1
|
Masurkar SA, Deogharkar A, Bharambe HS, Shirsat NV. Downregulation of CRX, a Group 3-specific oncogenic transcription factor, inhibits TGF-β/activin signaling in medulloblastoma cells. Biochem Biophys Res Commun 2021; 568:76-82. [PMID: 34192607 DOI: 10.1016/j.bbrc.2021.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, consists of four molecular subgroups WNT, SHH, Group 3, and Group 4. Group 3 has the worst survival rate among the four subgroups and is characterized by the expression of retina-specific genes. CRX, the master regulator of the photoreceptor differentiation, is aberrantly expressed in Group 3 medulloblastomas. CRX expression increased the proliferation, anchorage-independent growth, invasion potential, and tumorigenicity of medulloblastoma cells indicating the oncogenic role of CRX in medulloblastoma pathogenesis. CRX knockdown resulted in the downregulation of expression of several retina-specific genes like IMPG2, PDC, RCVRN. and Group 3 specific genes like GABRA5, MYC, PROM1. Thus, CRX plays a major role not only in the expression of retina-specific genes but also in defining Group 3 identity. Increased expression of several pro-apoptotic genes upon CRX knockdown suggests that CRX could protect Group 3 medulloblastoma cells from cell death. Several negative regulators of the TGF-β signaling pathway like SMAD7, PMEPA1, KLF2 were upregulated upon the CRX knockdown. Western blot analysis showed a decrease in the levels of (Phospho)-SMAD2, total levels of SMAD2, SMAD4, and an increase in the levels of SMAD7 indicating inhibition of the TGF-β signaling pathway upon CRX knockdown. Copy number variations in several genes involved in the TGF-β signaling pathway occur in a subset of Group 3 tumors. Autocrine TGF-β/activin signaling has recently been reported to be active in a subset of Group 3 medulloblastomas. CRX knockdown resulting in the inhibition of the TGF-β/activin signaling pathway demonstrates an interaction between the two Group 3 specific oncogenic pathways and suggests simultaneous targeting of both CRX and TGF-β signaling as a possible therapeutic strategy.
Collapse
Affiliation(s)
- Shalaka Arun Masurkar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Akash Deogharkar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Harish Shrikrishna Bharambe
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Neelam Vishwanath Shirsat
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
2
|
Michelis G, German OL, Villasmil R, Soto T, Rotstein NP, Politi L, Becerra SP. Pigment epithelium-derived factor (PEDF) and derived peptides promote survival and differentiation of photoreceptors and induce neurite-outgrowth in amacrine neurons. J Neurochem 2021; 159:840-856. [PMID: 34133756 DOI: 10.1111/jnc.15454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a cytoprotective protein for the retina. We hypothesize that this protein acts on neuronal survival and differentiation of photoreceptor cells in culture. The purpose of the present study was to evaluate the neurotrophic effects of PEDF and its fragments in an in vitro model of cultured primary retinal neurons that die spontaneously in the absence of trophic factors. We used Wistar albino rats. Cell death was assayed by immunofluorescence and flow cytometry through TUNEL assay, propidium iodide, mitotracker, and annexin V. Immunofluorescence of cells for visualizing rhodopsin, CRX, and antisyntaxin under confocal microscopy was performed. Neurite outgrowth was also quantified. Results show that PEDF protected photoreceptor precursors from apoptosis, preserved mitochondrial function and promoted polarization of opsin enhancing their developmental process, as well as induced neurite outgrowth in amacrine neurons. These effects were abolished by an inhibitor of the PEDF receptor or receptor-derived peptides that block ligand/receptor interactions. While all the activities were specifically conferred by short peptide fragments (17 amino acid residues) derived from the PEDF neurotrophic domain, no effects were triggered by peptides from the PEDF antiangiogenic region. The observed effects on retinal neurons imply a specific activation of the PEDF receptor by a small neurotrophic region of PEDF. Our findings support the neurotrophic PEDF peptides as neuronal guardians for the retina, highlighting their potential as promoters of retinal differentiation, and inhibitors of retinal cell death and its blinding consequences.
Collapse
Affiliation(s)
- Germán Michelis
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA.,Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Olga Lorena German
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Rafael Villasmil
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA
| | - Tamara Soto
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Nora P Rotstein
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Luis Politi
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Volonté YA, Vallese-Maurizi H, Dibo MJ, Ayala-Peña VB, Garelli A, Zanetti SR, Turpaud A, Craft CM, Rotstein NP, Politi LE, German OL. A Defective Crosstalk Between Neurons and Müller Glial Cells in the rd1 Retina Impairs the Regenerative Potential of Glial Stem Cells. Front Cell Neurosci 2019; 13:334. [PMID: 31402853 PMCID: PMC6670004 DOI: 10.3389/fncel.2019.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/08/2019] [Indexed: 01/02/2023] Open
Abstract
Müller glial cells (MGC) are stem cells in the retina. Although their regenerative capacity is very low in mammals, the use of MGC as stem cells to regenerate photoreceptors (PHRs) during retina degenerations, such as in retinitis pigmentosa, is being intensely studied. Changes affecting PHRs in diseased retinas have been thoroughly investigated; however, whether MGC are also affected is still unclear. We here investigated whether MGC in retinal degeneration 1 (rd1) mouse, an animal model of retinitis pigmentosa, have impaired stem cell properties or structure. rd1 MGC showed an altered morphology, both in culture and in the whole retina. Using mixed neuron-glial cultures obtained from newborn mice retinas, we determined that proliferation was significantly lower in rd1 than in wild type (wt) MGC. Levels of stem cell markers, such as Nestin and Sox2, were also markedly reduced in rd1 MGC compared to wt MGC in neuron-glial cultures and in retina cryosections, even before the onset of PHR degeneration. We then investigated whether neuron-glial crosstalk was involved in these changes. Noteworthy, Nestin expression was restored in rd1 MGC in co-culture with wt neurons. Conversely, Nestin expression decreased in wt MGC in co-culture with rd1 neurons, as occurred in rd1 MGC in rd1 neuron-glial mixed cultures. These results imply that MGC proliferation and stem cell markers are reduced in rd1 retinas and might be restored by their interaction with “healthy” PHRs, suggesting that alterations in rd1 PHRs lead to a disruption in neuron-glial crosstalk affecting the regenerative potential of MGC.
Collapse
Affiliation(s)
- Yanel A Volonté
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Harmonie Vallese-Maurizi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Marcos J Dibo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Victoria B Ayala-Peña
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Andrés Garelli
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Samanta R Zanetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Axel Turpaud
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Cheryl Mae Craft
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - National Research Council of Argentina (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
4
|
Kacirova M, Novacek J, Man P, Obsilova V, Obsil T. Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function. Biophys J 2017; 112:1339-1349. [PMID: 28402877 DOI: 10.1016/j.bpj.2017.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
Phosducin (Pdc) is a conserved phosphoprotein that, when unphosphorylated, binds with high affinity to the complex of βγ-subunits of G protein transducin (Gtβγ). The ability of Pdc to bind to Gtβγ is inhibited through its phosphorylation at S54 and S73 within the N-terminal domain (Pdc-ND) followed by association with the scaffolding protein 14-3-3. However, the molecular basis for the 14-3-3-dependent inhibition of Pdc binding to Gtβγ is unclear. By using small-angle x-ray scattering, high-resolution NMR spectroscopy, and limited proteolysis coupled with mass spectrometry, we show that phosphorylated Pdc and 14-3-3 form a complex in which the Pdc-ND region 45-80, which forms a part of Pdc's Gtβγ binding surface and contains both phosphorylation sites, is restrained within the central channel of the 14-3-3 dimer, with both 14-3-3 binding motifs simultaneously participating in protein association. The N-terminal part of Pdc-ND is likely located outside the central channel of the 14-3-3 dimer, but Pdc residues 20-30, which are also involved in Gtβγ binding, are positioned close to the surface of the 14-3-3 dimer. The C-terminal domain of Pdc is located outside the central channel and its structure is unaffected by the complex formation. These results indicate that the 14-3-3 protein-mediated inhibition of Pdc binding to Gtβγ is based on steric occlusion of Pdc's Gtβγ binding surface.
