentous fungi, but not from yeast. The presence of more than one Gβ subunit is very rare among the fungi, and it has been to date reported only for Rhizopus oryzae. We have shown that progesterone increases the expression of RnGPB1, but has no influence on the expression of RnGPB2. Therefore, our studies imply the involvement of Gβ subunit 1 in the response of R. nigricans to progesterone. Moreover, the Gβ subunit is subjected to endogenous ADP-ribosylation in the presence of NAD, which could be important in some, as yet unknown, cell process. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Nataša Jeraj
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
32
|
Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol 2012; 49:271-83. [PMID: 22387367 DOI: 10.1016/j.fgb.2012.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/26/2022]
Abstract
To gain insight into the role of G protein-mediated signaling in virulence and development of the soilborne, wilt causing fungus Verticillium dahliae, the G protein β subunit gene (named as VGB) was disrupted in tomato race 1 strain of V. dahliae. A resulting mutant strain, 70ΔGb15, displayed drastic reduction in virulence, increased microsclerotia formation and conidiation, and decreased ethylene production compared to the corresponding wild type (wt) strain 70wt-r1. Moreover, 70ΔGb15 exhibited an elongated rather than radial growth pattern on agar media. A transformant of 70ΔGb15 (named as 70ΔGbPKAC1) that carries an extra copy of VdPKAC1, a V. dahliae gene encoding the catalytic subunit of the cAMP-dependent protein kinase A, exhibited wt growth pattern and conidiation, was unable to form microsclerotia, produced high amounts of ethylene, and exhibited virulence between that of 70ΔGb15 and 70wt-r1 on tomato plants. Phenotypical changes observed in 70ΔGb15 and 70ΔGbPKAC1 correlated with transcriptional changes in several genes involved in signaling (MAP kinase VMK1) and development (hydrophobin VDH1 and ACC synthase ACS1) of V. dahliae. Results from the present work suggest a linkage between VGB and VdPKAC1 signaling pathways in regulating virulence, hormone production and development in V. dahliae.
Collapse
Affiliation(s)
- Aliki K Tzima
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
33
|
Abstract
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, University of South Alabama, Mobile AL, USA
| |
Collapse
|
34
|
Tisch D, Kubicek CP, Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 2011; 12:613. [PMID: 22182583 PMCID: PMC3267782 DOI: 10.1186/1471-2164-12-613] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. RESULTS As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. CONCLUSIONS The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.
Collapse
Affiliation(s)
- Doris Tisch
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Christian P Kubicek
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| |
Collapse
|
35
|
Park YD, Williamson PR. 'Popping the clutch': novel mechanisms regulating sexual development in Cryptococcus neoformans. Mycopathologia 2011; 173:359-66. [PMID: 21912854 DOI: 10.1007/s11046-011-9464-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Sexual reproduction in fungal pathogens such as Cryptococcus provides natural selection and adaptation of the organisms to environmental conditions by allowing beneficial mutations to spread. However, successful mating in these fungi requires a time-critical induction of signaling pheromones when appropriate partners become available. Recently, it has been shown that the fungus uses the transcriptional equivalent of the racing technique: 'popping the clutch'-pushing in the clutch pedal, putting the car in gear, revving with the gas pedal, and then dropping the clutch pedal to accelerate rapidly. In the same way, Cryptococcus during vegetative growth constitutively matches a high rate of pheromone synthesis with a high rate of degradation to produce repressed levels of transcript. Then, when mating is required, the fungus drops the degradative machinery, resulting in a rapid induction of the pheromone. Pairing with this novel regulatory cycle is a host of mitogen-activated protein kinase cascades, cyclic AMP-dependent, and calcium-calcineurin signaling pathways that maintain these high rates of pheromone synthesis and prime downstream pathways for an effective mating response. The intersection of a number of virulence-associated traits with sexual development such as the synthesis of an immune-disruptive laccase as well as a protective polysaccharide capsule makes these rapid regulatory strategies a formidable foe in the battle against human disease.
Collapse
Affiliation(s)
- Yoon-Dong Park
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Abstract
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
37
|
Jones SK, Bennett RJ. Fungal mating pheromones: choreographing the dating game. Fungal Genet Biol 2011; 48:668-76. [PMID: 21496492 PMCID: PMC3100450 DOI: 10.1016/j.fgb.2011.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/23/2011] [Accepted: 04/05/2011] [Indexed: 01/11/2023]
Abstract
Pheromones are ubiquitous from bacteria to mammals - a testament to their importance in regulating inter-cellular communication. In fungal species, they play a critical role in choreographing interactions between mating partners during the program of sexual reproduction. Here, we describe how fungal pheromones are synthesized, their interactions with G protein-coupled receptors, and the signals propagated by this interaction, using Saccharomyces cerevisiae as a reference point. Divergence from this model system is compared amongst the ascomycetes and basidiomycetes, which reveals the wealth of information that has been gleaned from studying pheromone-driven processes across a wide spectrum of the fungal kingdom.
