1
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Oh T, Woo Y, Kim G, Koo BS, Baek SH, Hwang EH, An YJ, Kim Y, Kim DY, Hong JJ. Spatiotemporal Cellular Dynamics of Germinal Center Reaction in Coronavirus Disease 2019 Lung-Draining Lymph Node Based on Imaging-Based Spatial Transcriptomics. J Transl Med 2025; 105:102180. [PMID: 39522760 DOI: 10.1016/j.labinv.2024.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Although lymph node structures may be compromised in severe SARS-CoV-2 infection, the extent and parameters of recovery in convalescing patients remain unclear. Therefore, this study aimed to elucidate the nuances of lymphoid structural recovery and their implications for immunologic memory in nonhuman primates infected with SARS-CoV-2. To do so, we utilized imaging-based spatial transcriptomics to delineate immune cell composition and tissue architecture formation in the lung-draining lymph nodes during primary infection, convalescence, and reinfection from COVID-19. We noted the establishment of a germinal center with memory B cell differentiation within lymphoid follicles during convalescence accompanied by contrasting transcriptome patterns indicative of the acquisition of follicular helper T cells versus the loss of regulatory T cells. Additionally, repopulation of germinal center-like B cells was observed in the medullary niche with accumulating plasma cells along with enhanced transcriptional expression of B cell-activating factor receptor over the course of reinfection. The spatial transcriptome atlas produced herein enhances our understanding of germinal center formation with immune cell dynamics during COVID-19 convalescence and lymphoid structural recovery with transcriptome dynamics following reinfection. These findings have the potential to inform the optimization of vaccine strategies and the development of precise therapeutic interventions in the spatial context.
Collapse
Affiliation(s)
- Taehwan Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - YoungMin Woo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Yujin Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Dong-Yeon Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Stohl W, Wu Y, Stohl M. Contributions of each of the BAFF receptors to the lymphocyte profiles in C57BL/6 mice. Immunology 2024; 173:689-711. [PMID: 39215598 DOI: 10.1111/imm.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BAFF, a vital B cell survival and differentiation factor, has three receptors: B-cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) and BR3. Although B cells are greatly reduced in B6.Baff-/- (which harbour no BAFF) and B6.Br3-/- mice (which harbour supra-normal levels of BAFF), the distributions of B cell subsets and relationships between Foxp3+ and CD4+ cells in these mice differ. Using a large panel of B6 congenic knockout and/or transgenic mice, we demonstrate that (1) supra-normal levels of BAFF per se do not explain the phenotypic differences between B6.Baff-/- and B6.Br3-/- mice; (2) B cells are expanded in B6.Taci-/- mice, with preferential expansion of follicular (FO) B cells at the expense of CD19+CD21-/loCD23-/lo B cells but without the preferential expansion of Foxp3+ cells observed in B6 mice bearing a Baff transgene; (3) despite no expansion in total B cells, percentages of FO B cells and marginal zone B cells are higher and percentages of CD19+CD21-/loCD23-/lo B cells are lower in young B6.Bcma-/- mice, consistent with the inability of B6.Br3-/-.Taci-/- mice to recapitulate the B cell profile of B6.Baff-/- mice; and (4) percentages of Foxp3+ cells in B6.Br3-/-.Taci-/- mice are intermediate between those in B6.Br3-/- and B6.Taci-/- mice despite the B cell profile of B6.Br3-/-.Taci-/- mice strongly resembling that of B6.Br3-/- mice. Collectively, our findings point to a non-redundant role for each of the BAFF receptors in determining the ultimate lymphocyte profile of the host. This may have clinically relevant ramifications in that the degree that a candidate therapeutic agent blocks engagement of any given individual BAFF receptor may affect its clinical utility.
Collapse
Affiliation(s)
- William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ying Wu
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Malka Stohl
- New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
4
|
Stohl W, Wu Y, Stohl M. T cell Dissimilarities in B Cell Activating Factor-Deficient Versus B Cell Activating Factor Receptor 3-Deficient Systemic Lupus Erythematosus-Prone NZM 2328 Mice as Contributors to Their Divergent Clinical Outcomes. ACR Open Rheumatol 2024; 6:756-768. [PMID: 39143363 PMCID: PMC11557988 DOI: 10.1002/acr2.11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE We assessed the contributions of B cell and T cell subsets to the disparate clinical outcomes in NZM.Baff-/- and NZM.Br3-/- mice. METHODS We assessed in NZM wild-type, NZM.Baff-/-, and NZM.Br3-/- mice numbers and percentages of B cells and subsets, T cells and subsets, and in vivo proliferation and survival of forkhead box P3 (Foxp3)+ cells by fluorescence-activated cell sorting. Relationships between percentages of Foxp3+ cells and numbers of CD19+ and CD4+ cells were assessed by linear regressions. RESULTS In each age and sex cohort, percentages and numbers of CD19+ cells were similar in NZM.Baff-/- and NZM.Br3-/- mice. Percentages of CD3+ and CD4+ cells were greater in NZM.Br3-/- than in NZM.Baff-/- mice, with the CD4 to CD3 cell ratios being greater in NZM.Br3-/- than in NZM.Baff-/- mice and percentages of Foxp3+ cells in NZM.Br3-/- mice being lower than in NZM.Baff-/- mice. Percentages of Foxp3+ cells correlated positively with CD19+ cells in NZM.Baff-/- mice but negatively in NZM.Br3-/- mice. In vivo proliferation and survival of Foxp3+ cells were lower in NZM.Baff-/- mice than in NZM.Br3-/- mice. CONCLUSION Differences between NZM.Baff-/- and NZM.Br3-/- mice in Foxp3+ cells and their relationships with CD19+ cells may have more to do with their divergent clinical outcomes than do differences in numbers of B cells. These unexpected findings suggest that B cell activating factor (BAFF)-B cell maturation antigen (BCMA) or BAFF-Transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) interactions may help drive development of clinical systemic lupus erythematosus (SLE) even under conditions of considerable B cell depletion. Insufficient blocking of BAFF-BCMA and BAFF-TACI interactions may lie at the heart of incomplete clinical response to BAFF-targeting agents in human SLE.
Collapse
Affiliation(s)
- William Stohl
- University of Southern California Keck School of MedicineLos Angeles
| | - Ying Wu
- University of Southern California Keck School of MedicineLos Angeles
| | - Malka Stohl
- New York State Psychiatric InstituteNew York City
| |
Collapse
|
5
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
6
|
Springer AD, Wang R, Wang J, Du Q, Pi W, Nguyen AQ, Li X, Khasanov A, Zhu T, Yan Z, Hong Y, Zhou H, Zhang Y, Kerwin L, Li L, Ji H, Zhang H. Preclinical Evaluation of STI-8811, a Novel Antibody-Drug Conjugate Targeting BCMA for the Treatment of Multiple Myeloma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2660-2672. [PMID: 39292169 PMCID: PMC11467701 DOI: 10.1158/2767-9764.crc-24-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Treatment for patients with multiple myeloma has experienced rapid development and improvement in recent years; however, patients continue to experience relapse, and multiple myeloma remains largely incurable. B-cell maturation antigen (BCMA) has been widely recognized as a promising target for treatment of multiple myeloma due to its exclusive expression in B-cell linage cells and its critical role in the growth and survival of malignant plasma cells. Here, we introduce STI-8811, a BCMA-targeting antibody-drug conjugate (ADC) linked to an auristatin-derived duostatin payload via an enzymatically cleavable peptide linker, using our proprietary C-lock technology. STI-8811 exhibits target-specific binding activity and rapid internalization, leading to G2/M cell-cycle arrest, caspase 3/7 activation, and apoptosis in BCMA-expressing tumor cells in vitro. Soluble BCMA (sBCMA) is shed by multiple myeloma cells into the blood and increases with disease progression, competing for ADC binding and reducing its efficacy. We report enhanced cytotoxic activity in the presence of high levels of sBCMA compared with a belantamab mafodotin biosimilar (J6M0-mcMMAF). STI-8811 demonstrated greater in vivo activity than J6M0-mcMMAF in solid and disseminated multiple myeloma models, including tumor models with low BCMA expression and/or in large solid tumors representing soft-tissue plasmacytomas. In cynomolgus monkeys, STI-8811 was well tolerated, with toxicities consistent with other BCMA-targeting ADCs with auristatin payloads in clinical studies. STI-8811 has the potential to outperform current clinical candidates with lower toxicity and higher activity under conditions found in patients with advanced disease. Significance: STI-8811 is a BCMA-targeting ADC carrying a potent auristatin derivative. We report unique binding properties which maintain potent cytotoxic activity under sBCMA-high conditions that hinder the clinical efficacy of current BCMA-targeting ADC candidates. Beyond disseminated models of multiple myeloma, we observed efficacy in solid tumor models of plasmacytomas with low and heterogenous BCMA expressions at a magnitude and duration of response exceeding that of clinical comparators.
