1
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
2
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
4
|
Jiang W, Wei L, Chen B, Luo X, Xu P, Cai J, Hu Y. Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy. J Nanobiotechnology 2022; 20:129. [PMID: 35279133 PMCID: PMC8917711 DOI: 10.1186/s12951-022-01322-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Although concurrent chemoradiotherapy (CRT), as one of the most effective antineoplastic therapies in clinic, can successfully inhibit the growth of tumor cells, a risk of developing secondary tumor is still an insurmountable barrier in clinical practice. Results Herein, a new platinum prodrug composed of tannic acid (TA) and Pt2+ (TA-Pt) complex film was synthesized on the surface of Fe2O3 nanoparticles (NPs) with excellent stability and biocompatibility for enhanced CRT. In this system, TA-Pt complex could respond to the tumor acidic microenvironment and damage the DNA of tumor cells. Moreover, the internal iron core not only improved the effect of subsequent radiotherapy (RT), but also disrupted the iron balance in cells, inducing intracellular ferroptosis and eliminating apoptosis-resistant cells. In vitro and vivo experimental results indicated that more than 90% of tumor cells were depleted and more than 75% of the cured tumor-bearing mice evinced no recurrence or metastasis. Conclusions This work offered a new idea for combining the effective chemotherapy, RT and ferroptosis therapy to enhance the curative effect of CRT and inhibit tumor recurrence and metastasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01322-y.
Collapse
|
5
|
Kanauchi Y, Yamamoto T, Yoshida M, Zhang Y, Lee J, Hayashi S, Kadowaki M. Cholinergic anti-inflammatory pathway ameliorates murine experimental Th2-type colitis by suppressing the migration of plasmacytoid dendritic cells. Sci Rep 2022; 12:54. [PMID: 34997096 PMCID: PMC8742068 DOI: 10.1038/s41598-021-04154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.
Collapse
Affiliation(s)
- Yuya Kanauchi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Minako Yoshida
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhang
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jaemin Lee
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
6
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Rochman ND, Wolf YI, Koonin EV. Deep phylogeny of cancer drivers and compensatory mutations. Commun Biol 2020; 3:551. [PMID: 33009502 PMCID: PMC7532533 DOI: 10.1038/s42003-020-01276-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Driver mutations (DM) are the genetic impetus for most cancers. The DM are assumed to be deleterious in species evolution, being eliminated by purifying selection unless compensated by other mutations. We present deep phylogenies for 84 cancer driver genes and investigate the prevalence of 434 DM across gene-species trees. The DM are rare in species evolution, and 181 are completely absent, validating their negative fitness effect. The DM are more common in unicellular than in multicellular eukaryotes, suggesting a link between these mutations and cell proliferation control. 18 DM appear as the ancestral state in one or more major clades, including 3 among mammals. We identify within-gene, compensatory mutations for 98 DM and infer likely interactions between the DM and compensatory sites in protein structures. These findings elucidate the evolutionary status of DM and are expected to advance the understanding of the functions and evolution of oncogenes and tumor suppressors. Rochman et al. present deep phylogenies for 84 cancer driver genes and examine the prevalence of driver mutations across gene-species trees. Their results show that driver mutations are rare in species evolution and give insight into the evolution of driver mutations and oncogenes.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
8
|
The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABA A Receptor Endocytosis in the vmPFC. J Neurosci 2017. [PMID: 28630256 DOI: 10.1523/jneurosci.3859-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.
Collapse
|
9
|
Bozza WP, Zhang Y, Hallett K, Rivera Rosado LA, Zhang B. RhoGDI deficiency induces constitutive activation of Rho GTPases and COX-2 pathways in association with breast cancer progression. Oncotarget 2016; 6:32723-36. [PMID: 26416248 PMCID: PMC4741725 DOI: 10.18632/oncotarget.5416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Rho GDP Dissociation Inhibitor (RhoGDI) is a key regulator of Rho GTPases. Here we report that loss of RhoGDI significantly accelerated xenograft tumor growth of MDA-MB-231 cells in animal models. At the molecular level, RhoGDI depletion resulted in constitutive activation of Rho GTPases, including RhoA, Cdc42, and Rac1. This was accompanied by Rho GTPase translocation from the cytosol to membrane compartments. Notably, COX-2 protein levels, mRNA expression, and biological activity were markedly increased in RhoGDI-deficient cells. The upregulated expression of COX-2 was directly associated with increased Rho GTPase activity. Further, we assessed the expression level of RhoGDI protein in breast tumor specimens (n = 165) by immunohistochemistry. We found that RhoGDI expression is higher in the early stages of breast cancer followed by a significant decrease in malignant tumors and metastatic lesions (p < 0.01). These data suggest that downregulation of RhoGDI could be a critical mechanism of breast tumor development, which may involve the hyperactivation of Rho GTPases and upregulation of COX-2 activity. Additional studies are warranted to evaluate the therapeutic potential of inhibiting Rho GTPases and COX-2 for treating breast cancers.
