1
|
Kang X, Li C, Liu S, Baldwin RL, Liu GE, Li CJ. Genome-Wide Acetylation Modification of H3K27ac in Bovine Rumen Cell Following Butyrate Exposure. Biomolecules 2023; 13:1137. [PMID: 37509173 PMCID: PMC10377523 DOI: 10.3390/biom13071137] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Yang X, Wang C, Lin Y, Zhang P. Identification of Crucial Hub Genes and Differential T Cell Infiltration in Idiopathic Pulmonary Arterial Hypertension Using Bioinformatics Strategies. Front Mol Biosci 2022; 9:800888. [PMID: 35127829 PMCID: PMC8811199 DOI: 10.3389/fmolb.2022.800888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Growing evidence indicated that IPAH is a chronic immune disease. This study explored the molecular mechanisms and T cell infiltration of IPAH using integrated bioinformatics methods. Methods: Gene expression profiles of dataset GSE113439 were downloaded from the Gene Expression Omnibus and analyzed using R. Protein-protein interaction (PPI) network and gene set enrichment analysis (GSEA) were established by NetworkAnalyst. Gene Ontology enrichment analysis was performed using ClueGO. Transcription factors of differentially expressed genes (DEGs) were estimated using iRegulon. Transcription factors and selected hub genes were verified by real-time polymerase chain reaction (qPCR) in the lung tissues of rats with pulmonary artery hypertension. The least absolute shrinkage and selection operator regression model and the area under the receiver operating characteristic curve (AUC) were applied jointly to identify the crucial hub genes. Moreover, immune infiltration in IPAH was calculated using ImmuCellAI, and the correlation between key hub genes and immune cells was analyzed using R. Results: A total of 512 DEGs were screened, and ten hub genes and three transcription factors were filtered by the DEG PPI network. The DEGs were mainly enriched in mitotic nuclear division, chromosome organization, and nucleocytoplasmic transport. The ten hub genes and three transcription factors were confirmed by qPCR. Moreover, MAPK6 was identified as the most potent biomarker with an AUC of 100%, and ImmuCellAI immune infiltration analysis showed that a higher proportion of CD4-naive T cells and central memory T cells (Tcm) was apparent in the IPAH group, whereas the proportions of cytotoxic T cells (Tc), exhausted T cells (Tex), type 17 T helper cells, effector memory T cells, natural killer T cells (NKT), natural killer cells, gamma-delta T cells, and CD8 T cells were lower. Finally, MAPK6 was positively correlated with Tex and Tcm, and negatively correlated with Tc and NKT. Conclusion:MAPK6 was identified as a crucial hub gene to discriminate IPAH from the normal group. Dysregulated immune reactions were identified in the lung tissue of patients with IPAH.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Cheng Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Yicheng Lin
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
3
|
Petrozziello T, Dios AM, Mueller KA, Vaine CA, Hendriks WT, Glajch KE, Mills AN, Mangkalaphiban K, Penney EB, Ito N, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña G, Sharma N, Ozelius LJ, Bragg DC, Sadri-Vakili G. SVA insertion in X-linked Dystonia Parkinsonism alters histone H3 acetylation associated with TAF1 gene. PLoS One 2020; 15:e0243655. [PMID: 33315879 PMCID: PMC7735578 DOI: 10.1371/journal.pone.0243655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing levels of the full-length transcript. Here we sought to determine if these altered transcriptional dynamics caused by the SVA are also accompanied by local changes in histone acetylation, given that these modifications influence gene expression. Because TAF1 protein may itself exhibit histone acetyltransferase activity, we also examined whether decreased TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 associated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data suggest that the SVA insertion alters histone status in this region, which may contribute to the dysregulation of TAF1 expression.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Amanda M. Dios
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kaly A. Mueller
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Christine A. Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - William T. Hendriks
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kelly E. Glajch
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexandra N. Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kotchaphorn Mangkalaphiban
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ellen B. Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Naoto Ito
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | | | | | | | - Patrick J. Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mark A. Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L. Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Laurie J. Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
A novel variant in TAF1 affects gene expression and is associated with X-linked TAF1 intellectual disability syndrome. Neuronal Signal 2018; 2:NS20180141. [PMID: 32714589 PMCID: PMC7373232 DOI: 10.1042/ns20180141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
We investigated the genome of a 5-year-old male who presented with global developmental delay (motor, cognitive, and speech), hypotonia, possibly ataxia, and cerebellar hypoplasia of unknown origin. Whole genome sequencing (WGS) and mRNA sequencing (RNA-seq) were performed on a family having an affected proband, his unaffected parents, and maternal grandfather. To explore the molecular and functional consequences of the variant, we performed cell proliferation assays, quantitative real-time PCR (qRT-PCR) array, immunoblotting, calcium imaging, and neurite outgrowth experiments in SH-SY5Y neuroblastoma cells to compare the properties of the wild-type TATA-box-binding protein factor 1 (TAF1), deletion of TAF1, and TAF1 variant p.Ser1600Gly samples. The whole genome data identified several gene variants. However, the genome sequence data failed to implicate a candidate gene as many of the variants were of unknown significance. By combining genome sequence data with transcriptomic data, a probable candidate variant, p.Ser1600Gly, emerged in TAF1. Moreover, the RNA-seq data revealed a 90:10 extremely skewed X-chromosome inactivation (XCI) in the mother. Our results showed that neuronal ion channel genes were differentially expressed between TAF1 deletion and TAF1 variant p.Ser1600Gly cells, when compared with their respective controls, and that the TAF1 variant may impair neuronal differentiation and cell proliferation. Taken together, our data suggest that this novel variant in TAF1 plays a key role in the development of a recently described X-linked syndrome, TAF1 intellectual disability syndrome, and further extends our knowledge of a potential link between TAF1 deficiency and defects in neuronal cell function.