Collapse
Affiliation(s)
| | | | | | - Qinyi Du
- Levena BioPharma, San Diego, California.
| | - Willie Pi
- Levena BioPharma, San Diego, California.
| | | | - Xiaoqing Li
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| | | | - Tong Zhu
- Levena BioPharma, San Diego, California.
| | - Zheng Yan
- Levena BioPharma, San Diego, California.
| | | | - Heyue Zhou
- Sorrento Therapeutics Inc., San Diego, California.
| | | | - Lisa Kerwin
- Sorrento Therapeutics Inc., San Diego, California.
| | - Lingna Li
- Levena BioPharma, San Diego, California.
| | - Henry Ji
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| | - Hong Zhang
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| |
Collapse
|
7
|
Yao Y, Yuan M, Shi M, Li W, Sha Y, Zhang Y, Yuan C, Luo J, Li Z, Liao C, Xu K, Niu M. Halting multiple myeloma with MALT1 inhibition: suppressing BCMA-induced NF-κB and inducing immunogenic cell death. Blood Adv 2024; 8:4003-4016. [PMID: 38820414 PMCID: PMC11339052 DOI: 10.1182/bloodadvances.2023012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Because multiple myeloma (MM) poses a formidable therapeutic challenge despite recent progress, exploring novel targets is crucial. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) emerges as a promising paracaspase with druggable potential, especially unexplored in MM. Our study provided compelling evidence demonstrating a statistically significant elevation of MALT1 expression in human primary MM cells. Moreover, elevated MALT1 expression was associated with a poorer prognosis in MM. Genetic deletion of MALT1 reduced cell growth, colony formation, and tumor growth in vivo. Pharmacological inhibition with 1 μM of a small-molecular MALT1 inhibitor, Mi-2, effectively inhibited cell growth, inducing mitochondria-dependent apoptotic cell death. Mechanistically, MALT1 inhibition disrupted diverse signal transduction pathways, notably impeding nuclear factor κB (NF-κB). Significantly, the inhibition of MALT1 demonstrated a substantial suppression of NF-κB activation by elevating inhibitor of NF-κB, disrupting the nuclear localization of p65 and c-REL. This effect was observed in both the basal state and when stimulated by B-cell maturation antigen, highlighting the pivotal role of MALT1 inhibition in influencing MM cell survival. It was noteworthy that Mi-2 induces properties associated with immunogenic cell death (ICD), as evidenced by increased calreticulin, adenosine triphosphate release, and high-mobility group protein B1 upregulation, consequently triggering ICD-associated immune activation and enhancing CD8+ T-cell cytotoxicity in vitro. In conclusion, our research highlights MALT1 as a promising druggable target for therapeutic interventions in MM, providing insights into its molecular mechanisms in MM progression.
Collapse
Affiliation(s)
- Yao Yao
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mei Yuan
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Shi
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyu Li
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuqian Sha
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhang
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Canli Yuan
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianping Luo
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Liao
- Department of Hematology/Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Kailin Xu
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
9
|
Zhang C, Zhai W, Ma Y, Wu M, Cai Q, Huang J, Zhou Z, Duan F. Integrating machine learning algorithms and multiple immunohistochemistry validation to unveil novel diagnostic markers based on costimulatory molecules for predicting immune microenvironment status in triple-negative breast cancer. Front Immunol 2024; 15:1424259. [PMID: 39007147 PMCID: PMC11239375 DOI: 10.3389/fimmu.2024.1424259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenyu Zhai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuyu Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhihuan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fangfang Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
The BAFF-APRIL System in Cancer. Cancers (Basel) 2023; 15:cancers15061791. [PMID: 36980677 PMCID: PMC10046288 DOI: 10.3390/cancers15061791] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Collapse
|
11
|
Sethi S, Jordan SC. Novel therapies for treatment of antibody-mediated rejection of the kidney. Curr Opin Organ Transplant 2023; 28:29-35. [PMID: 36579683 DOI: 10.1097/mot.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW We aim to discuss current literature on novel therapies for antibody-mediated rejection (AMR) in kidney transplantation with a focus on chronic AMR. RECENT FINDINGS IL-6/IL-6 receptor blockers appear promising in the treatment of chronic AMR. Blocking this pathway was shown to reduce human leucocyte antigen-antibodies, improve histologic inflammation and increase T-regulatory cells. Based on experience in desensitization, IgG degrading endopeptidase, imlifidase, could be effective in AMR. There have been case reports describing the successful use of plasma cell/natural killer-cell-directed anti-CD38 antibody in the treatment of AMR. Off-target effects have been noted and strategies to mitigate these will be needed when using these agents. Complement inhibitors could be an effective add-on strategy to antibody-depleting therapies but their role in AMR needs to be better defined. Combining proteasome inhibitors and costimulation blockers has shown encouraging results in the prevention of AMR in animal models and is now being investigated in humans. Other novel strategies such as Fc neonatal receptor blockers which inhibit the recycling of pathogenic IgG and bispecific antibodies against B-cell maturation antigen/CD3+ T cells warrant further investigation. SUMMARY There are now a number of emerging therapies with varied targets and mechanism(s) of action that hold promise in the management of AMR and improving allograft survival.
Collapse
Affiliation(s)
- Supreet Sethi
- Division of Nephrology, Department of Medicine, Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
12
|
Kumar G, Axtell RC. Dual Role of B Cells in Multiple Sclerosis. Int J Mol Sci 2023; 24:2336. [PMID: 36768658 PMCID: PMC9916779 DOI: 10.3390/ijms24032336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
B cells have emerged as an important immune cell type that can be targeted for therapy in multiple sclerosis (MS). Depleting B cells with anti-CD20 antibodies is effective in treating MS. Yet, atacicept treatment, which blocks B-cell Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL), two cytokines important for B cell development and function, paradoxically increases disease activity in MS patients. The reason behind the failure of atacicept is not well understood. The stark differences in clinical outcomes with these therapies demonstrate that B cells have both inflammatory and anti-inflammatory functions in MS. In this review, we summarize the importance of B cells in MS and discuss the different B cell subsets that perform inflammatory and anti-inflammatory functions and how therapies modulate B cell functions in MS patients. Additionally, we discuss the potential anti-inflammatory functions of BAFF and APRIL on MS disease.
Collapse
Affiliation(s)
| | - Robert C. Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Stohl W, Yu N, Wu Y. B Cell and T Cell Dissimilarities in BAFF-Deficient versus BR3-Deficient C57BL/6 Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2133-2140. [PMID: 36426969 DOI: 10.4049/jimmunol.2200620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023]
Abstract
BAFF is a potent B cell survival and differentiation factor with three receptors, TACI, BCMA, and BR3. B cells are greatly reduced in BAFF-deficient mice, and among mice deficient in a single BAFF receptor, B cell reduction is characteristic only of BR3-deficient mice. Nevertheless, there may be important differences between BR3-deficient mice, in which interactions between BAFF and only BR3 are abrogated, and BAFF-deficient mice, in which interactions between BAFF and all its receptors are abrogated. We demonstrate that: 1) the numbers of CD19+ cells in C57BL/6 (B6).Baff-/- and B6.Br3-/- mice diverge as the mice age; 2) the distribution of B cell subsets significantly differ between B6.Baff-/- and B6.Br3-/- mice regardless of age or sex; 3) the relationships of CD3+ and CD4+ cells to B cells vastly differ between B6.Baff-/- and B6.Br3-/- mice as a function of age and sex; 4) the numbers and percentages of CD4+Foxp3+ and CD4+CD25+Foxp3+ are greater in B6.Baff-/- mice than in B6.Br3-/- mice; and 5) for any given number of CD19+ cells or CD4+ cells, percentages of Foxp3+ cells and CD4+CD25+Foxp3+ cells are lower in B6.Br3-/- mice than in B6.Baff-/- mice, with proliferation of these cells being greater, and survival being lesser, in B6.Br3-/- mice than in B6.Baff-/- mice. Collectively, these observations raise the possibility that interactions between TACI and/or BCMA and BAFF modulate expression of B cell subsets and Foxp3+ cells and may help explain prior enigmatic observations of autoimmunity and autoimmune disease in mice despite the absence of functional engagement of BR3 by BAFF.