Collapse
Affiliation(s)
- William P Bozza
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaqin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kory Hallett
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Leslie A Rivera Rosado
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.,United States Public Health Service Commissioned Corps, Rockville, MD 20852, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Ponce-Cusi R, Calaf GM. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. Int J Oncol 2015; 48:774-82. [PMID: 26691280 DOI: 10.3892/ijo.2015.3298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 8097877, Chile
| |
Collapse
|
11
|
Song YH, Zhong MZ, Gan PP, Yi PY, Tang YH, Liu YP, Jiang JQ, Li L. ALDH1A1 mediates resistance of diffuse large B cell lymphoma to the CHOP regimen. Tumour Biol 2014; 35:11809-17. [PMID: 25344211 DOI: 10.1007/s13277-014-2335-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/08/2014] [Indexed: 01/25/2023] Open
Abstract
Although there have been substantial advances in our knowledge of the resistance of diffuse large B cell lymphoma (DLBCL) to chemotherapy, there are few efficient treatment strategies for recurrent/refractory DLBCL. The aim of this study was to investigate the role of aldehyde dehydrogenase (ALDH) 1A1 in the resistance of diffuse large B cell lymphoma to the chemotherapeutic mixture consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). The involvement of ALDH1A1 in DLBCL was elucidated by knockdown and pharmacologic inhibition; Cell Counting Kit-8 (CCK-8) and clone formation assays were used to determine its role in CHOP sensitivity and clone formation ability. Caspase colorimetric assay was used to measure the extent of apoptosis. Western blot analysis was used to measure signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF-κB) signaling proteins, and quantitative real-time PCR (RT-PCR) was used to measure the differential expression of ALDH1A1 of DLBCL patients and healthy donors. ALDH1A1 showed a 5.64-fold higher expression in malignant B cells than in normal B cells. Diethylaminobenzaldehyde (DEAB) decreased the half maximal inhibitory concentration (IC50) of the CHOP regimen in Farage cells from 344.78 ± 65.75 to 183.88 ± 49.75 ng/ml (P = 0.004). Both knockdown and inhibition of ALDH1A1 reduced clonogenicity, increased caspase-3/caspase-9 activity, and attenuated the phosphorylation status of STAT3/NF-κB. The prognosis of patients with a high level of ALDH1A1 expression was poor compared with that of patients with low levels of expression (P = 0.044). ALDH1A1 is a new mediator for resistance of DLBCL to CHOP; it is a predictor of clinical prognosis and may serve as a potential target to improve chemotherapy responsiveness of human DLBCL.
Collapse
Affiliation(s)
- Ying-Hui Song
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang JY, Chen F, Fu XQ, Ding CS, Zhou L, Zhang XH, Luo ZG. Caspase-3 cleavage of dishevelled induces elimination of postsynaptic structures. Dev Cell 2014; 28:670-84. [PMID: 24631402 DOI: 10.1016/j.devcel.2014.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 12/17/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022]
Abstract
During the development of vertebrate neuromuscular junction (NMJ), agrin stabilizes, whereas acetylcholine (ACh) destabilizes AChR clusters, leading to the refinement of synaptic connections. The intracellular mechanism underlying this counteractive interaction remains elusive. Here, we show that caspase-3, the effector protease involved in apoptosis, mediates elimination of AChR clusters. We found that caspase-3 was activated by cholinergic stimulation of cultured muscle cells without inducing cell apoptosis and that this activation was prevented by agrin. Interestingly, inhibition of caspase-3 attenuated ACh agonist-induced dispersion of AChR clusters. Furthermore, we identified Dishevelled1 (Dvl1), a Wnt signaling protein involved in AChR clustering, as the substrate of caspase-3. Blocking Dvl1 cleavage prevented induced dispersion of AChR clusters. Finally, inhibition or genetic ablation of caspase-3 or expression of a caspase-3-resistant form of Dvl1 caused stabilization of aneural AChR clusters. Thus, caspase-3 plays an important role in the elimination of postsynaptic structures during the development of NMJs.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Agrin/physiology
- Animals
- Caspase 3/metabolism
- Cells, Cultured
- Dishevelled Proteins
- Electrophysiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Image Processing, Computer-Assisted
- Immunoenzyme Techniques
- Mice
- Mice, Knockout
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Neuromuscular Junction/physiology
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Cholinergic/metabolism
- Signal Transduction
- Synaptic Potentials/physiology
- Synaptic Transmission
Collapse
Affiliation(s)
- Jin-Yuan Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fei Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiu-Qing Fu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chuang-Shi Ding
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China
| | - Li Zhou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiao-Hui Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhen-Ge Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
13
|
BH3 mimetics reduce adhesion and migration of hepatoblastoma and hepatocellular carcinoma cells. Exp Cell Res 2013; 319:1443-50. [DOI: 10.1016/j.yexcr.2013.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/30/2022]