Collapse
|
5
|
Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P, Abad P, Perfus-Barbeoch L. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genomics 2018; 19:321. [PMID: 29724186 PMCID: PMC5934874 DOI: 10.1186/s12864-018-4686-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. Results Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. Conclusions Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4686-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loris Pratx
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Philippe Castagnone-Sereno
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Pierre Abad
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Laetitia Perfus-Barbeoch
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France. .,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France.
| |
Collapse
|
6
|
Sen S, Mandal P, Bhattacharya A, Kundu S, Roy Chowdhury R, Mondal NR, Chatterjee T, Chakravarty B, Roy S, Sengupta S. Impact of viral and host DNA methylations on HPV16-related cervical cancer pathogenesis. Tumour Biol 2017; 39:1010428317699799. [PMID: 28459195 DOI: 10.1177/1010428317699799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations within human papillomavirus (HPV) and host cellular genomes are known to occur during cervical carcinogenesis. Our objective was to analyse the influence of (1) methylation within two immunostimulatory CpG motifs within HPV16 E6 and E7 genes around the viral late promoter and their correlation, if any, with expression deregulation of host receptor (TLR9) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and (2) global DNA methylation levels within CpGs of the repetitive Alu sequences, on cervical cancer (CaCx) pathogenesis. Significantly higher proportions of CaCx samples portrayed methylation in immunostimulatory CpG motifs, compared to HPV16-positive non-malignant samples, with cases harbouring episomal HPV16 showing decreased methylation compared to those with viral integration. A significant linear trend of TLR9 upregulation was recorded in the order of HPV-negative controls < HPV16-positive non-malignant samples < HPV16-positive CaCx cases. TLR9 upregulation in cases with episomal HPV16 was again higher among those with non-methylated immunostimulatory CpG motifs. Comparison of cases with HPV-negative controls revealed that DNMT3A was significantly downregulated only among integrated cases, DNMT3B was significantly overexpressed among both categories of cases, although at variable levels, while DNMT1 failed to show any deregulated expression among the cases. Global host DNA hypomethylation, also showed a significant linear increasing trend through the progressive CaCx development stages mentioned above and was most prominently higher among cases with episomal HPV16 as opposed to viral integration. Thus, HPV16 and host methylations appear to influence CaCx pathogenesis, with differential molecular signatures among CaCx cases with episomal and integrated HPV16.
Collapse
Affiliation(s)
- Shrinka Sen
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Paramita Mandal
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- 2 Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
| | | | - Sudip Kundu
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Rahul Roy Chowdhury
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Nidhu Ranjan Mondal
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Tanmay Chatterjee
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Biman Chakravarty
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Sudipta Roy
- 4 Sri Aurobindo Seva Kendra, Kolkata, West Bengal, India
| | - Sharmila Sengupta
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
7
|
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulation of gene activity. Hyperacetylation of histones relaxes chromatin structure and is associated with transcriptional activation, whereas hypoacetylation of histones induces chromatin compaction and gene repression. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Emerging evidences revealed that plant HATs and HDACs play essential roles in regulation of gene expression in plant development and plant responses to environmental stresses. Furthermore, HATs and HDACs were shown to interact with various chromatin-remodeling factors and transcription factors involved in transcriptional regulation of multiple developmental processes.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - C-W Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - C-Y Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - K Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhang Q, Chen L, Yu X, Liu H, Akhberdi O, Pan J, Zhu X. A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora. J Basic Microbiol 2016; 56:1380-1391. [PMID: 27400176 DOI: 10.1002/jobm.201600131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/18/2016] [Indexed: 11/11/2022]
Abstract
In filamentous fungi, many gene clusters for the biosynthesis of secondary metabolites often stay silent under laboratory culture conditions because of the absence of communication with its natural environment. Epigenetic processes have been demonstrated to be critical in the expression of the genes or gene clusters. Here, we report the identification of a B-type histone acetyltransferase, Hat1, and demonstrate its significant roles in secondary metabolism, conidiation, and the cell wall integrity in the fungus Pestalotiopsis microspora. An hat1 deletion strain shows a dramatic decrease of SMs in this fungus, suggesting hat1 functions as a global regulator on secondary metabolism. Moreover, the mutant strain hat1Δ delays to produce conidia with significantly decreased number of conidia, while shows little effect on vegetative growth, suggesting that it plays a critical role in conidiation. The hypersensitivity of hat1Δ to Congo red demonstrates that disruption of hat1 impairs the integrity of cell wall. Overexpression of the wild-type hat1 allele enhances conidiation by boosting the number of conidia. This is the first report on the role of a B-type histone acetyltransferase in fungal secondary metabolism and cell wall integrity.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Longfei Chen
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Xi Yu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Heng Liu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Oren Akhberdi
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jiao Pan
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Xudong Zhu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China.,Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institution of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijin, P. R. China
| |
Collapse
|
9
|
Deeney JT, Belkina AC, Shirihai OS, Corkey BE, Denis GV. BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell. PLoS One 2016; 11:e0151329. [PMID: 27008626 PMCID: PMC4805167 DOI: 10.1371/journal.pone.0151329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50–400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jude T. Deeney
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, 650 Albany Street, X326, Boston, Massachusetts 02118, United States of America
| | - Orian S. Shirihai
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Barbara E. Corkey
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Gerald V. Denis
- Department of Pharmacology and Experimental Therapeutics, and Section of Hematology/ Oncology, Cancer Research Center; Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang H, Curran EC, Hinds TR, Wang EH, Zheng N. Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 2014; 24:1433-44. [PMID: 25412659 PMCID: PMC4260347 DOI: 10.1038/cr.2014.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/07/2023] Open
Abstract
The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest integral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA. Importantly, mutations of these residues not only compromise DNA binding by TAF1, but also abrogate its ability to rescue the ts13 mutant phenotype. Together, our results resolve the structural organization of the TAF1-TAF7 module in TFIID and unveil a critical promoter-binding function of TAF1 in transcription regulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Curran
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Edith H Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| |
Collapse
|
11
|
Bhattacharya S, Lou X, Hwang P, Rajashankar KR, Wang X, Gustafsson JÅ, Fletterick RJ, Jacobson RH, Webb P. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D. Proc Natl Acad Sci U S A 2014; 111:9103-8. [PMID: 24927529 PMCID: PMC4078864 DOI: 10.1073/pnas.1408293111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1-TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1-TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.