Collapse
Affiliation(s)
- William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Ning Yu
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Ying Wu
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
15
|
Sriram H, Kunjachan F, Khanka T, Gawai S, Ghogale S, Deshpande N, Girase K, Patil J, Chatterjee G, Rajpal S, Patkar NV, Bagal B, Jain H, Sengar M, Hasan SK, Khattry N, Subramanian PG, Gujral S, Tembhare PR. Expression levels and patterns of B-cell maturation antigen in newly diagnosed and relapsed multiple myeloma patients from Indian subcontinent. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:462-470. [PMID: 36346307 DOI: 10.1002/cyto.b.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many novel therapies are being evaluated for the treatment of Multiple myeloma (MM). The cell-surface protein B-cell maturation antigen (BCMA, CD269) has recently emerged as a promising target for CAR-T cell and monoclonal-antibody therapies in MM. However, the knowledge of the BCMA expression-pattern in myeloma patients from the Indian subcontinent is still not available. We present an in-depth study of BCMA expression-pattern on abnormal plasma cells (aPC) in Indian MM patients. METHODS We studied BM samples from 217 MM patients (211-new and 6-relapsed) with a median age of 56 years (range, 30-78 years & M:F-2.29) and 20 control samples. Expression levels/patterns of CD269 (clone-19f2) were evaluated in aPCs from MM patients and in normal PCs (nPC) from uninvolved staging bone marrow samples (controls) using multicolor flow cytometry (MFC). Expression-level of CD269 was determined as a ratio of mean fluorescent intensity (MFI-R) of CD269 in PCs to that of non-B-lymphocytes and expression-pattern (homogenous/heterogeneous) as coefficient-of-variation of immunofluorescence (CVIF). RESULTS Median (range) percentage of CD269-positive abnormal-PCs in total PCs was 71.6% (0.49-99.29%). The MFI-R (median, range) of CD269 was significantly higher in aPCs (4.13, 1.12-26.88) than nPCs (3.33, 1.23-12.87), p < .0001. Median (range) MFI of CD269 at diagnosis and relapse were 2.39 (0.77-9.57) and 2.66 (2.15-3.23) respectively. CD269 levels were similar at diagnosis and relapse, p = .5529. CONCLUSIONS We demonstrated that BCMA/CD269 is highly expressed in aPCs from a majority of MM patients, both at diagnosis and relapse. Thus, BCMA is a valuable target for therapy for Indian MM patients.
Collapse
Affiliation(s)
- Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Florence Kunjachan
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sangamitra Gawai
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
16
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Aradottir Pind AA, Thorsdottir S, Magnusdottir G, Meinke A, Del Giudice G, Jonsdottir I, Bjarnarson SP. A comparative study of adjuvants effects on neonatal plasma cell survival niche in bone marrow and persistence of humoral immune responses. Front Immunol 2022; 13:904415. [PMID: 35990686 PMCID: PMC9381929 DOI: 10.3389/fimmu.2022.904415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.
Collapse
Affiliation(s)
- Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Thorsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Gudbjorg Julia Magnusdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stefania P. Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Stefania P. Bjarnarson,
| |
Collapse
|
18
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
19
|
Watson E, Djebbari F, Rampotas A, Ramasamy K. BCMA-targeted therapies for multiple myeloma: strategies to maximise efficacy and minimize adverse events. Expert Rev Hematol 2022; 15:503-517. [PMID: 35633050 DOI: 10.1080/17474086.2022.2084068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immunotherapies targeting B cell maturation antigen (BCMA) in multiple myeloma are transitioning through trials and entering the clinic, and will likely become a core pillar in myeloma therapeutics. These agents demonstrate unprecedented activity in multiply relapsed patients, but - notwithstanding the short follow-up times - their survival curves do not appear to demonstrate a plateau, and the treatments inevitably bring with them a range of toxicities that might be associated with tolerability issues. AREAS COVERED We will briefly lay out the current therapeutic landscape in multiple myeloma, before introducing BCMA and explaining its significance. We will address in turn the three key classes of anti-BCMA immunotherapies: antibody-drug conjugates, bispecific antibodies and chimeric antigen receptor T cells. We describe the mechanisms of action of these classes and review the evidence supporting their efficacy and toxicities. We then bring all three therapies into one discussion that explores how to mitigate toxicities and overcome myeloma's ability to resist these potent treatments. EXPERT OPINION Finally, we take the discussion back to the clinic, and consider how we might deploy anti-BCMA therapies most effectively for our patients. We consider the sequencing of treatment, and what further evidence is needed to more fully inform our therapy decisions.
Collapse
Affiliation(s)
- Edmund Watson
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Faouzi Djebbari
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Alexandros Rampotas
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Karthik Ramasamy
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| |
Collapse
|
20
|
Paul B, Rodriguez C, Usmani SZ. BCMA-Targeted Biologic Therapies: The Next Standard of Care in Multiple Myeloma Therapy. Drugs 2022; 82:613-631. [PMID: 35412114 PMCID: PMC9554894 DOI: 10.1007/s40265-022-01697-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
With recent advances in myeloma therapy, patients can achieve long-term remissions, but eventually relapses will occur. Triple-class refractory myeloma (disease that is refractory to an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody) and penta-refractory myeloma (disease that is refractory to two proteasome inhibitors, two immunomodulatory agents, and an anti-CD38 antibody) are associated with a particularly poor prognosis, and novel treatments are desperately needed for these patients. Targeting B cell maturation antigen (BCMA), which is ubiquitously expressed on plasma cells, has emerged as a well-tolerated and highly efficacious strategy in patients with relapsed and refractory myeloma. Several mechanisms of targeting BCMA are currently under investigation, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells and natural killer (NK) cells, all with unique side effect profiles. Early phase clinical trials showed unprecedented response rates in highly refractory myeloma patients, leading to the recent approvals of some of these agents. Still, many questions remain with regard to this target, including how best to target it, how to treat patients who have progressed on a BCMA-targeting therapy, and whether response rates will deepen if these agents are used in earlier lines of therapy. In this review, we examine the rationale for targeting BCMA and summarize the data for several agents across multiple classes of BCMA-targeting therapeutics, paying special attention to the diverse mechanisms and unique challenges of each therapeutic class.
Collapse
Affiliation(s)
- Barry Paul
- Division of Plasma Cell Disorders, Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Huo J, Huang Y, Zheng Z, Tay XN, Mahfut FB, Zhang W, Lam KP, Yang Y, Xu S. Development of a T cell-redirecting bispecific antibody targeting B-cell maturation antigen for the suppression of multiple myeloma cell growth. Antib Ther 2022; 5:138-149. [PMID: 35774245 PMCID: PMC9237814 DOI: 10.1093/abt/tbac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM cells and is one target with the most potential for developing MM-targeting immunotherapy. Other than the FDA-approved BCMA-targeting CAR T-cell therapy, such as Abecma and CARVYKTI, T cell-engaging multi-specific antibody is another promising therapeutic modality for BCMA-targeting MM treatment. We develop a T-cell redirecting BCMA-targeting bispecific antibody (bsAb) and evaluate its anti-MM activity. Methods We first generated several clones of mouse anti-human BCMA monoclonal antibodies using DNA immunization. One of the anti-BCMA antibodies was then used to design and produce a T cell-redirecting BCMA × CD3 bsAb in CHO cells. Finally, we examined the effect of the bsAb on MM cell growth both in vitro and in vivo. Results The BCMA × CD3 bsAb was designed in a FabscFv format and produced in CHO cells with good yield and purity. Moreover, the bsAb can trigger robust T cell proliferation and activation and induce efficient T cell-mediated MM cell killing in vitro. Using a MM xenograft mouse model, we demonstrate that the bsAb can effectively suppress MM cell growth in vivo. Conclusions Our results suggest that the BCMA × CD3 bsAb in the FabscFv format can efficiently inhibit MM cell growth and have promising potential to be developed into a therapeutic antibody drug for the treatment of MM.
Collapse
Affiliation(s)
- Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Yuhan Huang
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Ziying Zheng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Xin Ni Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Farouq Bin Mahfut
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| |
Collapse
|
22
|
Tai W, Wahab A, Franco D, Shah Z, Ashraf A, Abid QUA, Mohammed YN, Lal D, Anwer F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies (Basel) 2022; 11:22. [PMID: 35466275 PMCID: PMC9036234 DOI: 10.3390/antib11020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is characterized by malignant proliferation of malignant plasma cells; it is the second most common hematological malignancy associated with significant morbidity. Genetic intricacy, instability, and diverse clinical presentations remain a barrier to cure. The treatment of MM is modernized with the introduction of newer therapeutics agents, i.e., target-specific monoclonal antibodies. The currently available literature lacks the benefits of newer targeted therapy being developed with an aim to reduce side effects and increase effectiveness, compared to conventional chemotherapy regimens. This article aims to review literature about the current available monoclonal antibodies, antibody-drug conjugates, and bispecific antibodies for the treatment of MM.