Collapse
Affiliation(s)
- Stephen K. Jones
- Graduate Program in Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912
| | - Richard J. Bennett
- Graduate Program in Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| |
Collapse
|
38
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
39
|
Wsp1, a GBD/CRIB domain-containing WASP homolog, is required for growth, morphogenesis, and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2011; 10:521-9. [PMID: 21357479 DOI: 10.1128/ec.00274-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogen Cryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins than Saccharomyces cerevisiae Las17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, the wsp1 mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. The wsp1 mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. An in vitro phagocytosis assay showed a higher phagocytic index for the wsp1 mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.
Collapse
|
40
|
The Gα subunit signals through the Ste50 protein during the mating pheromone response in the yeast Kluyveromyces lactis. EUKARYOTIC CELL 2011; 10:540-6. [PMID: 21335532 DOI: 10.1128/ec.00285-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast mating signal transduction pathways require a heterotrimeric G protein composed of Gα, Gβ, and Gγ subunits connected to a mitogen-activated protein kinase (MAPK) module. While in Saccharomyces cerevisiae elimination of Gα induces constitutive activation of the mating pathway, in Kluyveromyces lactis it produces partial sterility, which indicates that K. lactis Gα (KlGα) is required to positively activate mating. We use physical interaction experiments to determine that KlGα interacts with the adaptor protein KlSte50p. The Ras association (RA) domain of KlSte50p favored interaction with the GDP-bound KlGα subunit, and when the KlGα protein is constitutively activated, the interaction drops significantly. Additionally, KlSte50p strongly associates with the MAPK kinase kinase (MAPKKK) KlSte11p through its sterile alpha motif (SAM) domain. Genetic experiments placed KlSte50p downstream of the G protein α subunit, indicating that KlGα may stimulate the mating pathway via KlSte50p. Fusion of KlSte50p to the KlGβ subunit partially eliminated the requirement of KlGα for mating, indicating that one contribution of KlGα to the mating pathway is to facilitate plasma membrane anchoring of KlSte50p.
Collapse
|
41
|
Mechanisms of unisexual mating in Cryptococcus neoformans. Fungal Genet Biol 2011; 48:651-60. [PMID: 21320625 DOI: 10.1016/j.fgb.2011.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 01/22/2011] [Accepted: 02/03/2011] [Indexed: 12/25/2022]
Abstract
Sex serves a pivotal role in genetic exchange and it contributes to the fitness and genetic diversity for eukaryotic populations. Although the importance of the canonical bisexual mating has been widely accepted, the significance of the evolution and maintenance of unisexual mating observed in some eukaryotes is unclear. The recent discovery of same-sex mating in the human fungal pathogen Cryptococcus neoformans and the revelation of its impact on the Cryptococcus global population structure provide a platform to elucidate the molecular mechanisms and significance of unisexual mating. Here, we review the evidence of unisexual mating in Cryptococcus and provide some perspective on the biological significance of this life style on the survival of this important fungal pathogen in the environment and in animal hosts. We also summarize our current understanding of the molecular mechanisms governing this unconventional mode of reproduction.
Collapse
|
42
|
Jung WH, Kronstad JW. The iron-responsive, GATA-type transcription factor Cir1 influences mating in Cryptococcus neoformans. Mol Cells 2011; 31:73-7. [PMID: 21120626 PMCID: PMC3906865 DOI: 10.1007/s10059-011-0011-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 01/26/2023] Open
Abstract
Mating and sexual development have been associated with virulence in various fungal pathogens including Cryptococcus neoformans. This fungus is a significant pathogen of humans because it causes life-threatening cryptococcal meningitis in immunocompromised people such as AIDS patients. The virulence of C. neoformans is known to be associated with the mating type of the cells (α or a), with the α mating type being predominant among clinical isolates. However, the mechanisms by which mating and sexual development are controlled by environmental conditions and their relationship with virulence require further investigation. Cir1 is a GATA-type transcription factor that regulates the expression of genes required for utilization of essential metals such as iron and copper, and also genes required for major virulence factors including the polysaccharide capsule and melanin. Here we investigated the role of Cir1 in the mating of C. neoformans. Our results demonstrate that mutants lacking CIR1 are defective in mating, and that Cir1 contributes to copper mediated enhancement of sexual filamentation. Furthermore, we found that Cir1 influences the expression of mating pheromone genes suggesting that this protein plays a role in the early phase of sexual development on V8 mating medium.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Biotechnology, Chung-Ang University, Anseong 456-756, Korea
| | | |
Collapse
|
43
|
Garcia J, Sims KJ, Schwacke JH, Del Poeta M. Biochemical systems analysis of signaling pathways to understand fungal pathogenicity. Methods Mol Biol 2011; 734:173-200. [PMID: 21468990 PMCID: PMC5155339 DOI: 10.1007/978-1-61779-086-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Over the past decade, researchers have recognized the need to study biological systems as integrated systems. While the reductionist approaches of the past century have made remarkable advances of our understanding of life, the next phase of understanding comes from systems-level investigations. Additionally, biology has become a data-intensive field of research. The introduction of high throughput sequencing, microarrays, high throughput proteomics, metabolomics, and now lipidomics are producing significantly more data than can be interpreted using existing methods. The field of systems biology brings together methods from computer science, modeling, statistics, engineering, and biology to explore the volumes of data now being produced and to develop mathematical representations of metabolic, signaling, and gene regulatory systems. Advances in these methods are allowing biologists to develop new insights into the complexities of life, to predict cellular responses and treatment outcomes, and to effectively plan experiments that extend our understanding. In this chapter, we are providing the basic steps of developing and analyzing a small S-system model of a biochemical pathway related to sphingolipid metabolism in the regulation of virulence of the human fungal microbial pathogen Cryptococcus neoformans (Cn).