Collapse
Affiliation(s)
- Suparna Bhattacharya
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Xiaohua Lou
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030;Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204
| | - Peter Hwang
- University of California Medical Center, San Francisco, CA 94158
| | - Kanagalaghatta R Rajashankar
- The Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439; and
| | - Xiaoping Wang
- Department of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204;
| | | | - Raymond H Jacobson
- Department of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030
| | - Paul Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030;
| |
Collapse
|
12
|
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2013; 95:451-60. [PMID: 24319289 DOI: 10.1189/jlb.1112588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.
Collapse
Affiliation(s)
- Anna C Belkina
- 1.72 East Concord St., Rm. K520, Boston, MA 02118, USA. ; Twitter: http://www.twitter.com/GdenisBoston
| | | | | | | |
Collapse
|
13
|
Gegonne A, Devaiah BN, Singer DS. TAF7: traffic controller in transcription initiation. Transcription 2013; 4:29-33. [PMID: 23340207 DOI: 10.4161/trns.22842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
14
|
Abstract
The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.
Collapse
Affiliation(s)
- Anna C Belkina
- Cancer Research Center, Nutrition Obesity Research Center, Departments of Medicine and Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
15
|
Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol Cell Biol 2012; 32:3358-69. [PMID: 22711989 DOI: 10.1128/mcb.00416-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. Both enzymatic activities are essential for transcription from a subset of genes and G(1) progression in mammalian cells. TAF7, another TFIID subunit, binds TAF1 and inhibits TAF1 HAT activity. Here we present data demonstrating that disruption of the TAF1/TAF7 interaction within TFIID by protein phosphorylation leads to activation of TAF1 HAT activity and stimulation of cyclin D1 and cyclin A gene transcription. Overexpression and small interfering RNA knockdown experiments confirmed that TAF7 functions as a transcriptional repressor at these promoters. Release of TAF7 from TFIID by TAF1 phosphorylation of TAF7 increased TAF1 HAT activity and elevated histone H3 acetylation levels at the cyclin D1 and cyclin A promoters. Serine-264 of TAF7 was identified as a substrate for TAF1 kinase activity. Using TAF7 S264A and S264D phosphomutants, we determined that the phosphorylation state of TAF7 at S264 influences the levels of cyclin D1 and cyclin A gene transcription and promoter histone H3 acetylation. Our studies have uncovered a novel function for the TFIID subunit TAF7 as a phosphorylation-dependent regulator of TAF1-catalyzed histone H3 acetylation at the cyclin D1 and cyclin A promoters.
Collapse
|
16
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
17
|
Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76. [PMID: 18644873 DOI: 10.1128/mcb.01262-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains.
Collapse
|
18
|
Search for cellular partners of human papillomavirus type 16 E2 protein. Arch Virol 2008; 153:983-90. [PMID: 18305892 DOI: 10.1007/s00705-008-0061-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/25/2008] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that infect cutaneous and mucosal epithelia. Type 16 (HPV16) displays tropism to genital epithelia, giving rise to genital warts and cervical intraepithelial neoplasia (CIN), which is a precursor lesion to invasive carcinoma of the cervix. The great majority of human cervical cancers contain integrated HPV DNA where the E2 gene is usually disrupted, suggesting that the loss of the E2 protein is an important step in HPV-induced carcinogenesis. The HPV16 E2 protein is a regulatory protein that seems to be essential for creating favourable conditions for establishment of infection and proper completion of the viral life cycle. Recently, diverse activities of the E2 proteins have been described, but the molecular basis of these processes has not beenfully elucidated. Using a yeast two-hybrid system, we have identified epithelial cellular proteins that bind to the E2 protein of HPV16.
Collapse
|
19
|
Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, Dunham I, Komorowski J, Wadelius C. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17:708-19. [PMID: 17567991 PMCID: PMC1891332 DOI: 10.1101/gr.5540007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| | - Stefan Enroth
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Adam Ameur
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | | | | | - Patricia Respuela-Alonso
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Sarah Wilcox
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Peter D. Ellis
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Ian Dunham
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Claes Wadelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| |
Collapse
|
20
|
Durant M, Pugh BF. Genome-wide relationships between TAF1 and histone acetyltransferases in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:2791-802. [PMID: 16537921 PMCID: PMC1430310 DOI: 10.1128/mcb.26.7.2791-2802.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1.
Collapse
Affiliation(s)
- Melissa Durant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
21
|
Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 2006; 5:502-11. [PMID: 16512664 PMCID: PMC2823066 DOI: 10.1021/pr050430u] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use affinity purification of the double bromodomain protein Brd2 to isolate a multicomponent nuclear complex from cultured cells, and apply mass spectrometry/proteomics methods to identify the participants. We then confirm by immunoblot several transcription co-activators and co-repressors, proteins of the Swi/Snf chromatin remodeling complex, which regulate transcription control of cyclin A. This multiprotein complex is likely to contribute to cell cycle control and play a role in proliferation and cancer.