Collapse
Affiliation(s)
- Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA;
| | - Ahsan Wahab
- Department of Internal Medicine, Prattville Baptist Hospital, Prattville, AL 36066, USA;
| | - Diana Franco
- Department of Internal Medicine, Loyola MacNeal Hospital, Berwyn, IL 60402, USA;
| | - Zunairah Shah
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Aqsa Ashraf
- Department of Internal Medicine, Northwell Health, Mather Hospital, Port Jefferson, NY 11777, USA;
| | - Qurrat-Ul-Ain Abid
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL 60657, USA;
| | - Yaqub Nadeem Mohammed
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA;
| | - Darshan Lal
- Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas, NV 89102, USA;
| | - Faiz Anwer
- Taussig Cancer Center, Myeloma Program, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Nobari ST, Nojadeh JN, Talebi M. B-cell maturation antigen targeting strategies in multiple myeloma treatment, advantages and disadvantages. J Transl Med 2022; 20:82. [PMID: 35144648 PMCID: PMC8832753 DOI: 10.1186/s12967-022-03285-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
B cell maturation antigen (BCMA), a transmembrane glycoprotein member of the tumor necrosis factor receptor superfamily 17 (TNFRSF17), highly expressed on the plasma cells of Multiple myeloma (MM) patients, as well as the normal population. BCMA is used as a biomarker for MM. Two members of the TNF superfamily proteins, including B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL), are closely related to BCMA and play an important role in plasma cell survival and progression of MM. Despite the maximum specificity of the monoclonal antibody technologies, introducing the tumor-specific antigen(s) is not applicable for all malignancies, such as MM that there plenty of relatively specific antigens such as GPCR5D, MUC1, SLAMF7 and etc., but higher expression of BCMA on these cells in comparison with normal ones can be regarded as a relatively exclusive marker. Currently, different monoclonal antibody (mAb) technologies applied in anti-MM therapies such as daratuzumab, SAR650984, GSK2857916, and CAR-T cell therapies are some of these tools that are reviewed in the present manuscript. By the way, the structure, function, and signaling of the BCMA and related molecule(s) role in normal plasma cells and MM development, evaluated as well as the potential side effects of its targeting by different CAR-T cells generations. In conclusion, BCMA can be regarded as an ideal molecule to be targeted in immunotherapeutic methods, regarding lower potential systemic and local side effects.
Collapse
Affiliation(s)
- Shirin Teymouri Nobari
- Department of Medical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Nouri Nojadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cells Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Xiong M, Liu R, Lei X, Fan D, Lin F, Hao W, Yuan X, Yang Y, Zhang X, Ye Z, Lu Y, Zhang Y, Wang J, Xiong D. A Novel CD3/BCMA Bispecific T-cell Redirecting Antibody for the Treatment of Multiple Myeloma. J Immunother 2022; 45:78-88. [PMID: 34711791 DOI: 10.1097/cji.0000000000000401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Multiple myeloma (MM) is a B-cell malignancy for which new treatments are urgently needed. Redirecting the activity of T cells by bispecific antibodies against tumor cells is a potent approach. The B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein and therefore is an ideal therapeutic target for T-cell redirecting therapies. The main objective of this work is to target the BCMA by generating BCMA-specific murine monoclonal antibody and construct a cluster of differentiation 3 (CD3)/BCMA-directed tandem diabodies (Tandab). In brief, using standard hybridoma technology, we developed a novel BCMA-specific monoclonal antibody (clone 69G8), that specifically bind with BCMA+ cell lines and MM patient sample; whereas BCMA- cells were not recognized. For T cells by bispecific antibodies application, we constructed a Tandab (CD3/BCMA) simultaneously targeting both CD3 and BCMA and our studies demonstrated that Tandab (CD3/BCMA) was functional with specific binding capability both for CD3+ cells and BCMA+ cells. It induced selective, dose-dependent lysis of BCMA+ cell lines, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA- cells were not affected. Furthermore, we demonstrated that Tandab activity correlates with BCMA expression, with higher potency observed in highly BCMA expressing tumor cells. In vivo, the purified Tandab (CD3/BCMA) significantly inhibited the tumor growth in a subcutaneous NCI-H929 xenograft model. Taken together, these results show that the Tandab (CD3/BCMA) displays potent and selective anti-MM activities and represents a promising immunotherapeutic for the treatment of MM.
Collapse
Affiliation(s)
- Mengshang Xiong
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Ruoqi Liu
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiaomin Lei
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongmei Fan
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fangzhen Lin
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Wei Hao
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiangfei Yuan
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital
| | - Yuanyuan Yang
- Department of Pharmacy, Tianjin Medical University General Hospital
| | - Xiaolong Zhang
- Key Laboratory of Cancer Prevention and Therapy,National Clinical Research Center of Cancer,Tianjin's Clinical Research Center for cancer, Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, Tianjin
| | - Zhou Ye
- Central Hospital of Karamay, Karamay, Xinjiang, China
| | - Yang Lu
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yanjun Zhang
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jianxiang Wang
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongsheng Xiong
- Tianjin Key Laboratory of Blood Disease Cell Therapy, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
25
|
Füchsl F, Krackhardt AM. Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells 2022; 11:410. [PMID: 35159220 PMCID: PMC8834324 DOI: 10.3390/cells11030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.
Collapse
Affiliation(s)
- Franziska Füchsl
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
| | - Angela M. Krackhardt
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
- German Cancer Consortium (DKTK), Partner-Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Einsteinstraße 25, 81675 Munich, Germany
| |
Collapse
|
26
|
Quazi S. An Overview of CAR T Cell Mediated B Cell Maturation Antigen Therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e392-e404. [PMID: 34992008 DOI: 10.1016/j.clml.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is one of the incurable types of cancer in plasma cells. While immense progress has been made in the treatment of this malignancy, a large percentage of patients were unable to adapt to such therapy. Additionally, these therapies might be associated with significant diseases and are not always tolerated well in all patients. Since cancer in plasma cells has no cure, patients develop resistance to treatments, resulting in R/R MM (Refractory/Relapsed Multiple Myeloma). BCMA (B cell maturation antigen) is primarily produced on mature B cells. It's up-regulation and activation are associated with multiple myeloma in both murine and human models, indicating that this might be an effective therapeutic target for this type of malignancy. Additionally, BCMA's predictive value, association with effective clinical trials, and capacity to be utilized in previously difficult to observe patient populations, imply that it might be used as a biomarker for multiple myeloma. Numerous kinds of BCMA-targeting medicines have demonstrated antimyeloma efficacy in individuals with refractory/relapsed MM, including CAR T-cell (Chimeric antigen receptor T cell) treatments, ADCs (Antibody-drug conjugate s), bispecific antibody constructs. Among these medications, CART cell-mediated BCMA therapy has shown significant outcomes in multiple myeloma clinical trials. This review article outlines CAR T cell mediated BCMA medicines have the efficiency to change the therapeutic pattern for multiple myeloma significantly.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
| |
Collapse
|
27
|
Quah PS, Sutton V, Whitlock E, Figgett WA, Andrews DM, Fairfax KA, Mackay F. The effects of B-cell-activating factor on the population size, maturation and function of murine natural killer cells. Immunol Cell Biol 2022; 100:761-776. [PMID: 36106449 PMCID: PMC9828838 DOI: 10.1111/imcb.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
The role of B-cell-activating factor (BAFF) in B-lymphocyte biology has been comprehensively studied, but its contributions to innate immunity remain unclear. Natural killer (NK) cells form the first line of defense against viruses and tumors, and have been shown to be defective in patients with systemic lupus erythematosus (SLE). The link between BAFF and NK cells in the development and progression of SLE remains unstudied. By assessing NK cell numbers in wild-type (WT), BAFF-/- (BAFF deficient), BAFF-R-/- (BAFF receptor deficient), TACI-/- (transmembrane activator and calcium modulator and cyclophilin ligand interactor deficient), BCMA-/- (B-cell maturation antigen deficient) and BAFF transgenic (Tg) mice, we observed that BAFF signaling through BAFF-R was essential for sustaining NK cell numbers in the spleen. However, according to the cell surface expression of CD27 and CD11b on NK cells, we found that BAFF was dispensable for NK cell maturation. Ex vivo and in vivo models showed that NK cells from BAFF-/- and BAFF Tg mice produced interferon-γ and killed tumor cells at a level similar to that in WT mice. Finally, we established that NK cells do not express receptors that interact with BAFF in the steady state or in the BAFF Tg mouse model of SLE. Our findings demonstrate that BAFF has an indirect effect on NK cell homeostasis and no effect on NK cell function.