|
14
|
Activation of Rac1 GTPase promotes leukemia cell chemotherapy resistance, quiescence and niche interaction. Mol Oncol 2013; 7:907-16. [PMID: 23726395 DOI: 10.1016/j.molonc.2013.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/04/2023] Open
Abstract
Leukemia stem cells (LSCs) reside in bone marrow niche and receive important signals from the microenvironment that support self-renewal, maintain quiescence and endow LSC with the ability of chemotherapy resistance. Rac1 belongs to the small GTP-binding protein superfamily and is implicated in the interactions of hematopoietic progenitors and bone marrow niche. Our previous studies have shown that Rac1 is over-expressed in leukemia patients and activation of Rac1 GTPase is closely associated with the efficient migration of leukemia cells. However, the potential functions for Rac1 GTPase in LSCs behaviors and in the residence of leukemia cells in niche remain unknown. In this study, by forced expression of a dominant-negative form of Rac1 GTPase in a CD34(+) myeloid leukemia cell line, as well as bone marrow cells from leukemia patients, we show that inactivation of Rac1 GTPase causes impaired migration and enhances chemotherapeutic sensitivity. Inactivation of Rac1 in leukemia cells also lead to a reduction in the frequency of cells in quiescent state and inhibition of homing to bone marrow niche. Gene expression analysis shows that inactivation of Rac1 down-regulates the expression of several cell intrinsic cell cycle inhibitors such as p21, p27, and p57, as well as the extrinsic molecules that mediated the interaction of LSC with osteoblastic niche. Furthermore, we show that Rac1 mediated the localization in niche is further attributed to the maintenance of quiescence. Our results provide evidence for the critical role of Rac1 GTPase in leukemia cell chemotherapy resistance, quiescence maintenance and the interaction with bone marrow microenvironment.
Collapse
|
15
|
Sokolovska A, Becker CE, Ip WKE, Rathinam VAK, Brudner M, Paquette N, Tanne A, Vanaja SK, Moore KJ, Fitzgerald KA, Lacy-Hulbert A, Stuart LM. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 2013; 14:543-53. [PMID: 23644505 PMCID: PMC3708594 DOI: 10.1038/ni.2595] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 11/10/2022]
Abstract
Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.
Collapse
Affiliation(s)
- Anna Sokolovska
- Developmental Immunology and Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Regulation of the actin cytoskeleton in dendritic spines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:81-95. [PMID: 22351052 DOI: 10.1007/978-3-7091-0932-8_4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spine morphogenesis is largely dependent on the remodeling of the actin cytoskeleton. Actin dynamics within spines is regulated by a complex network of signaling molecules, which relay signals from synaptic receptors, through small GTPases and their regulators, to actin-binding proteins. In this chapter, we will discuss molecules involved in dendritic spine plasticity beginning with actin and moving upstream toward neuromodulators and trophic factors that initiate signaling involved in these plasticity events. We will place special emphasis on small GTPase pathways, as they have an established importance in dendritic spine plasticity and pathology. Finally, we will discuss some epigenetic mechanisms that control spine morphogenesis.
Collapse
|
17
|
Singh R, Cadeddu RP, Fröbel J, Wilk CM, Bruns I, Zerbini LF, Prenzel T, Hartwig S, Brünnert D, Schroeder T, Lehr S, Haas R, Czibere A. The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis 2011; 16:889-901. [PMID: 21739277 DOI: 10.1007/s10495-011-0624-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia is a heterogeneous disease with varying genetic and molecular pathologies. Non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to possess significant anti-proliferative potential in various cancer cells in vitro and in vivo. Hence, treatment with these agents can be utilized to study disease specific anti-proliferative pathways. In this study, a total number of 42 bone marrow derived CD34(+) selected de novo AML patient samples and the AML cell lines THP-1 and HL-60 were treated with the NSAIDs Sulindac sulfide and Diclofenac. We analyzed viability, apoptosis, differentiation and addressed the molecular mechanisms involved. We found a consistent induction of apoptosis and to some extent an increased myeloid differentiation capacity in NSAID treated AML cells. Comprehensive protein and gene expression profiling of Diclofenac treated AML cells revealed transcriptional activation of GADD45α and its downstream MAPK/JNK pathway as well as increased protein levels of the caspase-3 precursor. This pointed towards a role of the c-Jun NH(2)-terminal kinase (JNK) in NSAID mediated apoptosis that we found indeed to be dependent on JNK activity as addition of a specific JNK-inhibitor abrogated apoptosis. Furthermore, the AP-1 transcription factor family members' c-Jun, JunB and Fra-2 were transcriptionally activated in NSAID treated AML cells and re-expression of these transcription factors led to activation of GADD45α with induction of apoptosis. Mechanistically, we demonstrate that NSAIDs induce apoptosis in AML through a novel pathway involving increased expression of AP-1 heterodimers, which by itself is sufficient to induce GADD45α expression with consecutive activation of JNK and induction of apoptosis.