Collapse
Affiliation(s)
- Gerald V Denis
- Pharmacology and Medicine, Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Bartusel T, Schubert S, Klempnauer KH. Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351:171-80. [PMID: 15922873 DOI: 10.1016/j.gene.2005.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/22/2005] [Indexed: 11/25/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors which plays an important role during the cell cycle. Previous work has shown that B-Myb is phosphorylated at several sites by cyclin A/Cdk2 in the early S-phase. These phosphorylations increase the transactivation potential of B-Myb by counteracting the repressive function of an inhibitory domain located at the carboxyl-terminus of B-Myb. As yet, only a few genes have been identified as B-Myb target genes. Previous work has suggested that the cyclin D1 gene might be regulated by B-Myb. Here, we have studied the effect of B-Myb on the promoter of the cyclin D1 gene. We show that B-Myb is a potent activator of the cyclin D1 promoter and that this activation is not mediated by Myb binding sites but rather by a group of Sp1 binding sites which have previously been shown to be crucial for cyclin D1 promoter activity. Our data show that the C-terminal domain of B-Myb is required for the activation of the cyclin D1 promoter and that this part of B-Myb interacts with Sp1. Finally, we have found that the promoter of the cyclin A1 gene is also activated by B-Myb by a Sp1 binding site-dependent mechanism. The effect of B-Myb on the promoters of the cyclin A1 and D1 genes is reminiscent of the mechanism that has been proposed for the autoregulation of the B-myb promoter by B-Myb, which also involves Sp1 binding sites. Taken together, our identification of two novel B-Myb responsive promoters whose activation by B-Myb does not involve Myb binding sites extends previous evidence for the existence of a distinct mechanism of transactivation by B-Myb which is dependent on Sp1 binding sites. The observation that this mechanism is not subject to the inhibitory effect of the C-terminal domain of B-Myb but rather requires this domain supports the notion that the Sp1 site-dependent mechanism is already active in the G1-phase prior to the phosphorylation of B-Myb by cyclin A/Cdk2.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
23
|
Sinha A, Faller D, Denis G. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J 2005; 387:257-69. [PMID: 15548137 PMCID: PMC1134954 DOI: 10.1042/bj20041793] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclin A is regulated primarily through transcription control during the mammalian cell cycle. A dual mechanism of cyclin A transcriptional repression involves, on the one hand, promoter-bound inhibitory complexes of E2F transcription factors and RB (retinoblastoma) family proteins, and on the other, chromatin-directed histone deacetylase activity that is recruited to the cyclin A promoter early in the cell cycle in association with these RB proteins. This dual regulation maintains transcriptional silence of the cyclin A locus until its transcription is required in S-phase. At that time, RB family members dissociate from E2F proteins and nucleosomal restructuring of the locus takes place, to permit transcriptional activation and resultant S-phase progression to proceed. We have identified a double bromo-domain-containing protein Brd2, which exhibits apparent 'scaffold' or transcriptional adapter functions and mediates recruitment of both E2F transcription factors and chromatin-remodelling activity to the cyclin A promoter. We have shown previously that Brd2-containing nuclear, multiprotein complexes contain E2F-1 and -2. In the present study, we show that, in S-phase, they also contain histone H4-directed acetylase activity. Overexpression of Brd2 in fibroblasts accelerates the cell cycle through increased expression of cyclin A and its associated cyclin-dependent kinase activity. Chromatin immunoprecipitation studies show that Brd2 is physically present at the cyclin A promoter and its overexpression promotes increased histone H4 acetylation at the promoter as it becomes transcriptionally active, suggesting a new model for the dual regulation of cyclin A.
Collapse
Affiliation(s)
- Anupama Sinha
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Douglas V. Faller
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Gerald V. Denis
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Hilton TL, Li Y, Dunphy EL, Wang EH. TAF1 histone acetyltransferase activity in Sp1 activation of the cyclin D1 promoter. Mol Cell Biol 2005; 25:4321-32. [PMID: 15870300 PMCID: PMC1087727 DOI: 10.1128/mcb.25.10.4321-4332.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A missense mutation within the histone acetyltransferase (HAT) domain of the TATA binding protein-associated factor TAF1 induces ts13 cells to undergo a late G(1) arrest and decreases cyclin D1 transcription. We have found that TAF1 mutants (Delta844-850 and Delta848-850, from which amino acids 844 through 850 and 848 through 850 have been deleted, respectively) deficient in HAT activity are unable to complement the ts13 defect in cell proliferation and cyclin D1 transcription. Chromatin immunoprecipitation assays revealed that histone H3 acetylation was reduced at the cyclin D1 promoter but not the c-fos promoter upon inactivation of TAF1 in ts13 cells. The hypoacetylation of H3 at the cyclin D1 promoter was reversed by treatment with trichostatin A (TSA), a histone deacetylase inhibitor, or by expression of TAF1 proteins that retain HAT activity. Transcription of a chimeric promoter containing the Sp1 sites of cyclin D1 and c-fos core remained TAF1 dependent in ts13 cells. Treatment with TSA restored full activity to the cyclin D1-c-fos chimera at 39.5 degrees C. In vivo genomic footprinting experiments indicate that protein-DNA interactions at the Sp1 sites of the cyclin D1 promoter were compromised at 39.5 degrees C in ts13 cells. These data have led us to hypothesize that TAF1-dependent histone acetylation facilitates transcription factor binding to the Sp1 sites, thereby activating cyclin D1 transcription and ultimately G(1)-to-S-phase progression.