Collapse
Affiliation(s)
- Pin Shie Quah
- Department of Immunology and PathologyCentral Clinical School, Monash UniversityMelbourneVICAustralia,Department of Microbiology and ImmunologyThe University of Melbourne, Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Vivien Sutton
- Rosie Lew Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia,Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Eden Whitlock
- Department of Microbiology and ImmunologyThe University of Melbourne, Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia,QIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - William A Figgett
- Department of Immunology and PathologyCentral Clinical School, Monash UniversityMelbourneVICAustralia,Department of Microbiology and ImmunologyThe University of Melbourne, Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia,Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - Daniel M Andrews
- Department of Immunology and PathologyCentral Clinical School, Monash UniversityMelbourneVICAustralia,Bioproperties, RingwoodMelbourneVICAustralia
| | - Kirsten A Fairfax
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia,Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTASAustralia,School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTASAustralia
| | - Fabienne Mackay
- Department of Immunology and PathologyCentral Clinical School, Monash UniversityMelbourneVICAustralia,Department of Microbiology and ImmunologyThe University of Melbourne, Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia,QIMR Berghofer Medical Research InstituteHerstonQLDAustralia,Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
28
|
Duan F, Wang W, Zhai W, Wang J, Zhao Z, Zheng L, Rao B, Zhou Y, Long H, Lin Y. A novel diagnostic model for predicting immune microenvironment subclass based on costimulatory molecules in lung squamous carcinoma. Front Genet 2022; 13:1078790. [PMID: 36588791 PMCID: PMC9795004 DOI: 10.3389/fgene.2022.1078790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
There is still no ideal predictive biomarker for immunotherapy response among patients with non-small cell lung cancer. Costimulatory molecules play a role in anti-tumor immune response. Hence, they can be a potential biomarker for immunotherapy response. The current study comprehensively investigated the expression of costimulatory molecules in lung squamous carcinoma (LUSC) and identified diagnostic biomarkers for immunotherapy response. The costimulatory molecule gene expression profiles of 627 patients were obtained from the The Cancer Genome Atlas, GSE73403, and GSE37745 datasets. Patients were divided into different clusters using the k-means clustering method and were further classified into two discrepant tumor microenvironment (TIME) subclasses (hot and cold tumors) according to the immune score of the ESTIMATE algorithm. A high proportion of activated immune cells, including activated memory CD4 T cells, CD8 T cells, and M1 macrophages. Five CMGs (FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B) were considered as diagnostic markers using the Least Absolute Shrinkage and Selection Operator and the Support Vector Machine-Recursive Feature Elimination machine learning algorithms. Based on the five CMGs, a diagnostic nomogram for predicting individual tumor immune microenvironment subclasses in the TCGA dataset was developed, and its predictive performance was validated using GSE73403 and GSE37745 datasets. The predictive accuracy of the diagnostic nomogram was satisfactory in all three datasets. Therefore, it can be used to identify patients who may benefit more from immunotherapy.
Collapse
Affiliation(s)
- Fangfang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weisen Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenyu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Zerui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bingyu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuheng Zhou
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yaobin Lin, ; Hao Long,
| | - Yaobin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yaobin Lin, ; Hao Long,
| |
Collapse
|
29
|
Wang Y, Li C, Xia J, Li P, Cao J, Pan B, Tan X, Li H, Qi K, Wang X, Shi M, Jing G, Yan Z, Cheng H, Zhu F, Sun H, Sang W, Li D, Zhang X, Li Z, Zheng J, Liang A, Zhou J, Xu K. Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma. Blood Adv 2021; 5:5290-5299. [PMID: 34587230 PMCID: PMC9153033 DOI: 10.1182/bloodadvances.2021004603] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Systematic and dynamic humoral immune reconstitution is little-known for patients with relapsed/refractory (R/R) multiple myeloma (MM) who received anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy. We investigated the kinetics of B-cell, normal plasma cell, and immunoglobulin recovery in 40 patients who achieved ongoing response after anti-BCMA CAR T-cell therapy. All patients developed B-cell aplasia and the median duration of B-cell aplasia was 70 days (range, 23-270). The B-cell count reached its nadir on median day 7 and returned to baseline level on median day 97. BCMA+ cells in bone marrow turned undetectable on median day 28 (13-159) in 94.87% (37 of 39) of patients. Normal plasma cells in bone marrow were first redetected on median day 212. All patients developed a significant decrease in serum IgG, IgA, and IgM on median day 60. At year 1, recovery of serum IgG, IgM, and IgA was observed in 53.33% (8 of 15; non-IgG MM), 73.08% (19 of 26; non-IgM MM), and 23.81% (5 of 21;non-IgA MM) of the patients, respectively. Median time to IgG, IgM, and IgA recovery were days 386, 254, and not reached during follow-up, respectively. Virus-specific IgG levels decreased with loss of protection. Twenty-three of 40 (57.5%) patients had a total of 44 infection events. There were no infection-related deaths. These results reveal a 7-month aplasia of bone marrow normal plasma cells and longer period of hypogammaglobulinemia, suggesting a profound and lasting humoral immune deficiency after anti-BCMA CAR T-cell therapy, especially for IgA.
Collapse
Affiliation(s)
| | - Chunrui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | - Xu Tan
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | | | | | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
30
|
Meir J, Abid MA, Abid MB. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant Cell Ther 2021; 27:973-987. [PMID: 34587552 PMCID: PMC8473073 DOI: 10.1016/j.jtct.2021.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown unprecedented response rates in patients with relapsed/refractory (R/R) hematologic malignancies. Although CAR-T therapy gives hope to heavily pretreated patients, the rapid commercialization and cumulative immunosuppression of this therapy predispose patients to infections for a prolonged period. CAR-T therapy poses distinctive short- and long-term toxicities and infection risks among patients who receive CAR T-cells after multiple prior treatments, often including hematopoietic cell transplantation. The acute toxicities include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. The long-term B cell depletion, hypogammaglobulinemia, and cytopenia further predispose patients to severe infections and abrogate the remission success achieved by the living drug. These on-target-off-tumor toxicities deplete B-cells across the entire lineage and further diminish immune responses to vaccines. Early observational data suggest that patients with hematologic malignancies may not mount adequate humoral and cellular responses to SARS-CoV-2 vaccines. In this review, we summarize the immune compromising factors indigenous to CAR-T recipients. We discuss the immunogenic potential of different SARS-CoV-2 vaccines for CAR-T recipients based on the differences in vaccine manufacturing platforms. Given the lack of data related to the safety and efficacy of SARS-CoV-2 vaccines in this distinctively immunosuppressed cohort, we summarize the infection risks associated with Food and Drug Administration-approved CAR-T constructs and the potential determinants of vaccine responses. The review further highlights the potential need for booster vaccine dosing and the promise for heterologous prime-boosting and other novel vaccine strategies in CAR-T recipients. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Juliet Meir
- Department of Medicine, Westchester Medical Center, Valhalla, New York
| | - Muhammad Abbas Abid
- Department of Hematopathology & Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Bilal Abid
- Divisions of Infectious Diseases and Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
31
|
Janakiram M, Arora N, Bachanova V, Miller JS. Novel Cell and Immune Engagers in Optimizing Tumor- Specific Immunity Post-Autologous Transplantation in Multiple Myeloma. Transplant Cell Ther 2021; 28:61-69. [PMID: 34634499 DOI: 10.1016/j.jtct.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022]
Abstract
Autologous stem cell transplantation (ASCT) is an important component of treatment of multiple myeloma (MM). The post-ASCT setting offers a unique opportunity to increase myeloma specific immunity through enhancement of T and NK cell responses. The vast array of therapeutics being developed for MM, including cell-based therapies, dendritic vaccines, bispecific antibodies, and IL-15 agonists, provide the opportunity to increase tumor-specific immunity. Maintenance therapies, including immunomodulatory drugs, proteasome inhibitors, and daratumumab, exhibit a significant anti-myeloma response by modulating the immune system. Lenalidomide promotes an antitumoral immune microenvironment, whereas daratumumab can potentially cause NK cell fratricide. Thus, understanding the effects of commonly used maintenance drugs on the immune system is important. In this review, we look at current and emerging therapeutics and their integration post-ASCT in the context of immune reconstitution to improve clinical responses in patients with MM. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Murali Janakiram
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Nivedita Arora
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Markmann C, Bhoj VG. On the road to eliminating long-lived plasma cells-"are we there yet?". Immunol Rev 2021; 303:154-167. [PMID: 34351644 DOI: 10.1111/imr.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Central to protective humoral immunity is the activation of B cells and their terminal differentiation into antibody-secreting plasma cells. Long-lived plasma cells (LLPC) may survive for years to decades. Such long-lived plasma cells are also responsible for producing pathogenic antibodies that cause a variety of challenges such as autoimmunity, allograft rejection, and drug neutralization. Up to now, various therapeutic strategies aimed at durably eliminating pathogenic antibodies have failed, in large part due to their inability to efficiently target LLPCs. Several antibody-based therapies have recently gained regulatory approval or are in clinical phases of development for the treatment of multiple myeloma, a malignancy of plasma cells. We discuss the exciting potential of using these emerging cancer immunotherapies to solve the antibody problem.