Collapse
Affiliation(s)
- Raminder Singh
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Park YJ, Ahn HJ, Kim YS, Cho Y, Joo DJ, Ju MK. Illumina-microarray analysis of mycophenolic acid-induced cell death in an insulin-producing cell line and primary rat islet cells: New insights into apoptotic pathways involved. Cell Signal 2010; 22:1773-82. [DOI: 10.1016/j.cellsig.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
19
|
Leone DP, Srinivasan K, Brakebusch C, McConnell SK. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev Neurobiol 2010; 70:659-78. [PMID: 20506362 DOI: 10.1002/dneu.20804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycle machinery, are specifically involved in controlling SVZ cell proliferation. Rho GTPases have been implicated in regulating the proliferation, differentiation, and migration of many cell types, and one family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1 leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead is needed for the normal regulation of proliferation by progenitor cells in the SVZ.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
20
|
Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int 2010; 57:762-73. [PMID: 20817060 DOI: 10.1016/j.neuint.2010.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
Excitotoxicity is the main event during neurological disorders producing drastic morphological and functional changes. Rac-GTPase is involved in cytoskeletal remodeling and survival. However, the role of Rac1 after cerebral ischemia has not been completely understood yet. In this study, we evaluated the activity of Rac1 and its immunoreactivity associated to neuropathological hallmarks and behavioral task analyses after global cerebral ischemia in an acute and long-term post-ischemia period. Our findings showed that during the acute phase (24h) after global cerebral ischemia, a decrease of the active state of Rac1 was detected in the hippocampus, together with a down-regulation of survival signaling. In this same post-ischemia time, Rac1 immunoreactivity was redistributed to cytoplasm and to aberrant neurites, accompanied by dendritic and actin cytoskeletal retraction both in vivo and in vitro in neuronal primary cultures treated with glutamate. Neurons transfected with the constitutively active mutant of Rac1 were recovered from the glutamate-induced affection in vitro. However, in the in vivo model an inactive state of Rac1, and its cellular localization remained one month after ischemia, with still decreased survival signaling, significant tauopathy, and learning and memory alterations. These neuropathological hallmarks were reversed two months post-ischemia, related with a Rac1 activity state similar to control, as well as a "normalization" of the learning and memory tasks in the ischemic rats. In summary, our data suggests that changes in Rac1 activity are involved in the neurodegenerative processes after cerebral ischemia, and also in its long-term recovery.
Collapse
|
21
|
Cimbora-Zovko T, Fritz G, Mikac N, Osmak M. Downregulation of RhoB GTPase confers resistance to cisplatin in human laryngeal carcinoma cells. Cancer Lett 2010; 295:182-90. [PMID: 20303648 DOI: 10.1016/j.canlet.2010.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 01/24/2023]
|
22
|
Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY, Zhang B. Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther 2010; 9:1657-68. [PMID: 20515940 DOI: 10.1158/1535-7163.mct-09-0906] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rac1 GTPase regulates a variety of signaling pathways that are implicated in malignant phenotypes. Here, we show that selective inhibition of Rac1 activity by the pharmacologic inhibitor NSC23766 suppressed cell growth in a panel of human breast cancer cell lines, whereas it had little toxicity to normal mammary epithelial cells. NSC23766 elicits its cytotoxicity via two distinct mechanisms in a cell line-dependent manner: induction of G(1) cell cycle arrest in cell lines (MDA-MB-231, MCF7, and T47D) that express retinoblastoma (Rb) protein or apoptosis in Rb-deficient MDA-MB-468 cells. In MDA-MB-231 cells, Rac1 inhibition induced G(1) cell cycle arrest through downregulation of cyclin D1 and subsequent dephosphorylation/inactivation of Rb. By contrast, MDA-MB-468 cells underwent substantial apoptosis that was associated with loss of antiapoptotic proteins survivin and X-linked inhibitor of apoptosis protein (XIAP). Rac1 knockdown by RNAi interference confirmed the specificity of NSC23766 and requirement for Rac1 in the regulation of cyclin D1, survivin, and XIAP in breast cancer cells. Further, NF-kappaB, but not c-Jun NH(2)-terminal kinase or p38 pathways, mediates the survival signal from Rac1. Overall, our results indicate that Rac1 plays a central role in breast cancer cell survival through regulation of NF-kappaB-dependent gene products.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug, Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