Collapse
Affiliation(s)
- Miroslava Kacirova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Petr Man
- BioCeV-Institute of Microbiology, Czech Academy of Sciences, Vestec, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Rodgers HM, Belcastro M, Sokolov M, Mathers PH. Embryonic markers of cone differentiation. Mol Vis 2016; 22:1455-1467. [PMID: 28031694 PMCID: PMC5178185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Photoreceptor cells are born in two distinct phases of vertebrate retinogenesis. In the mouse retina, cones are born primarily during embryogenesis, while rod formation occurs later in embryogenesis and early postnatal ages. Despite this dichotomy in photoreceptor birthdates, the visual pigments and phototransduction machinery are not reactive to visual stimulus in either type of photoreceptor cell until the second postnatal week. Several markers of early cone formation have been identified, including Otx2, Crx, Blimp1, NeuroD, Trβ2, Rorβ, and Rxrγ, and all are thought to be involved in cellular determination. However, little is known about the expression of proteins involved in cone visual transduction during early retinogenesis. Therefore, we sought to characterize visual transduction proteins that are expressed specifically in photoreceptors during mouse embryogenesis. METHODS Eye tissue was collected from control and phosducin-null mice at embryonic and early postnatal ages. Immunohistochemistry and quantitative reverse transcriptase-PCR (qPCR) were used to measure the spatial and temporal expression patterns of phosducin (Pdc) and cone transducin γ (Gngt2) proteins and transcripts in the embryonic and early postnatal mouse retina. RESULTS We identified the embryonic expression of phosducin (Pdc) and cone transducin γ (Gngt2) that coincides temporally and spatially with the earliest stages of cone histogenesis. Using immunohistochemistry, the phosducin protein was first detected in the retina at embryonic day (E)12.5, and cone transducin γ was observed at E13.5. The phosducin and cone transducin γ proteins were seen only in the outer neuroblastic layer, consistent with their expression in photoreceptors. At the embryonic ages, phosducin was coexpressed with Rxrγ, a known cone marker, and with Otx2, a marker of photoreceptors. Pdc and Gngt2 mRNAs were detected as early as E10.5 with qPCR, although at low levels. CONCLUSIONS Visual transduction proteins are expressed at the earliest stages in developing cones, well before the onset of opsin gene expression. Given the delay in opsin expression in rods and cones, we speculate on the embryonic function of these G-protein signaling components beyond their roles in the visual transduction cascade.
Collapse
Affiliation(s)
- Helen M. Rodgers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV,Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV
| | - Marycharmain Belcastro
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV
| | - Maxim Sokolov
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| | - Peter H. Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV,Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV,Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV
| |
Collapse
|
6
|
Riesenberg AN, Brown NL. Cell autonomous and nonautonomous requirements for Delltalike1 during early mouse retinal neurogenesis. Dev Dyn 2016; 245:631-40. [PMID: 26947267 DOI: 10.1002/dvdy.24402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the vertebrate retina, six neuronal and one glial cell class are produced from a common progenitor pool. During neurogenesis, adjacent retinal cells use Notch signaling to maintain a pool of progenitors by blocking particular cells from differentiating prematurely. In mice there are multiple Notch pathway ligands and receptors, but the role(s) of each paralogue during retinal histogenesis remains only partially defined. RESULTS Here we analyzed the cell autonomous and nonautonomous requirements for the Deltalike1(Dll1) ligand during prenatal retinogenesis. We used the α-Cre driver to simultaneously delete a Dll1 conditional allele and activate the Z/EG reporter, then quantified Dll1 mutant phenotypes within and outside of this α-Cre GFP-marked lineage. We found that Dll1 activity is required for Hes1 expression, both autonomously and nonautonomously, but were surprised that retinal ganglion cell differentiation is only blocked cell autonomously. Moreover, Dll1 does not act during cone photoreceptor neurogenesis. Finally, Dll1 mutant adult retinas contained small retinal rosettes and RGC patterning defects but were otherwise normal. CONCLUSIONS Although Dll1 participates in bidirectional (cis + trans) Notch signaling to regulate Hes1 expression, it only acts cell autonomously (in cis) to interpret inhibitory signals from other cells that block RGC neurogenesis. Developmental Dynamics 245:631-640, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio.,Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California
| |
Collapse
|
7
|
Pak JS, Lee EJ, Craft CM. The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation. Mol Vis 2015; 21:1281-94. [PMID: 26664249 PMCID: PMC4663191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Well-established laboratory mouse lines are important in creating genetically engineered knockout mouse models; however, these routinely used inbred strains are prone to spontaneous and deleterious mutations. One of these strains, the commonly used C57BL/6N (B6N), was discovered to carry a point mutation in the Crumbs homolog 1 (Crb1(rd8) ) gene, which codes for a developmental protein involved in tight junction formation at the outer limiting membrane (OLM). This mutation disrupts photoreceptor polarity and leads to retinal degeneration. It was hypothesized that the G-protein receptor kinase 1 knockouts (Grk1(-/-) ), which were based on the B6N strain, would exhibit abnormal morphological phenotypes in their offspring not related to GRK1's major phosphorylation function. The hypothesis was tested by examining Grk1(-/-) with or without the Crb1(rd8) mutation. METHODS The mice strains tested were C57BL/6J (B6J), B6N, and Grk1(-/-) on either a B6J (Grk1(-/-) (;B6J)) or B6N background (Grk1(-/-) (;B6N)) and were verified with PCR genotype analysis for Grk1(-/-) and Crb (rd8) . The mice were bred and raised in complete darkness until 1 or 3 months of age and then exposed to 1,000 lux light for 24 h, followed by processing for immunohistochemistry (IHC) analysis on the retinal structure to investigate the morphological effects of light exposure. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was performed to detect photoreceptor apoptosis. RESULTS The microanatomy of the retinal sections revealed disorganization of the outer nuclear layer (ONL) in the B6N and Grk1(-/-) (;B6N) mice and a significant decrease in the thickness of the ONL in the 3-month-old Grk1(-/-) (;B6N) mice. The adherens-junction-associated protein, Zona occludens-1 (ZO-1), formed a continuous line at the OLM in the 1- and 3-month-old control B6J and Grk1(-/-) (;B6J) mice. In contrast, the B6N and Grk1(-/-) (;B6N) retinas showed discontinuous and fragmented staining for ZO-1 at the OLM at both ages. After the mice were exposed to light, TUNEL analysis showed a significant increase in photoreceptor cell death in the Grk1(-/-) (;B6J) and Grk1(-/-) (;B6N) retinas versus either the B6J or B6N retinas at 1 and 3 months of age and a small significant difference between the Grk1(-/-) (;B6J) and Grk1(-/-) (;B6N) retinas at 1 month. In addition, glial fibrillary acidic protein (GFAP) expression was enhanced in the Grk1(-/-) (;B6J) and Grk1(-/-) (;B6N) retinas at 1 and 3 months. Occasional sprouting processes of rod bipolar cells were detected in the B6N and Grk1(-/-) (;B6N) retinas, but sprouting was not detected in the B6J or Grk1(-/-) (;B6J) retinas at either age. CONCLUSIONS The B6N strain background exhibited abnormal phenotypes in the Grk1(-/-) (;B6N) retina. This study demonstrates that the B6N background can influence the phenotype of a genetic mouse knockout and introduces potential visual functional consequences of the Crb1 mutation.
Collapse
Affiliation(s)
- Joseph S. Pak
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Departments of Ophthalmology and Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Departments of Ophthalmology and Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA,Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, CA
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Departments of Ophthalmology and Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J Biol Chem 2015; 290:16246-60. [PMID: 25971962 PMCID: PMC4481224 DOI: 10.1074/jbc.m115.636563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
Collapse
Affiliation(s)
- Miroslava Kacirova
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Dalibor Kosek
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Alan Kadek
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Petr Man
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| |
Collapse
|
9
|
Obsilova V, Kopecka M, Kosek D, Kacirova M, Kylarova S, Rezabkova L, Obsil T. Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiol Res 2014; 63:S155-64. [PMID: 24564655 DOI: 10.33549/physiolres.932659] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.
Collapse
Affiliation(s)
- V Obsilova
- Department of Protein Structure, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic. and
| | | | | | | | | | | | | |
Collapse
|
10
|
Maurer KA, Riesenberg AN, Brown NL. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014; 141:3243-54. [PMID: 25100656 DOI: 10.1242/dev.106245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch signaling regulates basic helix-loop-helix (bHLH) factors as an evolutionarily conserved module, but the tissue-specific mechanisms are incompletely elucidated. In the mouse retina, bHLH genes Atoh7 and Neurog2 have distinct functions, with Atoh7 regulating retinal competence and Neurog2 required for progression of neurogenesis. These transcription factors are extensively co-expressed, suggesting similar regulation. We directly compared Atoh7 and Neurog2 regulation at the earliest stages of retinal neurogenesis in a broad spectrum of Notch pathway mutants. Notch1 and Rbpj normally block Atoh7 and Neurog2 expression. However, the combined activities of Notch1, Notch3 and Rbpj regulate Neurog2 patterning in the distal retina. Downstream of the Notch complex, we found the Hes1 repressor mediates Atoh7 suppression, but Hes1, Hes3 and Hes5 do not regulate Neurog2 expression. We also tested Notch-mediated regulation of Jag1 and Pax6 in the distal retina, to establish the appropriate context for Neurog2 patterning. We found that Notch1;Notch3 and Rbpj block co-expression of Jag1 and Neurog2, while specifically stimulating Pax6 within an adjacent domain. Our data suggest that Notch signaling controls the overall tempo of retinogenesis, by integrating cell fate specification, the wave of neurogenesis and the developmental status of cells ahead of this wave.