Collapse
Affiliation(s)
- Caroline Markmann
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Cornelis R, Chang HD, Radbruch A. Keeping up with the stress of antibody production: BAFF and APRIL maintain memory plasma cells. Curr Opin Immunol 2021; 71:97-102. [PMID: 34303157 DOI: 10.1016/j.coi.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Memory plasma cells, also called long-lived plasma cells, provide 'humoral immunity' by continued secretion of protective antibodies against pathogens, which the immune system has once encountered. They are maintained mainly in the bone marrow, docking on to stromal cells individually. In those niches they can apparently persist for decades (Chang et al., 2018 [1]). Integrin-mediated contact to the stromal cell provides an essential survival signal to the plasma cell, activating the PI3K signalling pathway, downregulating FoxO1/3a and repressing the activation of caspases 3 and 7. In a redundant form, the cytokines BAFF and APRIL, ligands of the plasma cell receptors TACI and BCMA, provide a second essential survival signal, preventing activation of caspase 12, as triggered by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Rebecca Cornelis
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Germany; Institute of Biotechnology, Technische Universität Berlin, Germany.
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Germany
| |
Collapse
|
35
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
36
|
Dobosz E, Lorenz G, Ribeiro A, Würf V, Wadowska M, Kotlinowski J, Schmaderer C, Potempa J, Fu M, Koziel J, Lech M. Murine myeloid cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and differentiation. Dis Model Mech 2021; 14:dmm047589. [PMID: 33737335 PMCID: PMC7988765 DOI: 10.1242/dmm.047589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloid-derived cells, in particular macrophages, are increasingly recognized as critical regulators of the balance of immunity and tolerance. However, whether they initiate autoimmune disease or perpetuate disease progression in terms of epiphenomena remains undefined.Here, we show that depletion of MCPIP1 in macrophages and granulocytes (Mcpip1fl/fl-LysMcre+ C57BL/6 mice) is sufficient to trigger severe autoimmune disease. This was evidenced by the expansion of B cells and plasma cells and spontaneous production of autoantibodies, including anti-dsDNA, anti-Smith and anti-histone antibodies. Consequently, we document evidence of severe skin inflammation, pneumonitis and histopathologic evidence of glomerular IgG deposits alongside mesangioproliferative nephritis in 6-month-old mice. These phenomena are related to systemic autoinflammation, which secondarily induces a set of cytokines such as Baff, Il5, Il9 and Cd40L, affecting adaptive immune responses. Therefore, abnormal macrophage activation is a key factor involved in the loss of immune tolerance.Overall, we demonstrate that deficiency of MCPIP1 solely in myeloid cells triggers systemic lupus-like autoimmunity and that the control of myeloid cell activation is a crucial checkpoint in the development of systemic autoimmunity.
Collapse
Affiliation(s)
- Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Georg Lorenz
- Klinikum rechts der Isar, Department of Nephrology, Technical University Munich, Munich 81675, Germany
| | - Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Vivian Würf
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Christoph Schmaderer
- Klinikum rechts der Isar, Department of Nephrology, Technical University Munich, Munich 81675, Germany
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Mingui Fu
- Department of Biomedical Science and Shock, Trauma Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| |
Collapse
|
37
|
A transgene-encoded truncated human epidermal growth factor receptor for depletion of anti- B-cell maturation antigen CAR-T cells. Cell Immunol 2021; 363:104342. [PMID: 33765541 DOI: 10.1016/j.cellimm.2021.104342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chimeric antigen receptor T cells (CAR-T) against B-cell maturation antigen (BCMA) has been used to treat multiple myeloma (MM). CAR-T cells co-expressing a truncated human EGFR (tEGFR) has been proposed for in vivo cell ablation. METHODS We designed and tested a novel anti-BCMA CAR. We transduced T cells with retroviral vectors encoding CAR and tEGFR. The anti-BCMA-CAR-transduced T cells were evaluated for the functions including cytokine production, proliferation, cytotoxicity, and in vivo tumor eradication of BCMA. Cetuximab was used for in vivo cell ablation. RESULTS The CAR-T cells could specifically recognize BCMA, and anti-BCMA CAR-T cells could exhibit interferon-γ and cytotoxicity specifically produced by BCMA and eradicate tumor in vivo. Cetuximab could mediate antibody-dependent cellular cytotoxicity and in vivo elimination. CONCLUSIONS We confirm that BCMA is a suitable target for CAR- T cells and tEGFR is a effective tool for cellular ablation.
Collapse
|
38
|
Kumar G, Maria Z, Kohli U, Agasing A, Quinn JL, Ko RM, Zamvil SS, Axtell RC. CNS Autoimmune Responses in BCMA-Deficient Mice Provide Insight for the Failure of Atacicept in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e973. [PMID: 33649164 PMCID: PMC7954465 DOI: 10.1212/nxi.0000000000000973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE B cells have emerged as a therapeutic target for MS. Anti-CD20 antibodies, which deplete B cells, are effective therapies for MS. However, atacicept (TACI-Fc), which blocks BAFF and APRIL and reduces B cells, unexpectedly exacerbates MS. We tested the hypothesis that B cell maturation antigen (BCMA), a receptor for BAFF and APRIL, plays a role in the paradoxical effects of anti-CD20 antibody and TACI-Fc using experimental autoimmune encephalomyelitis (EAE). METHODS EAE was induced in wild-type (BCMA+/+) and BCMA-deficient (BCMA-/-) mice with an immunization of rodent myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. Treatment with anti-CD20 antibody, TACI-Fc, and isotype controls was administered by intraperitoneal injections. CNS infiltration was evaluated by histology; immune cell phenotypes were evaluated by flow cytometry; MOG-specific antibodies were determined by ELISA. Mixed bone marrow chimeras and cell culture assays were used to identify the specific subsets of immune cells affected by BCMA deficiency. RESULTS First, we found that BCMA-/- mice had more severe EAE compared with BCMA+/+ mice and the increased disease was associated with elevated anti-MOG B-cell responses. Second, we found that anti-CD20 therapy attenuated EAE in BCMA-/- mice but not in BCMA+/+ mice. Third, TACI-Fc attenuated EAE in BCMA+/+ mice but not in BCMA-/- mice. Mixed bone marrow chimeric and cell culture experiments demonstrated that BCMA deficiency elevates inflammatory B-cell responses but inhibits inflammatory responses in macrophages. CONCLUSIONS BCMA has multifaceted roles during inflammation that affects therapeutic efficacies of anti-CD20 and TACI-Fc in EAE. Our results from BCMA-deficient mice provide insights into the failure of atacicept in MS.