24
|
Zhang Y, Rivera Rosado LA, Moon SY, Zhang B. Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. J Biol Chem 2009; 284:12956-65. [PMID: 19269969 DOI: 10.1074/jbc.m807845200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GDP dissociation inhibitor D4-GDI is overexpressed in some human breast cancer cell lines (Zhang, Y., and Zhang, B. (2006) Cancer Res. 66, 5592-5598). Here, we show that silencing of D4-GDI by RNA interference abrogates tumor growth and lung metastasis of otherwise highly invasive MDA-MB-231 breast cancer cells. Under anchorage-independent culture conditions, D4-GDI-depleted cells undergo rapid apoptosis (anoikis), which is known to hinder metastasis. We also found that D4-GDI associates with Rac1 and Rac3 in breast cancer cells, but not with other Rho GTPases tested (Cdc42, RhoA, RhoC, and TC10). Silencing of D4-GDI results in constitutive Rac1 activation and translocation from the cytosol to cellular membrane compartments and in sustained activation of p38 and JNK kinases. Rac1 blockade inhibits p38/JNK kinase activities and the spontaneous anoikis of D4-GDI knockdown cells. These results suggest that D4-GDI regulates cell function by interacting primarily with Rac GTPases and may play an integral role in breast cancer tumorigenesis. D4-GDI could prove to be a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Yaqin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Kondoh K, Nakata Y, Yamaoka T, Itakura M, Hayashi M, Yamada K, Hata JI, Yamada T. Altered cellular immunity in transgenic mice with T cell-specific expression of human D4-guanine diphosphate-dissociation inhibitor (D4-GDI). Int Immunol 2008; 20:1299-311. [DOI: 10.1093/intimm/dxn084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
26
|
Ishizaki H, Togawa A, Tanaka-Okamoto M, Hori K, Nishimura M, Hamaguchi A, Imai T, Takai Y, Miyoshi J. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. THE JOURNAL OF IMMUNOLOGY 2007; 177:8512-21. [PMID: 17142749 DOI: 10.4049/jimmunol.177.12.8512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rho family small GTP-binding proteins, including Rho, Rac, and Cdc42, are key determinants of cell movement and actin-dependent cytoskeletal morphogenesis. Rho GDP-dissociation inhibitor (GDI) alpha and Rho GDIbeta (or D4/Ly-GDI), closely related regulators for Rho proteins, are both expressed in hemopoietic cell lineages. Nevertheless, the functional contributions of Rho GDIs remain poorly understood in vivo. In this study, we report that combined disruption of both the Rho GDIalpha and Rho GDIbeta genes in mice resulted in reduction of marginal zone B cells in the spleen, retention of mature T cells in the thymic medulla, and a marked increase in eosinophil numbers. Furthermore, these mice showed lower CD3 expression and impaired CD3-mediated proliferation of T cells. While B cells showed slightly enhanced chemotactic migration in response to CXCL12, peripheral T cells showed markedly reduced chemotactic migration in response to CCL21 and CCL19 associated with decreased receptor levels of CCR7. Overall, Rho protein levels were reduced in the bone marrow, spleen, and thymus but sustained activation of the residual part of RhoA, Rac1, and Cdc42 was detected mainly in the bone marrow and spleen. Rho GDIalpha and Rho GDIbeta thus play synergistic roles in lymphocyte migration and development by modulating activation cycle of the Rho proteins in a lymphoid organ-specific manner.
Collapse
Affiliation(s)
- Hiroyoshi Ishizaki
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-2, Higashinari-ku, Osaka 537-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nhan TQ, Liles WC, Schwartz SM. Physiological functions of caspases beyond cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:729-37. [PMID: 16936249 PMCID: PMC1698830 DOI: 10.2353/ajpath.2006.060105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Q Nhan
- Department of Pathology, University of Washington, 815 Mercer St. #421, Seattle, WA 98109-4714, USA
| | | | | |
Collapse
|
28
|
Abstract
D4-GDI is a Rho GDP dissociation inhibitor that is widely expressed in hematopoietic cells. Its possible expression and function in breast cancer cells has not been described. Here, we found that D4-GDI is expressed in a panel of breast cancer cell lines, but not in benign-derived mammary epithelial cells. Knockdown of D4-GDI expression in MDA-MB-231 cells by RNA interference blocks cell motility and invasion. The cells lacking D4-GDI grown on Matrigel revert to a normal breast epithelial phenotype characterized by the formation of cavitary structures. Silencing D4-GDI expression inhibits beta1-integrin expression and cell-matrix adhesion. Reintroduction of D4-GDI fully restored both beta1-integrin expression and cellular invasion. Knockdown of D4-GDI in BT549 cells results in a similar effect. These results show that D4-GDI modulates breast cancer cell invasive activities.