Collapse
Affiliation(s)
- Jacqueline Garcia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kellie J Sims
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John H Schwacke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maurizio Del Poeta
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Infectious Disease, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
44
|
Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis. Med Mycol 2010; 49:263-75. [PMID: 20818923 DOI: 10.3109/13693786.2010.512618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptococcal regulators of G protein signaling (CRG) are important for growth, differentiation, and virulence of Cryptococcus neoformans. Disruption of CRG2 resulted in dysregulated cAMP signaling and attenuated virulence, whereas disruption of CRG1 increased pheromone responses and enhanced virulence in the archetypal H99 strain. In tests with newly constructed near congenic mutants, a distinction between crg2Δ and crg1Δ gene expression was not apparent during macrophage interaction. Intranasal inoculation indicated that crg2Δ, crg1Δ, and wild-type strains reached the lungs within 0.5 hours of infection. However, CFUs were significantly decreased for crg2Δ at 2, 7, and 14 days post-infection. In contrast, crg1Δ proliferated to the same extent as the wild type (WT). Lung edema was not apparent in mice infected with crg2Δ 0.5 hours post-infection, which showed little cellular infiltrate in comparison to WT. Alveolar septal thickening was most evident in mice infected with crg1Δ, while mice infected with WT exhibited decreased septal thickening at later time points. Consistent with these observations, crg2Δ was less efficient in the elicitation of Th2 immune responses in a multiplex cytokine assay. Our results suggest that Crg2 is critical for establishment of early pulmonary infection and for persistence of infection, Crg1 regulates virulence in a strain-specific manner, and crg2Δ, crg1Δ and WT can all be distinguished on the basis of host tissue responses.
Collapse
Affiliation(s)
- Amy Whittington
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
45
|
Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics 2010; 185:1207-19. [PMID: 20516494 DOI: 10.1534/genetics.110.118315] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carbon dioxide (CO(2)) sensing and metabolism via carbonic anhydrases (CAs) play pivotal roles in survival and proliferation of pathogenic fungi infecting human hosts from natural environments due to the drastic difference in CO(2) levels. In Cryptococcus neoformans, which causes fatal fungal meningoencephalitis, the Can2 CA plays essential roles during both cellular growth in air and sexual differentiation of the pathogen. However the signaling networks downstream of Can2 are largely unknown. To address this question, the present study employed comparative transcriptome DNA microarray analysis of a C. neoformans strain in which CAN2 expression is artificially controlled by the CTR4 (copper transporter) promoter. The P(CTR4)CAN2 strain showed growth defects in a CO(2)-dependent manner when CAN2 was repressed but resumed normal growth when CAN2 was overexpressed. The Can2-dependent genes identified by the transcriptome analysis include FAS1 (fatty acid synthase 1) and GPB1 (G-protein beta subunit), supporting the roles of Can2 in fatty acid biosynthesis and sexual differentiation. Cas3, a capsular structure designer protein, was also discovered to be Can2-dependent and yet was not involved in CO(2)-mediated capsule induction. Most notably, a majority of Can2-dependent genes were environmental stress-regulated (ESR) genes. Supporting this, the CAN2 overexpression strain was hypersensitive to oxidative and genotoxic stress as well as antifungal drugs, such as polyene and azole drugs, potentially due to defective membrane integrity. Finally, an oxidative stress-responsive Atf1 transcription factor was also found to be Can2-dependent. Atf1 not only plays an important role in diverse stress responses, including thermotolerance and antifungal drug resistance, but also represses melanin and capsule production in C. neoformans. In conclusion, this study provides insights into the comprehensive signaling networks orchestrated by CA/CO(2)-sensing pathways in pathogenic fungi.