Collapse
Affiliation(s)
- Kate A Maurer
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
11
|
Klimova L, Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 2014; 141:1292-302. [PMID: 24523460 DOI: 10.1242/dev.098822] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The physical contact of optic vesicle with head surface ectoderm is an initial event triggering eye morphogenesis. This interaction leads to lens specification followed by coordinated invagination of the lens placode and optic vesicle, resulting in formation of the lens, retina and retinal pigmented epithelium. Although the role of Pax6 in early lens development has been well documented, its role in optic vesicle neuroepithelium and early retinal progenitors is poorly understood. Here we show that conditional inactivation of Pax6 at distinct time points of mouse neuroretina development has a different impact on early eye morphogenesis. When Pax6 is eliminated in the retina at E10.5 using an mRx-Cre transgene, after a sufficient contact between the optic vesicle and surface ectoderm has occurred, the lens develops normally but the pool of retinal progenitor cells gradually fails to expand. Furthermore, a normal differentiation program is not initiated, leading to almost complete disappearance of the retina after birth. By contrast, when Pax6 was inactivated at the onset of contact between the optic vesicle and surface ectoderm in Pax6(Sey/flox) embryos, expression of lens-specific genes was not initiated and neither the lens nor the retina formed. Our data show that Pax6 in the optic vesicle is important not only for proper retina development, but also for lens formation in a non-cell-autonomous manner.
Collapse
Affiliation(s)
- Lucie Klimova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14420 Prague 4, Czech Republic
| | | |
Collapse
|
12
|
Solaimani P, Damoiseaux R, Hankinson O. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2013; 136:107-19. [PMID: 23997114 DOI: 10.1093/toxsci/kft191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes.
Collapse
Affiliation(s)
- Parrisa Solaimani
- * Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center and
| | | | | |
Collapse
|
13
|
Rezabkova L, Kacirova M, Sulc M, Herman P, Vecer J, Stepanek M, Obsilova V, Obsil T. Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding. Biophys J 2013. [PMID: 23199924 DOI: 10.1016/j.bpj.2012.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)βγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.
Collapse
Affiliation(s)
- Lenka Rezabkova
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pushing the envelope of retinal ganglion cell genesis: context dependent function of Math5 (Atoh7). Dev Biol 2012; 368:214-30. [PMID: 22609278 DOI: 10.1016/j.ydbio.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/11/2022]
Abstract
The basic-helix-loop helix factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) development. However, only 10% of Math5-expressing cells adopt the RGC fate, and most become photoreceptors. In principle, Math5 may actively bias progenitors towards RGC fate or passively confer competence to respond to instructive factors. To distinguish these mechanisms, we misexpressed Math5 in a wide population of precursors using a Crx BAC or 2.4 kb promoter, and followed cell fates with Cre recombinase. In mice, the Crx cone-rod homeobox gene and Math5 are expressed shortly after cell cycle exit, in temporally distinct, but overlapping populations of neurogenic cells that give rise to 85% and 3% of the adult retina, respectively. The Crx>Math5 transgenes did not stimulate RGC fate or alter the timing of RGC births. Likewise, retroviral Math5 overexpression in retinal explants did not bias progenitors towards the RGC fate or induce cell cycle exit. The Crx>Math5 transgene did reduce the abundance of early-born (E15.5) photoreceptors two-fold, suggesting a limited cell fate shift. Nonetheless, retinal histology was grossly normal, despite widespread persistent Math5 expression. In an RGC-deficient (Math5 knockout) environment, Crx>Math5 partially rescued RGC and optic nerve development, but the temporal envelope of RGC births was not extended. The number of early-born RGCs (before E13) remained very low, and this was correlated with axon pathfinding defects and cell death. Together, these results suggest that Math5 is not sufficient to stimulate RGC fate. Our findings highlight the robust homeostatic mechanisms, and role of pioneering neurons in RGC development.
Collapse
|
15
|
Ballios BG, Clarke L, Coles BLK, Shoichet MS, Van Der Kooy D. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol Open 2012; 1:237-46. [PMID: 23213414 PMCID: PMC3507281 DOI: 10.1242/bio.2012027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-renewing, multipotential retinal stem cells (RSCs) reside in the pigmented ciliary epithelium of the peripheral retina in adult mammals. RSCs can give rise to rhodopsin positive-cells, which can integrate into early postnatal retina, and represent a potentially useful option for cellular therapy. The ability to purify a stem cell population and direct the differentiation toward a particular cell lineage is a challenge facing the application of stem cells in regenerative medicine. Here we use cell sorting to prospectively enrich mouse RSCs based on size, granularity and low expression of P-cadherin and demonstrate that only rare cells with defined properties proliferate to form colonies. We show that clonally-derived mouse and human RSC progeny are multipotent and can differentiate into mature rhodopsin-positive cells with high efficiency using combinations of exogenous culture additives known to influence neural retinal development, including taurine and retinoic acid. This directed RSC differentiation follows the temporal sequence of photoreceptor differentiation in vivo, and the cells exhibit morphology, protein and gene expression consistent with primary cultures of rods in vitro. These results demonstrate that the RSC, an adult stem cell, can be enriched and directed to produce photoreceptors as a first step toward a targeted cell replacement strategy to treat retinal degenerative disease.
Collapse
Affiliation(s)
- Brian G Ballios
- Institute of Medical Science, University of Toronto, 1 King's College Circle , Toronto, Ontario M5S 1A8 , Canada
| | | | | | | | | |
Collapse
|
16
|
Beetz N, Hein L. The physiological roles of phosducin: from retinal function to stress-dependent hypertension. Cell Mol Life Sci 2011; 68:599-612. [PMID: 21069424 PMCID: PMC11114795 DOI: 10.1007/s00018-010-0550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/09/2010] [Accepted: 09/29/2010] [Indexed: 01/26/2023]
Abstract
In the time since its discovery, phosducin's functions have been intensively studied both in vivo and in vitro. Phosducin's most important biochemical feature in in vitro studies is its binding to heterotrimeric G protein βγ-subunits. Data on phosducin's in vivo relevance, however, have only recently been published but expand the range of biological actions, as shown both in animal models as well as in human studies. This review gives an overview of different aspects of phosducin biology ranging from structure, phylogeny of phosducin family members, posttranscriptional modification, biochemical features, localization and levels of expression to its physiological functions. Special emphasis will be placed on phosducin's function in the regulation of blood pressure. In the second part of this article, findings concerning cardiovascular regulation and their clinical relevance will be discussed on the basis of recently published data from gene-targeted mouse models and human genetic studies.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
- Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
- Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Yetemian RM, Craft CM. Characterization of the pituitary tumor transforming gene 1 knockout mouse retina. Neurochem Res 2011; 36:636-44. [PMID: 21203837 DOI: 10.1007/s11064-010-0334-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 11/26/2022]
Abstract
Recent gene expression studies on mouse models for retinal degeneration identified deregulation of Pituitary tumor transforming gene 1 (Pttg1) as a potential susceptibility factor involved in photoreceptor cell death. Pttg1 is a transcription regulatory protein involved in sister chromatid segregation, and Pttg1(-/-) mice exhibit testicular and splenic hypoplasia, thymic hyperplasia, aberrant cell cycle progression, chromosome instability, and impaired glucose homeostasis leading to diabetes, particularly in older males. Due to Pttg1 deregulation in dystrophic retinas, we characterized Pttg1(-/-) retinas using Hematoxylin and Eosin (H&E) staining, immunohistochemistry (IHC), and electroretinography (ERG). Seven month old Pttg1(-/-) mice were also examined for a diabetic retinopathy phenotype using Fluorescein Angiography (FA) to test for neovascularization. Our data reveal that up to 9 months of age, Pttg1(-/-) retinas have a healthy morphology and normal photoreceptor function. This study lays the groundwork for further investigation into the relevance of Pttg1 in retinal dystrophy.
Collapse
Affiliation(s)
- Rosanne M Yetemian
- Division of Retinal Molecular Biology, Department of Ophthalmology, The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | | |
Collapse
|
18
|
Yetemian RM, Brown BM, Craft CM. Neovascularization, enhanced inflammatory response, and age-related cone dystrophy in the Nrl-/-Grk1-/- mouse retina. Invest Ophthalmol Vis Sci 2010; 51:6196-206. [PMID: 20688726 DOI: 10.1167/iovs.10-5452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The effects of aging and light exposure on cone photoreceptor survival were compared between mouse retinas of neural retina leucine zipper knockout (Nrl(-/-)) mice and double-knockout mice lacking G-protein-coupled receptor kinase 1 (Nrl(-/-)Grk1(-/-)). METHODS Mice were reared in total darkness, ambient cyclic light, or constant light, and their retinas were evaluated from 1 to 9 months of age using immunohistochemistry, electroretinography, and fluorescein angiography. Retinal gene expression and statistically significant probe sets were categorized using analysis software. Select gene expression changes were confirmed with quantitative RT-PCR. RESULTS In contrast to retinas from Nrl(-/-), those from Nrl(-/-)Grk1(-/-) exhibit a progressive loss of the outer nuclear layer, retinal physiology deficits, and a higher rate of degeneration with increasing age that is independent of environmental light exposure. Changes in retinal neovascularization occur in the Nrl(-/-)Grk1(-/-) at 1 month, before the onset of significant cone functional deficits. Microarray analyses demonstrate statistically significant changes in transcript levels of more than 400 genes, of which the oncostatin M signaling pathway and the inflammatory disease response network were identified. CONCLUSIONS These data demonstrate that the loss of functional Grk1 on the enhanced S-cone Nrl(-/-) background exacerbates age-related cone dystrophy in a light-independent manner, mediated partly through the inflammatory response pathway and neovascularization. According to these findings, Grk1 helps to maintain a healthy cone environment, and the Nrl(-/-)Grk1(-/-) mouse allows examination of the alternative roles of Grk1 in cone photoreceptor homeostasis.