Collapse
Affiliation(s)
- Gaurav Kumar
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Zahra Maria
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Uday Kohli
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Agnieshka Agasing
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - James L Quinn
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Rose M Ko
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Scott S Zamvil
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco
| | - Robert C Axtell
- From the ACI (G.K., Z.M., U.K., A.A., J.L.Q., R.M.K., R.C.A.), Oklahoma Medical Research Foundation; and Department of Neurology and Program in Immunology, (S.S.Z.), University of California San Francisco.
| |
Collapse
|
39
|
Ding L, Hu Y, Huang H. Novel progresses of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma. Stem Cell Investig 2021; 8:1. [PMID: 33575314 DOI: 10.21037/sci-2020-029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, which leads to suppressed hematopoietic and osteolytic diseases. Despite the use of traditional chemotherapy, hematopoietic stem cell transplantation (HSCT) and targeted drugs, MM still cannot be completely cured. In recent years, chimeric antigen receptor (CAR) T cells have revolutionized immunotherapy and cancer treatment. The great success of CAR-T cells in leukemia and lymphoma has promoted its development in MM. The primary requisite for developing clinically effective CAR-T cells suitable for MM is to identify the appropriate targets. In early clinical trials, CAR-T cells targeting B-cell maturation antigen (BCMA) have shown significant anti-MM activity. Currently popular targets in clinical research and preclinical research include CD138, CD38, CS1, CD19, κ light chain, CD56, CD44v6, Lewis Y, NY-ESO-1, CD229, etc. Common toxicities such as cytokine release syndrome (CRS) and neurotoxicity also occur but controllable. MM cells are mainly localized in bone marrow, therefore, the bone marrow microenvironment has a significant effect on the therapeutic effect of CAR-T cells. Targeting both MM cells and the bone marrow microenvironment is currently the most promising treatment. In this review, we provide a comprehensive overview of CAR-T cell therapy in MM, as well as outline potential targets and methods that can overcome local immunosuppression and improve the efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Lijuan Ding
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
40
|
Martino M, Paviglianiti A. An update on B-cell maturation antigen-targeted therapies in Multiple Myeloma. Expert Opin Biol Ther 2021; 21:1025-1034. [PMID: 33412948 DOI: 10.1080/14712598.2021.1872540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: B-cell maturation antigen (BCMA) targeted therapy (BCMA-TT) has emerged as a promising treatment for Multiple Myeloma (MM). the three most common treatment modalities for targeting BCMA are antibody-drug conjugates (ADCs), bispecific antibody constructs, including BiTE (bispecific T-cell engager) immuno-oncology therapies, and chimeric antigen receptor (CAR)-modified T-cell therapy.Areas covered: The review provides an overview of the main published studies on clinical and pre-clinical data from trials using BCMA-TT.Expert opinion: Despite progresses in survival outcomes and the availability of new drugs, MM remains an incurable disease. ADC is a promising antibody-based treatment and Belantamab mafodotin showed an anti-myeloma effect alone or in combination with other drugs. The major issue of ADC is the occurrence of events interfering with the efficacy and the off-target cytotoxicity. Bispecific antibody constructs are off-the-shelf therapies characterized by a potential rapid availability. The most critical limitation of bispecific antibody constructs is their short half-life necessitating prolonged intravenous infusion. CAR-T cells produced unprecedented results in heavily pretreated RRMM. The most common toxicities include neurologic toxicity and cytokine release syndrome, B-cell aplasia, cytopenias, and hypogammaglobulinemia. Further studies are needed to detect which are the eligible patients who could benefit from one treatment more than another.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Annalisa Paviglianiti
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| |
Collapse
|
41
|
Demel I, Bago JR, Hajek R, Jelinek T. Focus on monoclonal antibodies targeting B-cell maturation antigen (BCMA) in multiple myeloma: update 2021. Br J Haematol 2020; 193:705-722. [PMID: 33216972 DOI: 10.1111/bjh.17235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Remarkable advances have been achieved in the treatment of multiple myeloma (MM) in the last decade, which saw targeted immunotherapy, represented by anti-CD38 monoclonal antibodies, successfully incorporated across indications. However, myeloma is still considered curable in only a small subset of patients, and the majority of them eventually relapse. B-cell maturation antigen (BCMA) is expressed exclusively in mature B lymphocytes and plasma cells, and represents an ideal new target for immunotherapy, presented by bispecific antibody (bsAb) constructs, antibody-drug conjugates (ADCs) and chimeric antigen receptor T (CAR-T) cells. Each of them has proved its efficacy with the potential for deep and long-lasting responses as a single agent therapy in heavily pretreated patients. As a result, belantamab mafodotin was approved by the United States Food and Drug Administration for the treatment of relapsed/refractory MM, as the first anti-BCMA agent. In the present review, we focus on monoclonal antibodies targeting BCMA - bsAbs and ADCs. The data from preclinical studies as well as first-in-human clinical trials will be reviewed, together with the coverage of their constructs and mechanisms of action. The present results have laid the groundwork for the ongoing or upcoming clinical trials with combinatory regimens, which have always been a cornerstone in the treatment of MM.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Julio Rodriguez Bago
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
42
|
Low MSY, Brodie EJ, Fedele PL, Liao Y, Grigoriadis G, Strasser A, Kallies A, Willis SN, Tellier J, Shi W, Gabriel S, O'Donnell K, Pitt C, Nutt SL, Tarlinton D. IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Rep 2020; 29:2634-2645.e5. [PMID: 31775034 DOI: 10.1016/j.celrep.2019.10.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) is critical for the development, maintenance, and function of plasma cells. The mechanism by which IRF4 exerts its action in mature plasma cells has been elusive due to the death of all such cells upon IRF4 loss. While we identify apoptosis as a critical pathway for the death of plasma cells caused by IRF4 loss, we also determine that IRF4 did not regulate the intrinsic apoptotic pathway directly. By using an inducible IRF4 deletion system in the presence of the overexpression of anti-apoptotic BCL2, we identify genes whose expression is coordinated by IRF4 and that in turn specify plasma cell identity and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Michael Sze Yuan Low
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Monash Haematology, Monash Health, 246 Clayton Road, Clayton 3168, VIC, Australia; Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne 3004, VIC, Australia; School of Clinical Sciences at Monash Health, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton 3168, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Erica J Brodie
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne 3004, VIC, Australia
| | - Pasquale L Fedele
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Monash Haematology, Monash Health, 246 Clayton Road, Clayton 3168, VIC, Australia; School of Clinical Sciences at Monash Health, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton 3168, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Yang Liao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia; School of Computing and Information Systems, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - George Grigoriadis
- Monash Haematology, Monash Health, 246 Clayton Road, Clayton 3168, VIC, Australia; School of Clinical Sciences at Monash Health, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton 3168, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Simon N Willis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Wei Shi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia; School of Computing and Information Systems, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Sarah Gabriel
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Kristy O'Donnell
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne 3004, VIC, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne 3004, VIC, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | - David Tarlinton
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne 3004, VIC, Australia.
| |
Collapse
|
43
|
Bera TK. Anti-BCMA Immunotoxins: Design, Production, and Preclinical Evaluation. Biomolecules 2020; 10:biom10101387. [PMID: 33003418 PMCID: PMC7600380 DOI: 10.3390/biom10101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to the restricted expression and being a cell surface membrane protein, BCMA is an ideal target for immunotherapy approaches in MM. Recombinant immunotoxins (RITs) are a novel class of protein therapeutics that are composed of the Fv or Fab portion of an antibody fused to a cytotoxic agent. RITs were produced by expressing plasmids encoding the components of the anti-BCMA RITs in E. coli followed by inclusion body preparation, solubilization, renaturation, and purification by column chromatography. The cytotoxic activity of RITs was tested in vitro by WST-8 assays using BCMA expressing cell lines and on cells isolated from MM patients. The in vivo efficacy of RITs was tested in a xenograft mouse model using BCMA expressing multiple myeloma cell lines. Anti-BCMA recombinant immunotoxins are very effective in killing myeloma cell lines and cells isolated from myeloma patients expressing BCMA. Two mouse models of myeloma showed that the anti-BCMA immunotoxins can produce a long-term complete response and warrant further preclinical development.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol 2020; 18:71-84. [PMID: 32978608 DOI: 10.1038/s41571-020-0427-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Despite several therapeutic advances over the past decade, multiple myeloma (MM) remains largely incurable, indicating a need for new treatment approaches. Chimeric antigen receptor (CAR) T cell therapy works by mechanisms distinct from those of other MM therapies and involves the modification of patient or donor T cells to target specific cell-surface antigens. B cell maturation antigen (BCMA) is expressed only on plasma cells, a small subset of B cells and MM cells, which makes it a suitable target antigen for such therapies. At the time of writing, data from >20 clinical trials involving anti-BCMA CAR T cells have demonstrated that patients with relapsed and/or refractory MM can achieve objective responses. These early investigations have been instrumental in demonstrating short-term safety and efficacy; however, most patients do not have disease remission lasting >18 months. Attempts to reduce or delay the onset of relapsed disease are underway and include identifying additional CAR T cell target antigens and methods of enhancing BCMA expression on MM cells. Engineering CAR T cells to enhance both the activity and safety of treatment continues to be a promising avenue for improvement. In this Review we summarize data from clinical trials that have been carried out to date, describe novel antigens that could be targeted in the future, and highlight potential future innovations that could enhance the efficacy and/or reduce the toxicities associated with CAR T cell therapies.