Collapse
Affiliation(s)
- Yaqin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | |
Collapse
|
29
|
Loucks FA, Le SS, Zimmermann AK, Ryan KR, Barth H, Aktories K, Linseman DA. Rho family GTPase inhibition reveals opposing effects of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and Janus kinase/signal transducer and activator of transcription signaling cascades on neuronal survival. J Neurochem 2006; 97:957-67. [PMID: 16686690 DOI: 10.1111/j.1471-4159.2006.03802.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rho family GTPases promote the survival of certain neuronal populations. However, pro-survival and pro-death signaling pathways regulated downstream of Rho GTPases are largely unknown. Cerebellar granule neurons (CGNs) exposed to Clostridium difficile toxin B (ToxB), a monoglucosyltransferase that specifically inhibits Rho GTPases, die by a mitochondrial apoptotic cascade. Using a high-throughput immunoblotting screen (BD Powerblot), we found that ToxB markedly reduced the expression of Rac1 and c-Raf, upstream components of a Rac-dependent mitogen-activated protein (MAP) kinase pathway. Moreover, ToxB rapidly suppressed a p21-activated kinase/MAP kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling cascade that normally promotes degradation of the Bcl-2 homology-3 (BH3)-only protein Bim, a key initiator of mitochondrial apoptosis. In contrast to c-Raf down-regulation, ToxB enhanced expression of the transcription factor, signal transducer and activator of transcription-1 (STAT1). Both STAT1 up-regulation and apoptosis induced by ToxB were prevented by a pan-inhibitor of Janus kinases (JAKs), indicating that JAK/STAT signaling was pro-apoptotic in CGNs. Most significantly, direct inhibition of MEK was sufficient to trigger JAK-dependent STAT1 expression, suggesting that cross-talk between MEK/ERK and JAK/STAT pathways plays a key role in regulating neuronal survival. Finally, ERK dephosphorylation and STAT1 up-regulation induced by ToxB were mimicked by a dominant-negative (N17) mutant of Rac1. These data suggest that the MEK/ERK cascade functions downstream of Rac GTPase to actively repress pro-apoptotic JAK/STAT signaling in healthy CGNs.
Collapse
Affiliation(s)
- F Alexandra Loucks
- Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Helfer B, Boswell BC, Finlay D, Cipres A, Vuori K, Bong Kang T, Wallach D, Dorfleutner A, Lahti JM, Flynn DC, Frisch SM. Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Res 2006; 66:4273-8. [PMID: 16618751 DOI: 10.1158/0008-5472.can-05-4183] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significant caspase-8 activity has been found in normal and certain tumor cells, suggesting that caspase-8 possesses an alternative, nonapoptotic function that may contribute to tumor progression. In this article, we report that caspase-8 promotes cell motility. In particular, caspase-8 is required for the optimal activation of calpains, Rac, and lamellipodial assembly. This represents a novel nonapoptotic function of caspase-8 acting at the intersection of the caspase-8 and calpain proteolytic pathways to coordinate cell death versus cell motility signaling.
Collapse
Affiliation(s)
- Brooke Helfer
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vilas GL, Corvi MM, Plummer GJ, Seime AM, Lambkin GR, Berthiaume LG. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci U S A 2006; 103:6542-7. [PMID: 16617111 PMCID: PMC1458920 DOI: 10.1073/pnas.0600824103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p21-activated protein kinase (PAK) 2 is a small GTPase-activated serine/threonine kinase regulating various cytoskeletal functions and is cleaved by caspase-3 during apoptosis. We demonstrate that the caspase-cleaved PAK2 C-terminal kinase fragment (C-t-PAK2) is posttranslationally myristoylated, although myristoylation is typically a cotranslational process. Myristoylation and an adjacent polybasic domain of C-t-PAK2 are sufficient to redirect EGFP from the cytosol to membrane ruffles and internal membranes. Membrane localization and the ability of C-t-PAK2 to induce cell death are significantly reduced when myristoylation is abolished. In addition, the proper myristoylation-dependent membrane localization of C-t-PAK2 significantly increased signaling through the stress-activated c-Jun N-terminal kinase signaling pathway, which often regulates apoptosis. Interestingly, C-t-PAK2 promoted cell death without compromising mitochondrial integrity. Posttranslational myristoylation of caspase-cleaved proteins involved in cytoskeletal dynamics (e.g., PAK2, actin, and gelsolin) might be part of a unique series of mechanisms involved in the regulation of the later events of apoptosis.