Collapse
|
46
|
Shen G, Whittington A, Song K, Wang P. Pleiotropic function of intersectin homologue Cin1 in Cryptococcus neoformans. Mol Microbiol 2010; 76:662-76. [PMID: 20345666 DOI: 10.1111/j.1365-2958.2010.07121.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The manifestation of virulence traits in Cryptococcus neoformans is thought to rely on intracellular transport, a process not fully explored in this pathogenic fungus. Through interaction cloning, we identified a multi-modular protein, Cin1 (cryptococcal intersectin 1), whose domain structure is similar to that of the human endocytic protein ITSN1. Cin1 contains an N-terminal EH domain, a central coiled-coil region, a WH2 domain, two SH3 domains and a C-terminal RhoGEF (DH)-PH domain. Interestingly, alternative mRNA splicing resulted in two Cin1 isoforms, and Cin1 homologues are also restricted to basidiomycetous fungi. Disruption of the CIN1 gene had a pleiotropic effect on growth, normal cytokinesis, intracellular transports and the production of several virulence factors. Additionally, Cin1 interacts with cryptococcal Cdc42 and Wsp1 (a WASP homologue) proteins in vitro, suggesting a conserved role in the regulation of the actin cytoskeleton. However, deletion of RhoGEF or SH3 and RhoGEF domains did not result in any phenotypic changes, suggesting that functional redundancy exists in proteins containing similar domains or that the activities by other domains are necessary for Cin1 function. Our study presents the first evidence of a multi-modular protein whose function in intracellular transport underlies the growth, differentiation and virulence of a pathogenic microorganism.
Collapse
Affiliation(s)
- Gui Shen
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
47
|
Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans. PLoS Genet 2010; 6:e1000860. [PMID: 20195516 PMCID: PMC2829064 DOI: 10.1371/journal.pgen.1000860] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Collapse
|
48
|
Navarro-Olmos R, Kawasaki L, Domínguez-Ramírez L, Ongay-Larios L, Pérez-Molina R, Coria R. The beta subunit of the heterotrimeric G protein triggers the Kluyveromyces lactis pheromone response pathway in the absence of the gamma subunit. Mol Biol Cell 2010; 21:489-98. [PMID: 20016006 PMCID: PMC2814793 DOI: 10.1091/mbc.e09-06-0472] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022] Open
Abstract
The Kluyveromyces lactis heterotrimeric G protein is a canonical Galphabetagamma complex; however, in contrast to Saccharomyces cerevisiae, where the Ggamma subunit is essential for mating, disruption of the KlGgamma gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Ggamma, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and DeltaGgamma cells of K. lactis. In contrast to the moderate sterility shown by the single DeltaKlGalpha, the double DeltaKlGalpha DeltaKlGgamma mutant displayed full sterility. A partial sterile phenotype of the DeltaKlGgamma mutant was obtained in conditions where the KlGbeta subunit interacted defectively with the Galpha subunit. The addition of a CCAAX motif to the C-end of KlGbeta, partially suppressed the lack of both KlGalpha and KlGgamma subunits. In cells lacking KlGgamma, the KlGbeta subunit cofractionated with KlGalpha in the plasma membrane, but in the DeltaKlGalpha DeltaKlGgamma strain was located in the cytosol. When the KlGbeta-KlGalpha interaction was affected in the DeltaKlGgamma mutant, most KlGbeta fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gbeta subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Ggamma subunit.
Collapse
Affiliation(s)
- Rocío Navarro-Olmos
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Laura Kawasaki
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Lenin Domínguez-Ramírez
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Davis, CA 95616
| | - Laura Ongay-Larios
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Rosario Pérez-Molina
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Roberto Coria
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| |
Collapse
|
49
|
G(alpha) and Gbeta proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. EUKARYOTIC CELL 2009; 8:1001-13. [PMID: 19411619 DOI: 10.1128/ec.00258-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified and functionally characterized genes encoding three Galpha proteins and one Gbeta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Galpha(i) and Galpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.
Collapse
|
50
|
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the cause of life-threatening meningoencephalitis in immunocompromised and immunocompetent individuals respectively. The increasing incidence of cryptococcal infection as a result of the AIDS epidemic, the recent emergence of a hypervirulent cryptococcal strain in Canada and the fact that mortality from cryptococcal disease remains high have stimulated intensive research into this organism. Here we outline recent advances in our understanding of C. neoformans and C. gattii, including intraspecific complexity, virulence factors, and key signaling pathways. We discuss the molecular basis of cryptococcal virulence and the interaction between these pathogens and the host immune system. Finally, we discuss future challenges in the study and treatment of cryptococcosis.
Collapse
Affiliation(s)
- Hansong Ma
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|