Collapse
Affiliation(s)
- Lekha Mikkilineni
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
45
|
Magliozzi R, Marastoni D, Calabrese M. The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1135-1145. [PMID: 32900236 DOI: 10.1080/14728222.2020.1821647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The complex system of BAFF (B-cell-activating factor of the TNF family) and APRIL (A proliferation-inducing ligand) has been studied in animal models of autoimmune diseases such as those resembling human systemic lupus erythematosus and Sjogren's syndrome and multiple sclerosis (MS). Accumulating evidence suggests that BAFF and APRIL have a physiological role in B cell immunity regulation, however inappropriate production of these factors may represent a key event which disrupts immune tolerance which is associated with systemic autoimmune diseases. AREAS COVERED We provide an update on the latest studies of the BAFF/APRIL system in multiple sclerosis, as well as on related clinical trials. EXPERT OPINION Experimental and clinical evidence suggests that increased BAFF levels may interfere directly and indirectly with B cell immunity; this can lead to breakdown of immune tolerance, the production of autoantibodies and continuous local intracerebral inflammation and brain tissue destruction. A more comprehensive understanding of the cell/molecular mechanism immune reactions specifically regulated by BAFF/APRIL in MS would better elucidate the specific cell phenotype targeted by actual anti-BAFF/APRIL therapies; this may enable the identification of either specific biomarkers of MS subgroups that would benefit of anti-BAFF/APRIL treatments or new targets of MS-specific anti-BAFF/APRIL therapies.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
46
|
Yu B, Jiang T, Liu D. BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 2020; 13:125. [PMID: 32943087 PMCID: PMC7499842 DOI: 10.1186/s13045-020-00962-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY USA
| | - Tianbo Jiang
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| |
Collapse
|
47
|
Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front Oncol 2020; 10:1243. [PMID: 32850376 PMCID: PMC7399644 DOI: 10.3389/fonc.2020.01243] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Despite recent therapeutic advances, the prognosis of multiple myeloma (MM) patients remains poor. Thus, new strategies to improve outcomes are imperative. Chimeric antigen receptor (CAR) T-cell therapy has changed the treatment landscape of B-cell malignancies, providing a potentially curative option for patients who are refractory to standard treatment. Long-term remissions achieved in patients with acute lymphoblastic leukemia and Non-Hodgkin Lymphoma encouraged its further development in MM. B-cell maturation antigen (BCMA)-targeted CAR T-cells have established outstanding results in heavily pre-treated patients. However, several other antigens such as SLAMF7 and CD44v6 are currently under investigation with promising results. Idecabtagene vicleucel is expected to be approved soon for clinical use. Unfortunately, relapses after CAR T-cell infusion have been reported. Hence, understanding the underlying mechanisms of resistance is essential to promote prevention strategies and to enhance CAR T-cell efficacy. In this review we provide an update of the most recent clinical and pre-clinical data and we elucidate both, the potential and the challenges of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Luis Gerardo Rodríguez-Lobato
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maya Ganzetti
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlos Fernández de Larrea
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Hudecek
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
TNFSF13 upregulation confers chemotherapeutic resistance via triggering autophagy initiation in triple-negative breast cancer. J Mol Med (Berl) 2020; 98:1255-1267. [PMID: 32671412 DOI: 10.1007/s00109-020-01952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Since chemotherapy is a main strategy to treat triple-negative breast cancer (TNBC) patients currently, identifying a biomarker to predict chemotherapeutic responses is urgently needed for patients to avoid suffering through unnecessary chemotherapeutic treatments. Here, we found that the endogenous expression of TNFSF13 in a panel of TNBC cell lines highly correlates with paclitaxel (PTX) and doxorubicin IC50 concentrations. Whereas knocking down TNFSF13 enhances PTX effectiveness in PTX-insensitive MDA-MB231 cells, recombinant TNFSF13 (recTNFSF13) desensitizes PTX-sensitive HCC1806 cells to PTX treatment. Moreover, Kaplan-Meier analysis revealed that higher TNFSF13 mRNA expression significantly predicts an increased risk for cancer recurrence in estrogen receptor (ER)-negative breast cancer patients receiving an anthracycline-based treatment. Accordingly, immunohistochemistry experiments indicated that higher levels of TNFSF13 protein are detected in TNBC patients who do not respond to an anthracycline-based treatment. The in silico analysis and Western blotting demonstrated that TNFSF13 expression inversely associates with the activity of the Akt-mTOR pathway, which acts as a negative regulator of autophagy activity. Significantly, the pharmaceutical inhibition of autophagy activity restores the therapeutic effectiveness of PTX in TNFSF13-treated HCC1806 cells. These findings suggest that TNFSF13 can serve as a predictive biomarker for TNBC patients, who can use it to decide whether to receive chemotherapy. KEY MESSAGES: TNFSF13 upregulation correlates with a poor response to chemotherapy in TNBCs. TNFSF13 promotes autophagy initiation in chemotherapeutic resistant TNBCs. Therapeutic targeting of autophagy initiation overcomes the TNFSF13-related chemoresistance. TNFSF13 could be a predictive biomarker for TNBC patients receiving chemotherapy.
Collapse
|
49
|
Zhou X, Mulazzani M, von Mücke-Heim IA, Langer S, Zhang W, Ishikawa-Ankerhold H, Dreyling M, Straube A, von Baumgarten L. The Role of BAFF-R Signaling in the Growth of Primary Central Nervous System Lymphoma. Front Oncol 2020; 10:682. [PMID: 32528875 PMCID: PMC7266954 DOI: 10.3389/fonc.2020.00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 01/09/2023] Open
Abstract
Primary CNS lymphoma (PCNSL) is an aggressive brain tumor. Despite improvements in therapeutic algorithms, long-term survival remains rare, illustrating an urgent need for novel therapeutic targets. BAFF-R is a pro-survival receptor expressed on most malignant B cells, including PCNSL. To date, its role in PCNSL growth remains elusive. Here, we have created a BAFF-R knockout lymphoma cell line (BAFF-R-KO) using CRISPR-Cas9. In serum-starved conditions, BAFF-R-KO cells exhibit decreased viability in vitro compared to BAFF-R+ cells. Combining an orthotopic mouse model of PCNSL with chronic cranial windows and intravital microscopy, we have demonstrated a significant delay in tumor growth in mice inoculated with BAFF-R-KO cells compared to BAFF-R+ PCNSL. Additionally, median survival of BAFF-R-KO mice was significantly prolonged. Altogether, our results indicate the high potential of BAFF-R as a novel treatment target for PCNSL.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | | | | | - Sigrid Langer
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Wenlong Zhang
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | | | - Martin Dreyling
- Department of Internal Medicine III, Ludwig Maximilians University, Munich, Germany
| | - Andreas Straube
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
50
|
Lim FLWI, Ang SO. Emerging CAR landscape for cancer immunotherapy. Biochem Pharmacol 2020; 178:114051. [PMID: 32446888 DOI: 10.1016/j.bcp.2020.114051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
In the last decade, there has been great advancement in manipulating the immune system or the cells of the immune system to bring about effective therapies. While harnessing the immune system against cancer is not a new concept, successful reprograming with T cells with chimeric antigen receptor (CAR) forming CAR-T cell therapy has revolutionized the treatment landscape for patients with refractory, high-grade B cell malignancies. The journey from proof-of-concept to FDA-approved commercial CAR-T products has taken almost 3 decades and untold amount of efforts, resources and manpower. With the success of CD19 CAR adoptive cellular immunotherapy leading the charge, CARs targeting various malignancies are in various stages of active development, racing towards regulatory approval, and raising hopes of further breakthroughs in cancer treatment options. In this review we will highlight recent clinical developments of the B cell maturation antigen (BCMA) CAR-T therapy for multiple myeloma (MM) to showcase how innovative CAR designs, coupled with careful selection of tumor-associated antigens, used in combination with other therapeutic agents, could help overcome some of the current limitations experienced in CAR-T immunotherapy. More patients could benefit from novel upfront cell therapy trials, that when combined with the current established induction regimens could have the potential to recondition and alter tumor environments, help restore somnolent anti-tumor immunity, and induce more effective and durable remissions.
Collapse
Affiliation(s)
- Francesca L W I Lim
- Department of Haematology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| | - Sonny O Ang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States
| |
Collapse
|