Collapse
Affiliation(s)
- Rosanne M Yetemian
- Doheny Eye Institute, Department of Ophthalmology, Division of Retinal Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9224, USA
| | | | | |
Collapse
|
19
|
Zuniga FI, Craft CM. Deciphering the structure and function of Als2cr4 in the mouse retina. Invest Ophthalmol Vis Sci 2010; 51:4407-15. [PMID: 20375344 DOI: 10.1167/iovs.10-5251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The role of Als2cr4 (amyotrophic lateral sclerosis 2 [juvenile] chromosome region, candidate 4; also known as hypothetical protein FLJ33282) in the mouse retina was determined by characterizing the molecular structure, cellular interacting partners, and potential biochemical functions. Previous in situ hybridization and gene expression profiles show that the mRNAs encoding Als2cr4 are abundant in the eye, hippocampus, cerebellum, and olfactory bulb. METHODS From predicted antigenic epitopes of Als2cr4, two novel antibodies were developed to examine protein expression and morphologic localization in retinas from light-adapted and dark-adapted mice by immunohistochemistry, immunoblot analysis, and immunoelectron microscopy, and then immunoprecipitation was performed to identify interacting proteins by mass spectroscopy. RESULTS Peptide antibodies with Als2cr4 antigenic epitopes from either the amino- or carboxyl terminus were characterized with Als2cr4 recombinant proteins and peptide competition assays. Als2cr4 is a 45-kDa insoluble protein, highly enriched in retina, and localizes to photoreceptor outer segments, ciliary complex, and horizontal cells in the outer plexiform layer. Immunoelectron microscopy for Als2cr4 verified its expression in the discs of photoreceptor outer segments. Immunoprecipitation and mass spectroscopy identified eight potential interacting partners: vimentin, actin, myosin Va, myosin VI, myosin X, myosin XIV, kinesin 1, Als2cr4, and lamin B-1. CONCLUSIONS Als2cr4 is a novel protein, with a probable tetraspanin-like membrane structure, that is localized in photoreceptors and in the postsynaptic outer plexiform layer and that interacts with cytoskeletal proteins. Als2cr4 may be involved in membrane transport between the photoreceptor inner and outer segments and may be a key component in maintaining the structural integrity of the outer segment.
Collapse
Affiliation(s)
- Freddi I Zuniga
- Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Los Angeles, CA 90033-9224, USA
| | | |
Collapse
|
20
|
Brzezinski JA, Lamba DA, Reh TA. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 2010; 137:619-29. [PMID: 20110327 DOI: 10.1242/dev.043968] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Photoreceptors, rods and cones are the most abundant cell type in the mammalian retina. However, the molecules that control their development are not fully understood. In studies of photoreceptor fate determination, we found that Blimp1 (Prdm1) is expressed transiently in developing photoreceptors. We analyzed the function of Blimp1 in the mouse retina using a conditional deletion approach. Developmental analysis of mutants showed that Otx2(+) photoreceptor precursors ectopically express the bipolar cell markers Chx10 (Vsx2) and Vsx1, adopting bipolar instead of photoreceptor fate. However, this fate shift did not occur until the time when bipolar cells are normally specified during development. Most of the excess bipolar cells died around the time of bipolar cell maturation. Our results suggest that Blimp1 expression stabilizes immature photoreceptors by preventing bipolar cell induction. We conclude that Blimp1 regulates the decision between photoreceptor and bipolar cell fates in the Otx2(+) cell population during retinal development.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- University of Washington, Department of Biological Structure, Seattle, WA 98195, USA
| | | | | |
Collapse
|
21
|
A hypoplastic retinal lamination in the purpurin knock down embryo in zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:517-24. [PMID: 20238054 DOI: 10.1007/978-1-4419-1399-9_59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently, we cloned a photoreceptor-specific purpurin cDNA from axotomized goldfish retina. In the present study, we investigate the structure of zebrafish purpurin genomic DNA and its function during retinal development. First, we cloned a 3.7-kbp genomic DNA fragment including 1.4-kbp 5'-flanking region and 2.3-kbp full-length coding region. In the 1.4-kbp 5'-upstream region, there were some cone-rod homeobox (crx) protein binding motifs. The vector of the 1.4-kbp 5'-flanking region combined with the reporter GFP gene showed specific expression of this gene only in the photoreceptors. Although the first appearance time of purpurin mRNA expression was a little bit later (40 hpf) than that of crx (17-24 hpf), the appearance site was identical to the ventral part of the retina. Next, we made purpurin or crx knock down embryos with morpholino antisense oligonucleotides. The both morphants (purpurin and crx) showed similar abnormal phenotypes in the eye development; small size of eyeball and lacking of retinal lamination. Furthermore, co-injection of crx morpholino and purpurin mRNA significantly rescued these abnormalities. These data strongly indicate that purpurin is a key molecule for the cell differentiation during early retinal development in zebrafish under transcriptional crx regulation.
Collapse
|
22
|
Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 2009; 29:12865-77. [PMID: 19828801 DOI: 10.1523/jneurosci.3382-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertebrate retinal progenitor cells (RPCs) are pluripotent, but pass through competence states that progressively restrict their developmental potential (Cepko et al., 1996; Livesey and Cepko, 2001; Cayouette et al., 2006). In the rodent eye, seven retinal cell classes differentiate in overlapping waves, with RGCs, cone photoreceptors, horizontals, and amacrines forming predominantly before birth, and rod photoreceptors, bipolars, and Müller glia differentiating postnatally. Both intrinsic and extrinsic factors regulate each retinal cell type (for review, see Livesey and Cepko, 2001). Here, we conditionally deleted the transcription factor Rbpj, a critical integrator of multiple Notch signals (Jarriault et al., 1995; Honjo, 1996; Kato et al., 1997; Han et al., 2002), during prenatal mouse retinal neurogenesis. Removal of Rbpj caused reduced proliferation, premature neuronal differentiation, apoptosis, and profound mispatterning. To determine the cell autonomous requirements for Rbpj during RGC and cone formation, we marked Cre-generated retinal lineages with GFP expression, which showed that Rbpj autonomously promotes RPC mitotic activity, and suppresses RGC and cone fates. In addition, the progressive loss of Rbpj-/- RPCs resulted in a diminished progenitor pool available for rod photoreceptor formation. This circumstance, along with the overproduction of Rbpj-/- cones, revealed that photoreceptor development is under homeostatic regulation. Finally, to understand how the Notch pathway regulates the simultaneous formation of multiple cell types, we compared the RGC and cone phenotypes of Rbpj to Notch1 (Jadhav et al., 2006b; Yaron et al., 2006), Notch3, and Hes1 mutants. We found particular combinations of Notch pathway genes regulate the development of each retinal cell type.
Collapse
|
23
|
Glubrecht DD, Kim JH, Russell L, Bamforth JS, Godbout R. Differential CRX and OTX2 expression in human retina and retinoblastoma. J Neurochem 2009; 111:250-63. [PMID: 19686387 DOI: 10.1111/j.1471-4159.2009.06322.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The histogenesis of retinoblastoma tumors remains controversial, with the cell-of-origin variably proposed to be an uncommitted retinal progenitor cell, a bipotent committed cell, or a cell committed to a specific lineage. Here, we examine the expression of two members of the orthodenticle family implicated in photoreceptor and bipolar cell differentiation, cone-rod homeobox, CRX, and orthodenticle homeobox 2, OTX2, in normal human retina, retinoblastoma cell lines and retinoblastoma tumors. We show that CRX and OTX2 have distinct expression profiles in the developing human retina, with CRX first expressed in proliferating cells and cells committed to the bipolar lineage, and OTX2 first appearing in the photoreceptor lineage. In the mature retina, CRX levels are highest in photoreceptor cells whereas OTX2 is preferentially found in bipolar cells and in the retinal pigmented epithelium. Both CRX and OTX2 are widely expressed in retinoblastoma cell lines and in retinoblastoma tumors, although CRX is more abundant than OTX2 in the differentiated elements of retinoblastoma tumors such as large rosettes, Flexner-Wintersteiner rosettes and fleurettes. Widespread expression of CRX and OTX2 in retinoblastoma tumors and cell lines suggests a close link between the cell-of-origin of retinoblastoma tumors and cells expressing CRX and OTX2.