Collapse
Affiliation(s)
- Traci L Hilton
- University of Washington, School of Medicine, Department of Pharmacology, 1959 NE Pacific Street, Health Sciences Center, Box 357280, Seattle, WA 98195-7280, USA
| | | | | | | |
Collapse
|
25
|
Byers J, Eichinger D. Entamoeba invadens: restriction of ploidy by colonic short chain fatty acids. Exp Parasitol 2005; 110:203-6. [PMID: 15955313 DOI: 10.1016/j.exppara.2005.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The DNA content of Entamoeba parasites appears to be regulated by an unusual mechanism. This conclusion, however, was based on experiments that examined parasites grown in media that did not contain short chain fatty acids (SCFAs) normally found in the colonic lumen. Since one of these SCFAs, butyrate, is known to affect DNA replication in eukaryotic cells, we examined the effect of SCFAs on Entamoeba trophozoite DNA content. Similar to reports from others, we found that Entamoeba invadens trophozoite cultures grown in conventional medium (TYI-S-33) contained cells with 2N, 4N, 8N, and 16N amounts of DNA. In contrast, cultures grown in TYI medium containing colonic SCFAs added in place of glucose contained a minor population with 2N, a major population with 4N, and very few cells with higher amounts of DNA. SCFAs also prevented the normal increase in the number of nuclei per cell in trophozoites that were induced to encyst. These results suggest that E. invadens trophozoite stage parasites growing in the intestine in the presence of high amounts of SCFAs have a ploidy range restricted to 2N/4N. Axenic growth of trophozoites in the absence of SCFAs, however, appears to allow trophozoites to increase the amount of DNA per cell, which they must do during the normal encystment process.
Collapse
Affiliation(s)
- Jennifer Byers
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010, USA
| | | |
Collapse
|
26
|
Buchmann AM, Skaar JR, DeCaprio JA. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol Cell Biol 2004; 24:5332-9. [PMID: 15169897 PMCID: PMC419897 DOI: 10.1128/mcb.24.12.5332-5339.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G(1) phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G(1). These results suggest that a defect in TAF1 can elicit a DNA damage response.
Collapse
Affiliation(s)
- Ann M Buchmann
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Dehm SM, Hilton TL, Wang EH, Bonham K. SRC proximal and core promoter elements dictate TAF1 dependence and transcriptional repression by histone deacetylase inhibitors. Mol Cell Biol 2004; 24:2296-307. [PMID: 14993269 PMCID: PMC355838 DOI: 10.1128/mcb.24.6.2296-2307.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) induce cell cycle arrest, differentiation, or apoptosis in numerous cancer cell types both in vivo and in vitro. These dramatic effects are the result of a specific reprogramming of gene expression. However, the mechanism by which these agents activate the transcription of some genes, such as p21(WAF1), but repress others, such as cyclin D1, is currently unknown. We have been studying the human SRC gene as a model for HDI-mediated transcriptional repression. We found previously that both the tissue-specific and housekeeping SRC promoters were equally repressed by HDIs. Here we show that, despite an overt dissimilarity, both SRC promoters do share similar core promoter elements and transcription is TAF1 dependent. Detailed analysis of the SRC promoters suggested that both core and proximal promoter elements were responsible for HDI-mediated repression. This was confirmed in a series of promoter-swapping experiments with the HDI-inducible, TAF1-independent p21(WAF1) promoter. Remarkably, all the SRC-p21(WAF1) chimeric promoter constructs were not only repressed by HDIs but also dependent on TAF1. Together these experiments suggest that the overall promoter architecture, rather than discrete response elements, is responsible for HDI-mediated repression, and they implicate core promoter elements in particular as potential mediators of this response.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
28
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
29
|
Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV. E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 2003; 103:1475-84. [PMID: 14563639 PMCID: PMC2825482 DOI: 10.1182/blood-2003-06-2116] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transgenic mice with lymphoid-restricted overexpression of the double bromodomain protein bromodomain-containing 2 (Brd2) develop splenic B-cell lymphoma and, upon transplantation, B-cell leukemia with leukemic infiltrates in liver and lung. Brd2 is a nuclear-localized transcription factor kinase that is most closely related to TATA box binding protein-associated factor, 250 kDa (TAF(II)250) and the Drosophila developmental protein female sterile homeotic. Constitutive expression of BRD2 in the lymphoid compartment increases cyclin A transcription, "priming" transgenic B cells for proliferation. Mice stochastically develop an aggressive B-cell lymphoma with the features of B-1 cells, including CD5 and surface IgM expression. The B-cell lymphoma is monoclonal for immunoglobulin gene rearrangement and is phenotypically stable. The lymphoblasts are very large and express a transcriptome that is similar to human non-Hodgkin lymphomas. Both a wild-type BRD2 transgene and a kinase-null point mutant drive lymphomagenesis; therefore we propose that, rather than kinase activity, Brd2-mediated recruitment of E2 promoter binding factors (E2Fs) and a specific histone acetyltransferase to the cyclin A promoter by both types of transgene is a mechanistic basis for neoplasia. This report is the first to describe a transgenic mouse model for constitutive expression of a protein with more than one bromodomain.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Chromosomal Proteins, Non-Histone
- Cyclin A/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, B-Lymphocyte/genetics
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/physiopathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/physiopathology
- Mice
- Mice, Transgenic
- Neoplasm Transplantation
- Protein Serine-Threonine Kinases/genetics
- Recombinant Proteins/genetics
- Spleen/pathology
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Rebecca J Greenwald
- Department of Pathology, Immunology Research Division, Brigham and Women's Hospital, Harvard Medcial School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Senyuk V, Sinha KK, Chakraborty S, Buonamici S, Nucifora G. P/CAF and GCN5 acetylate the AML1/MDS1/EVI1 fusion oncoprotein. Biochem Biophys Res Commun 2003; 307:980-6. [PMID: 12878208 DOI: 10.1016/s0006-291x(03)01288-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysine acetyltransferases modulate the activity of many genes by modifying the lysine residues of both core histones and transcription-related factors. These modifications are tightly controlled in the cell because they are involved in vital processes such as cell cycle progression, differentiation, and apoptosis. Therefore, any deregulation of acetylation/deacetylation equilibrium or inappropriate modifications could lead to different diseases. Since previous studies have shown that some oncoproteins also undergo this modification, acetylation could be involved in the processes of cell transformation and oncogenesis. Here, we report that AML1/MDS1/EVI1 (AME), a repressor produced by the t(3;21) associated with human leukemia, physically interacts with the acetyltransferases P/CAF and GCN5. Our data suggest that AME has at least two binding sites for these acetyltransferases, one of which is in the Runt domain. Both P/CAF and GCN5 efficiently acetylate AME in vivo in the central region. AME acetylation has no effect on its interaction with the co-repressor CtBP1. Finally, we demonstrate that the co-expression of AME and either P/CAF or GCN5 abrogates the repression of an AML1-dependent reporter gene.