Collapse
Affiliation(s)
- Gonzalo L. Vilas
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Maria M. Corvi
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Greg J. Plummer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Andrea M. Seime
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Gareth R. Lambkin
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Luc G. Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Jin K, Lim S, Mercer SE, Friedman E. The survival kinase Mirk/dyrk1B is activated through Rac1-MKK3 signaling. J Biol Chem 2005; 280:42097-105. [PMID: 16257974 DOI: 10.1074/jbc.m507301200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serine/threonine kinase Mirk/dyrk1B is activated in several solid tumors where it mediates cell survival, but the mechanism by which Mirk is activated in tumors is unknown. We now demonstrate that Mirk is activated as a kinase by signaling from Rac1 to the mitogen-activated protein kinase kinase MKK3. Rac is a Ras superfamily GTPase that, when activated, functions downstream of Ras oncoproteins to promote cell survival, transformation, and membrane ruffling. The constitutively active mutant Rac1QL activated Mirk in several cell types through MKK3, which in turn activated Mirk by phosphorylation. Dominant negative Rac1, dominant negative MKK3, and knockdown of MKK3 by RNA interference inhibited the kinase activity of co-expressed Mirk. E-cadherin ligation in confluent Madin-Darby canine kidney (MDCK) epithelial cells is known to transiently activate Rac1. Mirk was activated by endogenous Rac1 following E-cadherin ligation in confluent MDCK epithelial cells, whereas treatment of confluent MDCK cells with an Rac1 inhibitor decreased Mirk activity. Disruption of cadherin ligation by EGTA or prevention of cadherin ligation by maintenance of cells at subconfluent density blocked activation of Mirk. Engagement of cadherin molecules on subconfluent cells by an E-cadherin/Fc chimeric molecule transiently activated both Rac1 and Mirk with a similar time course. Rac activity is up-regulated in many human tumors and mediates survival signals, which enable tumor cells to evade apoptosis. This study characterizes a new anti-apoptotic signaling pathway that connects Rac1 with a novel downstream effector, Mirk kinase, which has recently been demonstrated to mediate survival in human tumors.
Collapse
Affiliation(s)
- Kideok Jin
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
33
|
Le SS, Loucks FA, Udo H, Richardson-Burns S, Phelps RA, Bouchard RJ, Barth H, Aktories K, Tyler KL, Kandel ER, Heidenreich KA, Linseman DA. Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 2005; 94:1025-39. [PMID: 16092944 PMCID: PMC2366110 DOI: 10.1111/j.1471-4159.2005.03252.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation. GTP-loading of Rac1 was maintained in CGNs by integrin-mediated (RGD-dependent) cell attachment and trophic support. Clostridium difficile toxin B (ToxB), a specific Rho family inhibitor, induced a selective caspase-mediated degradation of Rac1 without affecting RhoA or Cdc42 protein levels. Both ToxB and dominant-negative N17Rac1 elicited CGN apoptosis, characterized by cytochrome c release and activation of caspase-9 and -3, whereas dominant-negative N19RhoA or N17Cdc42 did not cause significant cell death. ToxB stimulated mitochondrial translocation and conformational activation of Bax, c-Jun activation, and induction of the BH3-only protein Bim. Similarly, c-Jun activation and Bim induction were observed with N17Rac1. A c-jun N-terminal protein kinase (JNK)/p38 inhibitor, SB203580, and a JNK-specific inhibitor, SP600125, significantly decreased ToxB-induced Bim expression and blunted each subsequent step of the apoptotic cascade. These results indicate that Rac acts downstream of integrins and growth factors to promote neuronal survival by repressing c-Jun/Bim-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Shoshona S. Le
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Hiroshi Udo
- Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Sarah Richardson-Burns
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Reid A. Phelps
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Ron J. Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Holger Barth
- Department of Pharmacology and Toxicology, University of Ulm, Ulm, Germany
| | - Klaus Aktories
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universitat Freiburg, Germany
| | - Kenneth L. Tyler
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Eric R. Kandel
- Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Kim A. Heidenreich
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Daniel A. Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado, USA
| |
Collapse
|
34
|
Zhang B, Zhang Y, Dagher MC, Shacter E. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 2005; 65:6054-62. [PMID: 16024605 DOI: 10.1158/0008-5472.can-05-0175] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GDP dissociation inhibitor (RhoGDI) plays an essential role in control of a variety of cellular functions through interactions with Rho family GTPases, including Rac1, Cdc42, and RhoA. RhoGDI is frequently overexpressed in human tumors and chemo-resistant cancer cell lines, raising the possibility that RhoGDI might play a role in the development of drug resistance in cancer cells. We found that overexpression of RhoGDI increased resistance of cancer cells (MDA-MB-231 human breast cancer cells and JLP-119 lymphoma cells) to the induction of apoptosis by two chemotherapeutic agents: etoposide and doxorubicin. Conversely, silencing of RhoGDI expression by DNA vector-mediated RNA interference (small interfering RNA) sensitized MDA-MB-231 cells to drug-induced apoptosis. Resistance to apoptosis was restored by reintroduction of RhoGDI protein expression. The mechanism for the anti-apoptotic activity of RhoGDI may derive from its ability to inhibit caspase-mediated cleavage of Rac1 GTPase, which is required for maximal apoptosis to occur in response to cytotoxic drugs. Taken together, the data show that RhoGDI is an anti-apoptotic molecule that mediates cellular resistance to these chemotherapy agents.