Collapse
Affiliation(s)
- Darryl D Glubrecht
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
24
|
German OL, Buzzi E, Rotstein NP, Rodríguez-Boulan E, Politi LE. Retinal pigment epithelial cells promote spatial reorganization and differentiation of retina photoreceptors. J Neurosci Res 2009; 86:3503-14. [PMID: 18709656 DOI: 10.1002/jnr.21813] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retina differentiation involves the acquisition of a precise layered arrangement, with RPE cells in the first layer in intimate contact with photoreceptors in the second layer. Here, we developed an in vitro coculture model, to test the hypothesis that RPE cells play a pivotal role in organizing the spatial structure of the retina. We cocultured rat retinal neurons with ARPE-19 epithelial cells under various experimental conditions. Strikingly, when seeded over RPE cells, photoreceptors attached to their apical surfaces and proceeded with their development, including the increased synthesis of rhodopsin. Conversely, when we seeded RPE cells over neurons, the RPE cells rapidly detached photoreceptors from their substrata and positioned themselves underneath, thus restoring the normal in vivo arrangement. Treatment with the metalloproteinase inhibitor TIMP-1 blocked this reorganization, suggesting the involvement of metalloproteinases in this process. Reorganization was highly selective for photoreceptors because 98% of photoreceptors but very few amacrine neurons were found to redistribute on top of RPE cells. Interestingly, RPE cells were much more efficient than other epithelial or nonepithelial cells in promoting this reorganization. RPE cells also promoted the growth of photoreceptor axons away from them. An additional factor that contributed to the distal arrangement of photoreceptor axons was the migration of photoreceptor cell bodies along their own neurites toward the RPE cells. Our results demonstrate that RPE and photoreceptor cells interact in vitro in very specific ways. They also show that in vitro studies may provide important insights into the process of pattern formation in the retina.
Collapse
Affiliation(s)
- Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) and Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
25
|
Pozdeyev N, Tosini G, Li L, Ali F, Rozov S, Lee RH, Iuvone PM. Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci 2008; 27:2691-700. [PMID: 18547251 DOI: 10.1111/j.1460-9568.2008.06224.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of photoreceptor metabolism are regulated as diurnal or circadian rhythms. The nature of the signals that drive rhythms in mouse photoreceptors is unknown. Dopamine amacrine cells in mouse retina express core circadian clock genes, leading us to test the hypothesis that dopamine regulates rhythms of protein phosphorylation in photoreceptor cells. To this end we investigated the phosphorylation of phosducin, an abundant photoreceptor-specific phosphoprotein. In mice exposed to a daily light-dark cycle, robust daily rhythms of phosducin phosphorylation and retinal dopamine metabolism were observed. Phospho-phosducin levels were low during the daytime and high at night, and correlated negatively with levels of the dopamine metabolite 3,4-dihydroxyphenylacetic acid. The effect of light on phospho-phosducin levels was mimicked by pharmacological activation of dopamine D4 receptors. The amplitude of the diurnal rhythm of phospho-phosducin was reduced by > 50% in D4 receptor-knockout mice, due to higher daytime levels of phospho-phosducin. In addition, the daytime level of phospho-phosducin was significantly elevated by L-745,870, a dopamine D4 receptor antagonist. These data indicate that dopamine and other light-dependent processes cooperatively regulate the diurnal rhythm of phosducin phosphorylation. Under conditions of constant darkness a circadian rhythm of phosducin phosphorylation was observed, which correlated negatively with the circadian rhythm of 3,4-dihydroxyphenylacetic acid levels. The circadian fluctuation of phospho-phosducin was completely abolished by constant infusion of L-745,870, indicating that the rhythm of phospho-phosducin level is driven by dopamine. Thus, dopamine release in response to light and circadian clocks drives daily rhythms of protein phosphorylation in photoreceptor cells.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 2007; 19:2417-27. [PMID: 17658730 PMCID: PMC2095786 DOI: 10.1016/j.cellsig.2007.06.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023]
Abstract
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein betagamma dimers (Gbetagamma) and inhibiting their ability to interact with G protein alpha subunits (Galpha) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gbetagamma dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gbetagamma subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University Provo, Utah 84602, USA.
| | | |
Collapse
|
27
|
Young JE, Kasperek EM, Vogt TM, Lis A, Khani SC. Conserved interactions of a compact highly active enhancer/promoter upstream of the rhodopsin kinase (GRK1) gene. Genomics 2007; 90:236-48. [PMID: 17524610 DOI: 10.1016/j.ygeno.2007.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 01/18/2023]
Abstract
Rhodopsin kinase (RK) is a conserved component of the light adaptation and recovery pathways shared among rod and cone photoreceptors of a variety of species. To gain insight into transcriptional mechanisms driving RK and potentially other genes of similar spatial profile, the components and the interactions of the highly compact enhancer/promoter region (E/P) upstream of the human RK gene were examined. Cross-species comparison outlined an active 49-bp widely shared E/P core as the major site of conservation in the entire 5' flanking sequence. The area consisted of a bicoid-type homeodomain recognition cassette and a unique T-rich module interacting with TATA-binding proteins. Homeodomain interactions involved primarily Crx and secondarily Otx2. Both strongly stimulated the E/P. In the absence of Crx, persistent E/P activity shifted from the outer retina to the inner to follow the Otx2 pattern. The spatial patterns were largely unaffected by the absence of rod transcription factors, Nrl and Nr2e3, and the RK transcriptional activity preceded the surge in rod-specific transcription. Conserved bicoid homeodomain factors thus appear to be the key factors governing localization of RK E/P activity in retina and photoreceptors.
Collapse
Affiliation(s)
- Joyce E Young
- Department of Ophthalmology, Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14215, USA
| | | | | | | | | |
Collapse
|
28
|
Haider NB, Demarco P, Nystuen AM, Huang X, Smith RS, McCall MA, Naggert JK, Nishina PM. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation. Vis Neurosci 2007; 23:917-29. [PMID: 17266784 DOI: 10.1017/s095252380623027x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 10/20/2006] [Indexed: 12/27/2022]
Abstract
The transcription factor Nr2e3 is an essential component for development and specification of rod and cone photoreceptors; however, the mechanism through which it acts is not well understood. In this study, we use Nr2e3(rd7/rd7) mice that harbor a mutation in Nr2e3, to serve as a model for the human retinal disease Enhanced S Cone Syndrome. Our studies reveal that NR2E3 is expressed in late retinal progenitors and differentiating photoreceptors of the developing retina and localized to the cell bodies of mature rods and cones. In particular, we demonstrate that the abnormal increase in cone photoreceptors observed in Nr2e3(rd7/rd7) mice arise from ectopic mitotic progenitor cells that are present in the outer nuclear layer of the mature Nr2e3(rd7/rd7) retina. A prolonged phase of proliferation is observed followed by abnormal retinal lamination with fragmented and disorganized photoreceptor synapses that result in a progressive loss of rod and cone function. An extended and pronounced wave of apoptosis is also detected at P30 and temporally correlates with the phase of prolonged proliferation. Approximately twice as many apoptotic cells were detected compared to proliferating cells. This wave of apoptosis appears to affect both rod and cone cells and thus may account for the concurrent loss of rod and cone function. We further show that Nr2e3(rd7/rd7) cones do not express rod specific genes and Nr2e3(rd7/rd7) rods do not express cone specific genes. Our studies suggest that, based on its temporal and spatial expression, NR2E3 acts simultaneously in different cell types: in late mitotic progenitors, newly differentiating post mitotic cells, and mature rods and cones. In particular, this study reveals the function of NR2E3 in mitotic progenitors is to repress the cone generation program. NR2E3 is thus one of the few genes known to influence the competency of retinal progenitors while simultaneously directing the rod and cone differentiation.
Collapse
MESH Headings
- Adaptation, Ocular/genetics
- Animals
- Animals, Newborn
- Bromodeoxyuridine/metabolism
- Electroretinography/methods
- Embryo, Mammalian
- Eye Proteins/metabolism
- Gene Expression Regulation, Developmental/genetics
- In Situ Nick-End Labeling/methods
- Ki-67 Antigen/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Orphan Nuclear Receptors
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Retina/cytology
- Retinal Cone Photoreceptor Cells/physiology
- Retinal Cone Photoreceptor Cells/ultrastructure
- Retinal Degeneration/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stem Cells/physiology
- Stem Cells/ultrastructure
Collapse
Affiliation(s)
- Neena B Haider
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen H, Leung T, Giger KE, Stauffer AM, Humbert JE, Sinha S, Horstick EJ, Hansen CA, Robishaw JD. Expression of the G protein gammaT1 subunit during zebrafish development. Gene Expr Patterns 2007; 7:574-83. [PMID: 17306630 PMCID: PMC2754307 DOI: 10.1016/j.modgep.2007.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 01/02/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Here, we report the identification and expression analysis of the zebrafish G protein gammaT1 subunit gene (gngT1) during development. Similar to its human and mouse homologs, we confirm zebrafish gngT1 is expressed in the developing retina, where its transcription overlaps with the photoreceptor cell-specific marker, rhodopsin (rho). Surprisingly, we also show zebrafish gngT1 is expressed in the dorsal diencephalon, where its transcription overlaps with the pineal specific markers, arylalkylamine N-acetyltransferase-2 (annat-2) and extra-ocular rhodopsin (exorh). Analysis of the proximal promoter sequence of the zebrafish gngT1 gene identifies several conserved binding sites for the cone-rod homeobox/orthodenticle (Crx/Otx) homeodomain family of transcription factors. Using a morpholino anti-sense approach in zebrafish, we show that targeted knockdown of otx5 potently suppresses gngT1 expression in the pineal gland, whereas knockdown of crx markedly reduces gngT1 expression in the retina. Taken together, these data indicate that pineal- and retinal-specific expression of the gngT1 gene are controlled by different transcription factors and exogenous signals.