Collapse
Affiliation(s)
- Vitalyi Senyuk
- Department of Pathology, Molecular Biology Research Building, M/C 737, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
31
|
Munz C, Psichari E, Mandilis D, Lavigne AC, Spiliotaki M, Oehler T, Davidson I, Tora L, Angel P, Pintzas A. TAF7 (TAFII55) plays a role in the transcription activation by c-Jun. J Biol Chem 2003; 278:21510-6. [PMID: 12676957 DOI: 10.1074/jbc.m212764200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
c-Jun is a member of the AP-1 family of transcription factors regulating expression of specific target genes in a variety of cellular processes including proliferation, stress response, and tumorigenicity. In the present study we have analyzed the mechanism of c-Jun function as a transactivator with respect to members of the basal transcription machinery, TATA-binding protein-associated factors (TAFs). We show that one member of the family, human TAF7 (formerly TAFII55), physically interacts with c-Jun through two independent interaction domains, within the N- and C-terminal part of c-Jun. Interaction in vitro correlates with enhanced transactivation function of c-Jun in HEK293 and COS cells in the presence of increasing amounts of TAF7. TAF7 interacts preferentially with DNA-bound phosphorylated c-Jun, suggesting that TAF7 represents a novel c-Jun co-activator mediating activation of AP-1 target genes in response to extracellular signals.
Collapse
Affiliation(s)
- Christine Munz
- Division of Signal Transduction and Growth Control, Deutsches Krebforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room S434, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 2003; 17:1309-20. [PMID: 12782648 DOI: 10.1101/gad.1099903] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andreas Hochheimer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
34
|
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors, which has been implicated in cell cycle regulation. B-Myb is expressed in most proliferating cells and its activity is highly regulated around the G1/S-phase border of the cell cycle. It is generally assumed that B-Myb regulates the expression of genes that are crucial for cell proliferation; however, the identity of these genes, the molecular mechanisms by which B-Myb stimulates their expression and the involvement of other proteins have not been sufficiently clarified. We have employed the hamster cell line ts13 as a tool to demonstrate a functional link between B-Myb and the coactivator TAF(II)250, a key component of the transcriptional machinery which itself is essential for cell proliferation. ts13 cells express a point-mutated version of TAF(II)250 whose intrinsic histone acetyl transferase activity is temperature sensitive. Transactivation of Myb-responsive reporter genes by B-Myb is temperature-dependent in ts13 cells but not in ts13 cells, which have been rescued by transfection with an expression vector for wild-type TAF(II)250. Furthermore, B-Myb and TAF(II)250 can be coprecipitated, suggesting that both proteins are present in a complex. The formation of this complex is dependent on the DNA-binding domain of B-Myb and not on its transactivation domain. Taken together, these observations provide the first evidence that the coactivator TAF(II)250 is involved in the activation of Myb responsive promoters by B-Myb. The finding that B-Myb transactivation is dependent on a key coactivator involved in cell cycle control is consistent with and strengthens the idea that B-Myb plays a crucial role as a transcription factor in proliferating cells.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str 2, D-48149 Münster, Germany
| | | |
Collapse
|
35
|
Abstract
The last two decades have witnessed a tremendous expansion in our knowledge of the mechanisms employed by eukaryotic cells to control gene activity. A critical insight to transcriptional control mechanisms was provided by the discovery of coactivators, a diverse array of cellular factors that connect sequence-specific DNA binding activators to the general transcriptional machinery, or that help activators and the transcriptional apparatus to navigate through the constraints of chromatin. A number of coactivators have been isolated as large multifunctional complexes, and biochemical, genetic, molecular, and cellular strategies have all contributed to uncovering many of their components, activities, and modes of action. Coactivator functions can be broadly divide into two classes: (a) adaptors that direct activator recruitment of the transcriptional apparatus, (b) chromatin-remodeling or -modifying enzymes. Strikingly, several distinct coactivator complexes nonetheless share many subunits and appear to be assembled in a modular fashion. Such structural and functional modularity could provide the cell with building blocks from which to construct a versatile array of coactivator complexes according to its needs. The extent of functional interplay between these different activities in gene-specific transcriptional regulation is only now becoming apparent, and will remain an active area of research for years to come.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
36
|
Abstract
Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by nucleosomal barriers imposed by histone proteins. Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation. Recent biochemical and genetic studies have identified several large, multisubunit enzyme complexes responsible for bringing about the targeted acetylation of histones and other factors. This review discusses our current understanding of histone acetyltransferases (HATs) or acetyltransferases (ATs): their discovery, substrate specificity, catalytic mechanism, regulation, and functional links to transcription, as well as to other chromatin-modifying activities. Recent studies underscore unexpected connections to both cellular regulatory processes underlying normal development and differentiation, as well as abnormal processes that lead to oncogenesis. Although the functions of HATs and the mechanisms by which they are regulated are only beginning to be understood, these fundamental processes are likely to have far-reaching implications for human biology and disease.