Collapse
Affiliation(s)
- Baolin Zhang
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
35
|
Fernando P, Brunette S, Megeney LA. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 2005; 19:1671-3. [PMID: 16103108 DOI: 10.1096/fj.04-2981fje] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Caspase proteases have become the focal point for the development and application of anti-apoptotic therapies in a variety of central nervous system diseases. However, this approach is based on the premise that caspase function is limited to invoking cell death signals. Here, we show that caspase-3 activity is elevated in nonapoptotic differentiating neuronal cell populations. Moreover, peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model. These results implicate caspase-3 activation as a conserved feature of neuronal differentiation and suggest that targeted inhibition of this protease in neural cell populations may have unintended consequences.
Collapse
Affiliation(s)
- Pasan Fernando
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
36
|
Zhang B, Zhang Y, Shacter E. Rac1 inhibits apoptosis in human lymphoma cells by stimulating Bad phosphorylation on Ser-75. Mol Cell Biol 2004; 24:6205-14. [PMID: 15226424 PMCID: PMC434258 DOI: 10.1128/mcb.24.14.6205-6214.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTPase Rac1 has emerged as an important regulator of cell survival and apoptosis, but the mechanisms involved are not completely understood. In this report, constitutively active Rac1 is shown to stimulate the phosphorylation of the Bcl-2 family member Bad, thereby suppressing drug-induced caspase activation and apoptosis in human lymphoma cells. Rac1 activation leads to human Bad phosphorylation specifically at serine-75 (corresponding to murine serine-112) both in vivo and in vitro. Inhibition of constitutive and activated Rac1-induced Bad phosphorylation by a cell-permeable competitive peptide inhibitor representing this Bad phosphorylation site sensitizes lymphoma cells to drug-induced apoptosis. The data show further that endogenous protein kinase A is a primary catalyst of cellular Bad phosphorylation in response to Rac activation, while Akt is not involved. These findings define a mechanism by which active Rac1 promotes lymphoma cell survival and inhibits apoptosis in response to cancer chemotherapy drugs.
Collapse
Affiliation(s)
- Baolin Zhang
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892-4555, USA.
| | | | | |
Collapse
|
37
|
Geisbrecht ER, Montell DJ. A Role for Drosophila IAP1-Mediated Caspase Inhibition in Rac-Dependent Cell Migration. Cell 2004; 118:111-25. [PMID: 15242648 DOI: 10.1016/j.cell.2004.06.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 04/23/2004] [Accepted: 05/13/2004] [Indexed: 12/01/2022]
Abstract
Border cell migration in the Drosophila ovary is a relatively simple and genetically tractable model for studying the conversion of epithelial cells to migratory cells. Like many cell migrations, border cell migration is inhibited by a dominant-negative form of the GTPase Rac. To identify new genes that function in Rac-dependent cell motility, we screened for genes that when overexpressed suppressed the migration defect caused by dominant-negative Rac. Overexpression of the Drosophila inhibitor of apoptosis 1 (DIAP1), which is encoded by the thread (th) gene, suppressed the migration defect. Moreover, loss-of-function mutations in th caused migration defects but, surprisingly, did not cause apoptosis. Mutations affecting the Dark protein, an activator of the upstream caspase Dronc, also rescued RacN17 migration defects. These results indicate an apoptosis-independent role for DIAP1-mediated Dronc inhibition in Rac-mediated cell motility.
Collapse
Affiliation(s)
- Erika R Geisbrecht
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|