Collapse
Affiliation(s)
- Hui Chen
- Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - TinChung Leung
- Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Kathryn E. Giger
- Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Anna M. Stauffer
- Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Jasper E. Humbert
- Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Soniya Sinha
- Dept. of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Eric J. Horstick
- Dept. of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Carl A. Hansen
- Dept. of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Janet D. Robishaw
- Corresponding author. Tel.: +1 570 271 6659; fax: +1 570 271 6701. E-mail address: (J. D. Robishaw), Mail address: Weis Center for Research, 100 North Academy Ave. Danville,PA 17822, USA
| |
Collapse
|
30
|
Zhu X, Brown B, Rife L, Craft CM. Slowed photoresponse recovery and age-related degeneration in cones lacking G protein-coupled receptor kinase 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 572:133-9. [PMID: 17249566 PMCID: PMC2933831 DOI: 10.1007/0-387-32442-9_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Xuemei Zhu
- Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Ophthalmology and Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033-9224, USA
| | | | | | | |
Collapse
|
31
|
Zhu X, Wu K, Rife L, Cawley NX, Brown B, Adams T, Teofilo K, Lillo C, Williams DS, Loh YP, Craft CM. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J Neurochem 2005; 95:1351-62. [PMID: 16219026 DOI: 10.1111/j.1471-4159.2005.03460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.
Collapse
Affiliation(s)
- Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, and Departmentsof Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen J, Yoshida T, Nakano K, Bitensky MW. Subcellular localization of phosducin in rod photoreceptors. Vis Neurosci 2005; 22:19-25. [PMID: 15842737 DOI: 10.1017/s0952523805221028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/07/2022]
Abstract
Phosducin (Pd) is a 28-kD phosphoprotein whose expression in retina appears limited to photoreceptor cells. Pd binds to the β,γ subunits of transducin (Gt). Their binding affinity is markedly diminished by Pd phosphorylation. While Pd has long been regarded as a candidate for the regulation of Gt, the molecular details of Pd function remain unclear. This gap in understanding is due in part to a lack of precise information concerning the total amount and subcellular localization of rod Pd. While earlier studies suggested that Pd was a rod outer segment (ROS) protein, recent findings have demonstrated that Pd is distributed throughout the rod. In this report, the subcellular distribution and amounts of rat Pd are quantified with immunogold electron microscopy. After light or dark adaptation, retinal tissues were fixedin situand prepared for ultrathin sectioning and immunogold labeling. Pd concentrations were analyzed over the entire length of the rod. The highest Pd labeling densities were found in the rod synapse. Less intense Pd staining was observed in the ellipsoid and myoid regions, while minimal labeling densities were found in the ROS and the rod nucleus. In contrast with rod Gt, no evidence was found for light-dependent movement of Pd between inner and outer segments. There is a relative paucity of Pd in the ROS as compared with the large amounts of Gtfound there. This does not support the earlier idea that Pd could modulate Gtactivity by controlling its concentration. On the other hand, the presence of Pd in the nucleus is consistent with its possible role as a regulator of transcription. The functions of Pd in the ellipsoid and myoid regions remain unclear. The highest concentration of Pd was found at the rod synapse, consistent with a suggested role for Pd in the regulation of synaptic function.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
33
|
Otteson DC, Liu Y, Lai H, Wang C, Gray S, Jain MK, Zack DJ. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci 2004; 45:2522-30. [PMID: 15277472 PMCID: PMC2660604 DOI: 10.1167/iovs.04-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify novel transcriptional regulators of rhodopsin expression as a model for understanding photoreceptor-specific gene regulation. METHODS A bovine retinal cDNA library was screened in a yeast one-hybrid assay, with a 29-bp bovine rhodopsin promoter fragment as bait. Expression studies used RT-PCR and beta-galactosidase (LacZ) histochemistry of retinas from transgenic mice heterozygous for a targeted LacZ replacement of KLF15. Promoter transactivation assays measured luciferase expression in HEK293 cells transiently transfected with bovine rhodopsin or IRBP promoter-reporter constructs and expression constructs containing cDNAs for full or truncated KLF15, Crx (cone rod homeobox), and/or Nrl (neural retina leucine zipper). Data were analyzed with general linear models. RESULTS The zinc-finger transcription factor KLF15 was identified as a rhodopsin-promoter-binding protein in a yeast one-hybrid screen. Expression was detected by RT-PCR in multiple tissues, including the retina, where KLF15-LacZ was observed in the inner nuclear layer, ganglion cell layer, and pigmented epithelial cells, but not in photoreceptors. KLF15 repressed transactivation of rhodopsin and IRBP promoters alone and in combination with the transcriptional activators Crx and/or Nrl. Repressor activity required both a 198-amino-acid element in the N-terminal domain and the C-terminal zinc finger DNA-binding domains. CONCLUSIONS The zinc finger containing transcription factor KLF15 is a transcriptional repressor of the rhodopsin and IRBP promoters in vitro and, in the retina, is a possible participant in repression of photoreceptor-specific gene expression in nonphotoreceptor cells.
Collapse
Affiliation(s)
- Deborah C. Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuhui Liu
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Hong Lai
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - ChenWei Wang
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan Gray
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mukesh K. Jain
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald J. Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Sokolov M, Strissel KJ, Leskov IB, Michaud NA, Govardovskii VI, Arshavsky VY. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. J Biol Chem 2004; 279:19149-56. [PMID: 14973130 DOI: 10.1074/jbc.m311058200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosducin is a photoreceptor-specific protein known to interact with the beta gamma subunits of G proteins. In pursuit of the function of phosducin, we tested the hypothesis that it regulates the light-driven translocation of G protein transducin from the outer segments of rod photoreceptors to other compartments of the rod cell. Transducin translocation has been previously shown to contribute to rod adaptation to bright illumination, yet the molecular mechanisms underlying the translocation phenomenon remain unknown. In this study we provide two major lines of evidence in support of the role of phosducin in transducin translocation. First, we have demonstrated that transducin beta gamma subunits interact with phosducin along their entire intracellular translocation route, as evident from their co-precipitation in serial tangential sections from light-adapted but not dark-adapted retinas. Second, we generated a phosducin knockout mouse and found that the degree of light-driven transducin translocation in the rods of these mice was significantly reduced as compared with that observed in the rods of wild type animals. In knockout animals the translocation of transducin beta gamma subunits was affected to a larger degree than the translocation of the alpha subunit. We also found that the amount of phosducin in rods is sufficient to interact with practically all of the transducin present in these cells and that the subcellular distribution of phosducin is consistent with that of a soluble protein evenly distributed throughout the entire rod cytoplasm. Together, these data indicate that phosducin binding to transducin beta gamma subunits facilitates transducin translocation. We suggest that the mechanism of phosducin action is based on the reduction of transducin affinity to the membranes of rod outer segments, achieved by keeping the transducin beta gamma subunits apart from the alpha subunit. This increased solubility of transducin would make it more susceptible to translocation from the outer segments.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 2004; 358:1679-700. [PMID: 14561326 PMCID: PMC1693265 DOI: 10.1098/rstb.2003.1303] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.
Collapse
Affiliation(s)
- Peter Ekström
- Institute of Cell and Organism Biology, Zoology Building, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden.
| | | |
Collapse
|
36
|
GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. J Neurosci 2003. [PMID: 12853434 DOI: 10.1523/jneurosci.23-14-06152.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The shutoff mechanisms of the rod visual transduction cascade involve G-protein-coupled receptor (GPCR) kinase 1 (GRK1) phosphorylation of light-activated rhodopsin (R*) followed by rod arrestin binding. Deactivation of the cone phototransduction cascade in the mammalian retina is delineated poorly. In this study we sought to explore the potential mechanisms underlying the quenching of the phototransduction cascade in cone photoreceptors by using mouse models lacking rods and/or GRK1. Using the "pure-cone" retinas of the neural retina leucine zipper (Nrl) knock-out (KO, -/-) mice (Mears et al., 2001), we have demonstrated the light-dependent, multi-site phosphorylation of both S and M cone opsins by in situ phosphorylation and isoelectric focusing. Immunoprecipitation with affinity-purified polyclonal antibodies against either mouse cone arrestin (mCAR) or mouse S and M cone opsins revealed specific binding of mCAR to light-activated, phosphorylated cone opsins. To elucidate the potential role of GRK1 in cone opsin phosphorylation, we created Nrl and Grk1 double knock-out (Nrl-/-Grk1-/-) mice by crossing the Nrl-/- mice with Grk1-/- mice (Chen et al., 1999). We found that, in the retina of these mice, the light-activated cone opsins were neither phosphorylated nor bound with mCAR. Our results demonstrate, for the first time in a mammalian species, that cone opsins are phosphorylated and that CAR binds to phosphorylated cone opsins after light activation.