Collapse
Affiliation(s)
- S Y Roth
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
37
|
Paulson M, Press C, Smith E, Tanese N, Levy DE. IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nat Cell Biol 2002; 4:140-7. [PMID: 11802163 DOI: 10.1038/ncb747] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferon (IFN) stimulates transcription through a heteromeric transcription factor that contains tyrosine-phosphorylated STAT2. We show that STAT2 recruits histone acetyltransferases (HAT) through its transactivation domain, resulting in localized transient acetylation of histones. GCN5, but not p300/CBP or PCAF, is required for STAT2 function. However, GCN5 function is impaired by the transcriptional antagonist, adenovirus E1A oncoprotein. The TFIID component TAF(II)130 potentiates STAT2 function, but TAF(II)28 or the HAT activity of TAF(II)250 do not, and transcriptional induction can proceed independently of the TATA-binding protein, TBP. Moreover, IFN-stimulated transcription was resistant to poliovirus-targeted degradation by TBP, and continued despite host-cell transcriptional shutoff during poliovirus infection. We conclude that a non-classical transcriptional mechanism combats an anticellular action of poliovirus, through a TBP-free TAF-containing complex and GCN5.
Collapse
Affiliation(s)
- Matthew Paulson
- Department of Pathology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
38
|
Gegonne A, Weissman JD, Singer DS. TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc Natl Acad Sci U S A 2001; 98:12432-7. [PMID: 11592977 PMCID: PMC60071 DOI: 10.1073/pnas.211444798] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. One of the TAFs, TAF(II)250, has acetyltransferase (AT) activity that is necessary for transcription of MHC class I genes: inhibition of the AT activity represses transcription. To identify potential cellular factors that might regulate the AT activity of TAF(II)250, a yeast two-hybrid library was screened with a TAF(II)250 segment (amino acids 848-1279) that spanned part of its AT domain and it's the domain that binds to the protein, RAP74. The TFIID component, TAF(II)55, was isolated and found to interact predominantly with the RAP74-binding domain. TAF(II)55 binding to TAF(II)250 inhibits its AT activity. Importantly, the addition of recombinant TAF(II)55 to in vitro transcription assays inhibits TAF(II)250-dependent MHC class I transcription. Thus, TAF(II)55 is capable of regulating TAF(II)250 function by modulating its AT activity.
Collapse
Affiliation(s)
- A Gegonne
- Experimental Immunology Branch, Building 10, Room 4B-36, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
39
|
Kirchner J, Sanders SL, Klebanow E, Weil PA. Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Mol Cell Biol 2001; 21:6668-80. [PMID: 11533254 PMCID: PMC99812 DOI: 10.1128/mcb.21.19.6668-6680.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have performed a systematic structure-function analysis of Saccharomyces cerevisiae TAF25, an evolutionarily conserved, single-copy essential gene which encodes the 206-amino-acid TAF25p protein. TAF25p is an integral subunit of both the 15-subunit general transcription factor TFIID and the multisubunit, chromatin-acetylating transcriptional coactivator SAGA. We used hydroxylamine mutagenesis, targeted deletion, alanine-scanning mutagenesis, high-copy suppression methods, and two-hybrid screening to dissect TAF25. Temperature-sensitive mutant strains generated were used for coimmunoprecipitation and transcription analyses to define the in vivo functions of TAF25p. The results of these analyses show that TAF25p is comprised of multiple mutable elements which contribute importantly to RNA polymerase II-mediated mRNA gene transcription.
Collapse
Affiliation(s)
- J Kirchner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
40
|
Tsukihashi Y, Kawaichi M, Kokubo T. Requirement for yeast TAF145 function in transcriptional activation of the RPS5 promoter that depends on both core promoter structure and upstream activating sequences. J Biol Chem 2001; 276:25715-26. [PMID: 11337503 DOI: 10.1074/jbc.m102416200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID has been shown to be involved in both core promoter recognition and the transcriptional activation of eukaryotic genes. We recently isolated TAF145 (one of TFIID subunits) temperature-sensitive mutants in yeast, in which transcription of the TUB2 gene is impaired at restrictive temperatures due to a defect in core promoter recognition. Here, we show in these mutants that the transcription of the RPS5 gene is impaired, mostly due to a defect in transcriptional activation rather than to a defect in core promoter recognition, although the latter is slightly affected as well. Surprisingly, the RPS5 core promoter can be activated by various activation domains fused to a GAL4 DNA binding domain, but not by the original upstream activating sequence (UAS) of the RPS5 gene. In addition, a heterologous CYC1 core promoter can be activated by RPS5-UAS at normal levels even in these mutants. These observations indicate that a distinct combination of core promoters and activators may exploit alternative activation pathways that vary in their requirement for TAF145 function. In addition, a particular function of TAF145 that is deleted in our mutants appears to be involved in both core promoter recognition and transcriptional activation.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
41
|
Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 2001; 276:15886-92. [PMID: 11278496 DOI: 10.1074/jbc.m009385200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
Collapse
Affiliation(s)
- S Solow
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
42
|
Bouchard M, Giannakopoulos S, Wang EH, Tanese N, Schneider RJ. Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 2001; 75:4247-57. [PMID: 11287574 PMCID: PMC114170 DOI: 10.1128/jvi.75.9.4247-4257.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Numerous studies have demonstrated that the hepatitis B virus HBx protein stimulates signal transduction pathways and may bind to certain transcription factors, particularly the cyclic AMP response element binding protein, CREB. HBx has also been shown to promote early cell cycle progression, possibly by functionally replacing the TATA-binding protein-associated factor 250 (TAF(II)250), a transcriptional coactivator, and/or by stimulating cytoplasmic signal transduction pathways. To understand the basis for early cell cycle progression mediated by HBx, we characterized the molecular mechanism by which HBx promotes deregulation of the G0 and G1 cell cycle checkpoints in growth-arrested cells. We demonstrate that TAF(II)250 is absolutely required for HBx activation of the cyclin A promoter and for promotion of early cell cycle transit from G0 through G1. Thus, HBx does not functionally replace TAF(II)250 for transcriptional activity or for cell cycle progression, in contrast to a previous report. Instead, HBx is shown to activate the cyclin A promoter, induce cyclin A-cyclin-dependent kinase 2 complexes, and promote cycling of growth-arrested cells into G1 through a pathway involving activation of Src tyrosine kinases. HBx stimulation of Src kinases and cyclin gene expression was found to force growth-arrested cells to transit through G1 but to stall at the junction with S phase, which may be important for viral replication.