Collapse
|
37
|
Zhu X, Brown B, Li A, Mears AJ, Swaroop A, Craft CM. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. J Neurosci 2003; 23:6152-60. [PMID: 12853434 PMCID: PMC6740345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The shutoff mechanisms of the rod visual transduction cascade involve G-protein-coupled receptor (GPCR) kinase 1 (GRK1) phosphorylation of light-activated rhodopsin (R*) followed by rod arrestin binding. Deactivation of the cone phototransduction cascade in the mammalian retina is delineated poorly. In this study we sought to explore the potential mechanisms underlying the quenching of the phototransduction cascade in cone photoreceptors by using mouse models lacking rods and/or GRK1. Using the "pure-cone" retinas of the neural retina leucine zipper (Nrl) knock-out (KO, -/-) mice (Mears et al., 2001), we have demonstrated the light-dependent, multi-site phosphorylation of both S and M cone opsins by in situ phosphorylation and isoelectric focusing. Immunoprecipitation with affinity-purified polyclonal antibodies against either mouse cone arrestin (mCAR) or mouse S and M cone opsins revealed specific binding of mCAR to light-activated, phosphorylated cone opsins. To elucidate the potential role of GRK1 in cone opsin phosphorylation, we created Nrl and Grk1 double knock-out (Nrl-/-Grk1-/-) mice by crossing the Nrl-/- mice with Grk1-/- mice (Chen et al., 1999). We found that, in the retina of these mice, the light-activated cone opsins were neither phosphorylated nor bound with mCAR. Our results demonstrate, for the first time in a mammalian species, that cone opsins are phosphorylated and that CAR binds to phosphorylated cone opsins after light activation.
Collapse
Affiliation(s)
- Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, the Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9112, USA
| | | | | | | | | | | |
Collapse
|
38
|
Li A, Zhu X, Brown B, Craft CM. Melatonin enhances retinoic acid induction of cone arrestin gene expression in retinoblastoma cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:361-8. [PMID: 15180286 DOI: 10.1007/978-1-4615-0067-4_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aimin Li
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, BMT401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA
| | | | | | | |
Collapse
|
39
|
Functional Studies of AIPL1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0067-4_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang X, Xu S, Rivolta C, Li LY, Peng GH, Swain PK, Sung CH, Swaroop A, Berson EL, Dryja TP, Chen S. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function. J Biol Chem 2002; 277:43288-300. [PMID: 12215455 DOI: 10.1074/jbc.m207952200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crx (cone-rod homeobox) is a homeodomain transcription factor implicated in regulating the expression of photoreceptor and pineal genes. To identify proteins that interact with Crx in the retina, we carried out a yeast two-hybrid screen of a retinal cDNA library. One of the identified clones encodes Baf (barrier to autointegration factor), which was previously shown to have a role in mitosis and retroviral integration. Additional biochemical assays provided supporting evidence for a Baf-Crx interaction. The Baf protein is detectable in all nuclear layers of the mouse retina, including the photoreceptors and the bipolar cells where Crx is expressed. Transient transfection assays with a rhodopsin-luciferase reporter in HEK293 cells demonstrate that overexpression of Baf represses Crx-mediated transactivation, suggesting that Baf acts as a negative regulator of Crx. Consistent with this role for Baf, an E80A mutation of CRX associated with cone-rod dystrophy has a higher than normal transactivation potency but a reduced interaction with Baf. Although our studies did not identify a causative Baf mutation in retinopathies, we suggest that Baf may contribute to the phenotype of a photoreceptor degenerative disease by modifying the activity of Crx. In view of the ubiquitous expression of Baf, we hypothesize that it may play a role in regulating tissue- or cell type-specific gene expression by interacting with homeodomain transcription factors.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Ophthalmology and Visual Sciences, Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hodges MD, Vieira H, Gregory-Evans K, Gregory-Evans CY. Characterization of the genomic and transcriptional structure of the CRX gene: substantial differences between human and mouse. Genomics 2002; 80:531-42. [PMID: 12408971 DOI: 10.1006/geno.2002.6854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED We have previously shown that there is a temporal difference in human CRX: gene expression compared with that of mouse Crx. We have now characterized these genes at the genomic and transcriptional levels and here we expand on this earlier report. Human CRX: spans 25 kb and has six exons, and mouse CRX: spans 15 kb and has four exons. We isolated seven human and two mouse mRNAs generated by alternative splicing of a variable 5' untranslated region. The human and mouse genes share an evolutionarily conserved promoter, which contains OTX/CRX type and SP1/AP2 binding sites and drives expression of two conserved transcripts in both species. Additionally, the human gene has a second human-specific promoter, which has OTX/CRX type binding sites and drives expression of five other transcripts. Band shift assays have shown that six of the seven candidate OTX/CRX elements bind CRX in vitro, possibly implying that the gene can regulate its own expression. These data may account for the differences in temporal expression IN VIVO we have previously reported between these two species.
Collapse
Affiliation(s)
- Matthew D Hodges
- Section of Cell and Molecular Biology, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
42
|
Akey DT, Zhu X, Dyer M, Li A, Sorensen A, Blackshaw S, Fukuda-Kamitani T, Daiger SP, Craft CM, Kamitani T, Sohocki MM. The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Hum Mol Genet 2002; 11:2723-33. [PMID: 12374762 PMCID: PMC2585502 DOI: 10.1093/hmg/11.22.2723] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) gene have been found in patients with Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. To determine the normal function of AIPL1 and to better understand how mutations in this gene cause disease, we performed a yeast two-hybrid screen to identify AIPL1-interacting proteins in the retina. One of the identified interacting proteins corresponds to NUB1 (NEDD8 Ultimate Buster 1), which is thought to control many biological events, especially cell cycle progression, by downregulating NEDD8 expression. The AIPL1-NUB1 interaction was verified by co-immunoprecipitation studies in Y79 retinoblastoma cells, demonstrating that this interaction occurs within cells that share a number of features with retinal progenitor cells. Furthermore, we examined the localization of the AIPL1 protein within developing and adult retinas, and found that AIPL1 is present in the developing photoreceptor layer of the human retina and within the photoreceptors of the adult retina. Similar to AIPL1, NUB1 is also expressed in the developing and adult retina. Therefore, it is possible that the early-onset form of retinal degeneration seen in LCA patients with AIPL1 mutations may be due to a defect in the regulation of cell cycle progression during photoreceptor maturation. These data raise the possibility that AIPL1 is important for appropriate photoreceptor formation during development and/or survival following differentiation.
Collapse
Affiliation(s)
- Dayna T. Akey
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, the Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Michael Dyer
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Aimin Li
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, the Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Adam Sorensen
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Seth Blackshaw
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Taeko Fukuda-Kamitani
- Division of Molecular Medicine, The University of Texas–Houston Health Science Center, Houston, TX 77030, USA
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, and Department of Ophthalmology and Visual Science, The University of Texas–Houston Health Science Center, Houston, TX 77030, USA
| | - Cheryl M. Craft
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, the Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsu Kamitani
- Division of Molecular Medicine, The University of Texas–Houston Health Science Center, Houston, TX 77030, USA
- Department of Cardiology, M. D. Anderson Cancer Center, The University of Texas–Houston Health Science Center, Houston, TX 77030, USA
| | - Melanie M. Sohocki
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
- Department of Pathology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
- To whom correspondence should be addressed at: Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, USA. Tel: +1 2123054854; Fax: +1 2123421883;
| |
Collapse
|
43
|
Kobayashi Y, Hisatomi O, Yamamoto S, Tokunaga F. Distribution of rod- and cone-specific phosducins in retinas of non-mammalian vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:77-83. [PMID: 12223214 DOI: 10.1016/s1096-4959(02)00109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In mammalian retinas, it has been believed that just one kind of phosducin (PD) commonly exists in both rods and cones. However, we have previously reported that there are rod- and cone-specific PDs (OlPD-R and OlPD-C) in medaka (Oryzias latipes) retina [FEBS Lett., 502, 117-121, 2001]. To clarify the distribution and evolution of these photoreceptor type-specific PDs, we investigated PDs of another teleost and a reptile. Immunohistochemical and Western blot analyses using anti-medaka PD antisera demonstrated that two kinds of PDs are expressed in zebrafish (Danio rerio) photoreceptor cells. Our study is suggestive that teleosts generally possess rod- and cone-specific PDs. We isolated a cDNA encoding putative PD (PmlPD) of a diurnal gecko (Phelsuma madagascariensis longinsulae). Because diurnal gecko possesses a pure-cone retina, it was expected that PmlPD would be expressed in cones. Molecular phylogenetic analysis demonstrated that PmlPD was more closely related to mammalian PDs than teleost cone-specific PDs, suggesting that the rod- and cone-specific subtype of teleost PDs have arisen after the teleost-tetrapod divergence.
Collapse
Affiliation(s)
- Yuko Kobayashi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
44
|
Zhu X, Ma B, Babu S, Murage J, Knox BE, Craft CM. Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors. FEBS Lett 2002; 524:116-22. [PMID: 12135752 DOI: 10.1016/s0014-5793(02)03014-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cone arrestin (CAR) is a novel member of the arrestin superfamily expressed in retinal cone photoreceptors and the pineal gland. To understand the regulatory mechanisms controlling its cone- and pineal-specific expression, and to facilitate further functional studies using gene knockout approaches, we characterized the genomic organization and the 5'-flanking region of the mouse CAR (mCAR) gene. The mCAR gene is comprised of 17 exons and 16 introns, encoding five alternatively spliced transcripts. A 215-bp proximal promoter fragment containing a TATA box, an Sp1 site and four cone-rod homeobox-binding sites is sufficient to direct expression in cultured retinoblastoma cells and in cone photoreceptors and the pineal gland in transgenic Xenopus laevis.