Collapse
Affiliation(s)
- M Bouchard
- Department of Microbiology, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
43
|
Um M, Yamauchi J, Kato S, Manley JL. Heterozygous disruption of the TATA-binding protein gene in DT40 cells causes reduced cdc25B phosphatase expression and delayed mitosis. Mol Cell Biol 2001; 21:2435-48. [PMID: 11259592 PMCID: PMC86876 DOI: 10.1128/mcb.21.7.2435-2448.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA-binding protein (TBP) is a key general transcription factor required for transcription by all three nuclear RNA polymerases. Although it has been intensively analyzed in vitro and in Saccharomyces cerevisiae, in vivo studies of vertebrate TBP have been limited. We applied gene-targeting techniques using chicken DT40 cells to generate heterozygous cells with one copy of the TBP gene disrupted. Such TBP-heterozygous (TBP-Het) cells showed unexpected phenotypic abnormalities, resembling those of cells with delayed mitosis: a significantly lower growth rate, larger size, more G2/-M- than G1-phase cells, and a high proportion of sub-G1, presumably apoptotic, cells. Further evidence for delayed mitosis in TBP-Het cells was provided by the differential effects of several cell cycle-arresting drugs. To determine the cause of these defects, we first examined the status of cdc2 kinase, which regulates the G2/M transition, and unexpectedly observed more hyperphosphorylated, inactive cdc2 in TBP-Het cells. Providing an explanation for this, mRNA and protein levels of cdc25B, the trigger cdc2 phosphatase, were significantly and specifically reduced. These properties were all due to decreased TBP levels, as they could be rescued by expression of exogeneous TBP, including, in most but not all cases, a mutant form lacking the species-specific N-terminal domain. Our results indicate that small changes in TBP concentration can have profound effects on cell growth in vertebrate cells.
Collapse
Affiliation(s)
- M Um
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The role of histone acetylation as a key mechanism of transcriptional regulation has been well established. Recent advances suggest that histone acetyltransferases also play important roles in histone-modulated processes such as DNA replication, recombination and repair. In addition, acetylation of transcriptional cofactors and other proteins is an efficient means of regulating a diverse range of molecular interactions. As new histone acetyltransferases and substrates are rapidly emerging, it is becoming apparent that protein acetylation may rival phosphorylation as a mechanism to transduce cellular regulatory signals.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Chemistry, UC Davis Cancer Center/Basic Science Program, University of California at Davis, Sacramento, California 95817, USA.
| | | | | |
Collapse
|
45
|
Abstract
TFIID, a multiprotein complex comprising the TATA-binding protein (TBP) and TBP-associated factors (TAFs), associates specifically with core promoters and nucleates the assembly the RNA polymerase II transcription machinery. In yeast cells, TFIID is not generally required for transcription, although it plays an important role at many promoters. Understanding of the specific functions and physiological roles of individual TAFs within TFIID has been hampered by the fact that depletion or thermal inactivation of individual TAFs generally results in dissociation of the TFIID complex. We describe here C-terminally deleted derivatives of yeast TAF130 that assemble into normal TFIID complexes but are transcriptionally inactive in vivo. In vivo, these mutant TFIID complexes are dramatically reduced in their ability to associate with all promoters tested. In vitro, a TFIID complex containing a deleted form of TAF130 associates poorly with DNA, but it is unaffected for interacting with transcriptional activation domains. These results suggest that the C-terminal region of TAF130 is required for TFIID to associate with promoters.
Collapse
Affiliation(s)
- M Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Raval A, Howcroft TK, Weissman JD, Kirshner S, Zhu XS, Yokoyama K, Ting J, Singer DS. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001; 7:105-15. [PMID: 11172716 DOI: 10.1016/s1097-2765(01)00159-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CIITA coactivator is essential for transcriptional activation of MHC class II genes and mediates enhanced MHC class I transcription. We now report that CIITA contains an intrinsic acetyltransferase (AT) activity that maps to a region within the N-terminal segment of CIITA, between amino acids 94 and 132. The AT activity is regulated by the C-terminal GTP-binding domain and is stimulated by GTP. CIITA-mediated transactivation depends on the AT activity. Further, we report that, although constitutive MHC class I transcription depends on TAF(II)250, CIITA activates the promoter in the absence of functional TAF(II)250.
Collapse
Affiliation(s)
- A Raval
- Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B-36, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- C A Mizzen
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
48
|
Abstract
The assembly of transcription complexes at eukaryotic promoters involves a number of distinct steps including chromatin remodeling, and recruitment of a TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme. Each of these stages is controlled by both positive and negative factors. In this review, mechanisms that regulate the interactions of TBP with promoter DNA are described. The first is autorepression, where TBP sequesters its DNA-binding surface through dimerization. Once TBP is bound to DNA, factors such as TAF(II)250 and Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the TBP/DNA complex into an inactive state. TFIIA antagonizes these TBP repressors but may be effective only in conjunction with the recruitment of the RNA polymerase II holoenzyme by promoter-bound activators. Taken together, the ability to induce a gene may depend minimally upon the ability to remodel chromatin as well as alleviate direct repression of TBP and other components of the general transcription machinery. The magnitude by which an activated gene is expressed, and thus repeatedly transcribed, might depend in part on competition between TBP inhibitors and the holoenzyme for access to the TBP/TATA complex.
Collapse
Affiliation(s)
- B F Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 6802, University Park, PA, USA.
| |
Collapse
|
49
|
Mahlknecht U, Hoelzer D. Histone Acetylation Modifiers in the Pathogenesis of Malignant Disease. Mol Med 2000. [DOI: 10.1007/bf03402044] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Abstract
The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
Collapse
Affiliation(s)
- D E Sterner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|