Collapse
Affiliation(s)
- Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Cell and Neurobiology, The Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9112, USA
| | | | | | | | | | | |
Collapse
|
45
|
Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 2002. [PMID: 11717351 DOI: 10.1523/jneurosci.21-23-09175.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Desensitization plays an important role in the rapid termination of G-protein signaling pathways. This process, which involves phosphorylation by a G-protein-coupled receptor kinase (GRK) followed by arrestin binding, has been studied extensively in the rod photoreceptor cell of the mammalian retina. In contrast, less is known regarding desensitization in cone photoreceptor cells, which occurs more rapidly than in rod cells. Recently, our laboratory has cloned a novel GRK family member, GRK7, from the retina of a cone-dominant mammal, the 13-lined ground squirrel. Here we report the cloning of GRK7 from rod-dominant pig and human retinas, suggesting that this kinase plays a role in human visual signaling. Because GRK1 (rhodopsin kinase), the GRK that mediates rhodopsin desensitization in the rod cell, is reportedly expressed in both rods and cones, a detailed comparison of the localization of the two kinases is a necessary step toward determining their potential roles in cone visual signaling. Immunocytochemical analysis using antibodies selective for these two GRKs unexpectedly demonstrated species-specific differences in GRK7 and GRK1 expression in cones. In pigs and dogs, cones express only GRK7, whereas in mice and rats, we detected only GRK1 in cones. These results suggest that either GRK7 or GRK1 may participate in cone opsin desensitization, depending on the expression pattern of the kinases in different species. In contrast, GRK7 and GRK1 are coexpressed in monkey and human cones, suggesting that coordinate regulation of desensitization by both kinases may occur in primates.
Collapse
|
46
|
Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 2001; 21:9175-84. [PMID: 11717351 PMCID: PMC6763890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Revised: 08/02/2001] [Accepted: 08/22/2001] [Indexed: 02/22/2023] Open
Abstract
Desensitization plays an important role in the rapid termination of G-protein signaling pathways. This process, which involves phosphorylation by a G-protein-coupled receptor kinase (GRK) followed by arrestin binding, has been studied extensively in the rod photoreceptor cell of the mammalian retina. In contrast, less is known regarding desensitization in cone photoreceptor cells, which occurs more rapidly than in rod cells. Recently, our laboratory has cloned a novel GRK family member, GRK7, from the retina of a cone-dominant mammal, the 13-lined ground squirrel. Here we report the cloning of GRK7 from rod-dominant pig and human retinas, suggesting that this kinase plays a role in human visual signaling. Because GRK1 (rhodopsin kinase), the GRK that mediates rhodopsin desensitization in the rod cell, is reportedly expressed in both rods and cones, a detailed comparison of the localization of the two kinases is a necessary step toward determining their potential roles in cone visual signaling. Immunocytochemical analysis using antibodies selective for these two GRKs unexpectedly demonstrated species-specific differences in GRK7 and GRK1 expression in cones. In pigs and dogs, cones express only GRK7, whereas in mice and rats, we detected only GRK1 in cones. These results suggest that either GRK7 or GRK1 may participate in cone opsin desensitization, depending on the expression pattern of the kinases in different species. In contrast, GRK7 and GRK1 are coexpressed in monkey and human cones, suggesting that coordinate regulation of desensitization by both kinases may occur in primates.
Collapse
Affiliation(s)
- E R Weiss
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | | | |
Collapse
|
47
|
Boatright JH, Knox BE, Jones KM, Stodulkova E, Nguyen HT, Padove SA, Borst DE, Nickerson JM. Evidence of a tissue-restricting DNA regulatory element in the mouse IRBP promoter. FEBS Lett 2001; 504:27-30. [PMID: 11522290 DOI: 10.1016/s0014-5793(01)02662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of interphotoreceptor retinoid binding protein (IRBP) is limited to photoreceptor cells of the retina and pinealocytes of the pineal gland. We sought to define cis-elements of the mouse IRBP 5' flanking region that are required for this restricted activity. In vitro transient transfections of retinoblastoma and neuroblastoma cells and in vivo experiments with transgenic Xenopus laevis indicate that -1783/+101 and -156/+101 IRBP gene fragments directed expression predominantly to the retina and pineal, with minor neuronal expression elsewhere. In contrast, a -70/+101 fragment was less restrictive in controlling expression, exhibiting activity not only in retina, but also in forebrain, hindbrain, spinal cord, and motor neurons innervating gills.
Collapse
Affiliation(s)
- J H Boatright
- Department of Ophthalmology, Emory Eye Center, Atlanta, University of Emory, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kobayashi Y, Hisatomi O, Satoh T, Tokunaga F. Identification of rod- and cone-specific phosducins in teleost retinas. FEBS Lett 2001; 502:117-21. [PMID: 11583111 DOI: 10.1016/s0014-5793(01)02670-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosducin (PD) is a regulatory protein of vertebrate phototransduction cascades. In mammalian retina, it has been thought that only one kind of PD commonly exists in both rods and cones. However, we have found two kinds of PD (OIPD-R and OIPD-C) in the retina of a teleost, medaka (Oryzias latipes). In situ hybridization and immunohistochemical analysis demonstrated that OIPD-R and -C are selectively expressed in rods and cones, respectively. The antiserum against medaka PDs recognized two kinds of proteins in bluegill (Lepomis macrochirus) retina. These results suggest that rod- and cone-specific PDs exist in teleost retinas, probably creating differences in light adaptation between rods and cones.
Collapse
Affiliation(s)
- Y Kobayashi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
49
|
Abstract
The discovery of phosducin (Phd) in photoreceptor cells of the retina and the further identification of phosducin-like proteins (PhdLP) emphasizes the existence of a family of proteins characterized as cytosolic regulators of G protein functions. The individual members represent phosphoproteins with distinct tissue distributions whose highest concentrations were in the retina and the pineal gland, while lower levels were reported for tissues such as liver, spleen, striated muscle, and the brain. Several functions of Phd and PhdLP have been suggested, but their most important ability appears to be their high affinity sequestration with G betagamma subunits of heterotrimeric G proteins. This finding suggests that neutralization of G betagamma by Phd effectively impedes G protein-mediated signal transmission, since G alpha cannot reassemble with G betagamma to provide a functional G protein trimer (G alphabetagamma). Thus, it is the scavenger quality of Phd that is hypothesized to diminish intracellular communication simply by reducing the number of G proteins. An additional important function of Phd relates to the inhibition of G alpha subunits' inherent GTPase. The ability of Phd to directly bind G alpha subunits is probably of minor significance as the affinity between both proteins is low. In general, similar mechanisms have been reported for PhdLPs. In the majority of investigations concerning the interference of Phd with physiological mechanisms, the dark/light adaptation of retinal photoreceptor cells has been the most frequently studied aspect of Phd. More recently, Phd was associated with the adenylyl cyclase of olfactory cilia, as in the presence of the phosphoprotein an increased concentration of cAMP is observed. This finding is in line with the experimental outcome of permanent cell lines transfected to overexpress Phd, which exhibit sensitization to excitatory acting PGE(1), and isoproterenol, respectively. Furthermore, Phd was found to effectively slow down the mechanism of internalization of G protein-coupled opioid receptors. Pathophysiological processes associated with Phd were found for certain eye diseases. Experimental evidence suggests the development of retinal inflammation as a consequence of an autoimmunization process triggered by Phd or shorter fragments thereof. Thus, our present knowledge regarding the functions of members of the Phd family is limited currently to their control of G protein-mediated intracellular signal transmission, the process of endocytosis, and certain autoimmune diseases of the uvea and the pineal gland. However, recent information regarding the presence of certain members of the Phd family in the cell nucleus may bear new insights into the function of these compounds.
Collapse
Affiliation(s)
- R Schulz
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Königinstrasse 16, München, D-80539, Germany.
| |
Collapse
|
50
|
Chau KY, Chen S, Zack DJ, Ono SJ. Functional domains of the cone-rod homeobox (CRX) transcription factor. J Biol Chem 2000; 275:37264-70. [PMID: 10984472 DOI: 10.1074/jbc.m002763200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The paired-like homeodomain transcription factor CRX (cone-rod homeobox) is involved in regulating photoreceptor gene expression and rod outer segment development. Mutations in CRX have been associated with several retinal degenerative diseases. These conditions range from Leber congenital amaurosis (a severe cone and rod degeneration of childhood onset) to adult onset cone-rod dystrophy and retinitis pigmentosa (an adult onset condition that primarily affects rods). The goal of this study is to better understand the molecular basis of CRX function and to provide insight into how mutations in CRX cause such a variety of clinical phenotypes. We performed deletion analysis in conjunction with DNA binding and transient transfection-based transactivation studies to identify the functional domains within CRX. DNA binding requires a complete homeodomain. Furthermore, truncated proteins that did not contain an intact homeodomain failed to demonstrate detectable expression in tissue culture upon transfection. Transactivation analysis indicated that both the OTX tail and the WSP domain are important for controlling positive regulatory activity of CRX. Interestingly, the mapped CRX transactivation domains were also critical when coexpressed with NRL. Specifically, the synergy between CRX and NRL was constant regardless of which CRX variant was used.
Collapse
Affiliation(s)
- K Y Chau
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|