1
|
Mukherjee S, Manna S, Som N, Dhara S. Organic-Inorganic Hybrid Nanocomposites for Nanotheranostics: Special Focus on Preventing Emerging Variants of SARS-COV-2. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-15. [PMID: 37363138 PMCID: PMC10187951 DOI: 10.1007/s44174-023-00077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 06/28/2023]
Abstract
The worldwide emerging cases of various respiratory viral diseases and the current escalation of novel coronavirus disease (COVID-19) make people considerably attentive to controlling these viruses through innovative methods. Most re-emerging respiratory diseases envelop RNA viruses that employ attachment between the virus and host cell to get an entry form using the host cell machinery. Emerging variants of COVD-19 also bring about a constant threat to public health as it has wide infectivity and can quickly spread to infect humans. This review focuses on insights into the current investigations to prevent the progression of incipient variants of Severe Acute Respiratory Syndrome Coronavirus (SARS-COV-2) along with similar enveloped RNA viruses that cause respiratory illness in humans and animals. Nanotheranostics is a trailblazing arena of nanomedicine that simultaneously helps prevent or treat diseases and diagnoses. Nanoparticle coating and nanofibers were extensively explored, preventing viral contaminations. Several studies have proven the virucidal activities of metal nanoparticles like copper, silver, and titanium against respiratory viral pathogens. Worldwide many researchers have shown surfaces coated with ionic nanoparticles like zinc or titanium act as potent antiviral agents against RNA viruses. Carbon nanotubes, quantum dots, silica nanoparticles (NPs), polymeric and metallic nanoparticles have also been explored in the field of nanotheranostics in viral detection. In this review, we have comprehensively discussed different types of metallic, ionic, organic nanoparticles and their hybrids showing substantial antiviral properties to stop the progression of the novel coronavirus disease focused on three key classes: prevention, diagnostics, and treatment.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Souvik Manna
- Clinical Microbiology & Antibiotic Research Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nivedita Som
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
2
|
MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 2018; 38:2501-2515. [PMID: 30532073 DOI: 10.1038/s41388-018-0605-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
MDM2 (Murine double minute 2) acts as a key repressor for p53-mediated tumor-suppressor functions, which includes cellular senescence. We found that MDM2 can promote cellular senescence by modulating WRN stability. Werner syndrome (WS), caused by mutations of the WRN gene, is an autosomal recessive disease, which is characterized by premature aging. Loss of WRN function induces cellular senescence in human cancer cells. Here, we found that MDM2 acts as an E3 ligase for WRN protein. MDM2 interacts with WRN both in vivo and in vitro. MDM2 induces ubiquitination of WRN and dramatically downregulates the levels of WRN protein in human cells. During DNA damage response, WRN is translocated to the nucleoplasm to facilitate its DNA repair functions; however, it is degraded by the MDM2-mediated ubiquitination pathway. Moreover, the senescent phenotype induced by DNA damage reagents, such as Etoposide, is at least in part mediated by MDM2-dependent WRN degradation as it can be significantly attenuated by ectopic expression of WRN. These results show that MDM2 is critically involved in regulating WRN function via ubiquitin-dependent degradation and reveal an unexpected role of MDM2 in promoting cellular senescence through a p53-independent manner.
Collapse
|
3
|
Mukherjee S, Sinha D, Bhattacharya S, Srinivasan K, Abdisalaam S, Asaithamby A. Werner Syndrome Protein and DNA Replication. Int J Mol Sci 2018; 19:ijms19113442. [PMID: 30400178 PMCID: PMC6274846 DOI: 10.3390/ijms19113442] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Werner Syndrome (WS) is an autosomal recessive disorder characterized by the premature development of aging features. Individuals with WS also have a greater predisposition to rare cancers that are mesenchymal in origin. Werner Syndrome Protein (WRN), the protein mutated in WS, is unique among RecQ family proteins in that it possesses exonuclease and 3' to 5' helicase activities. WRN forms dynamic sub-complexes with different factors involved in DNA replication, recombination and repair. WRN binding partners either facilitate its DNA metabolic activities or utilize it to execute their specific functions. Furthermore, WRN is phosphorylated by multiple kinases, including Ataxia telangiectasia mutated, Ataxia telangiectasia and Rad3 related, c-Abl, Cyclin-dependent kinase 1 and DNA-dependent protein kinase catalytic subunit, in response to genotoxic stress. These post-translational modifications are critical for WRN to function properly in DNA repair, replication and recombination. Accumulating evidence suggests that WRN plays a crucial role in one or more genome stability maintenance pathways, through which it suppresses cancer and premature aging. Among its many functions, WRN helps in replication fork progression, facilitates the repair of stalled replication forks and DNA double-strand breaks associated with replication forks, and blocks nuclease-mediated excessive processing of replication forks. In this review, we specifically focus on human WRN's contribution to replication fork processing for maintaining genome stability and suppressing premature aging. Understanding WRN's molecular role in timely and faithful DNA replication will further advance our understanding of the pathophysiology of WS.
Collapse
Affiliation(s)
- Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Souparno Bhattacharya
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kalayarasan Srinivasan
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Sisk JM, Frieman MB, Machamer CE. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol 2018; 99:619-630. [PMID: 29557770 DOI: 10.1099/jgv.0.001047] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARS-CoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus-cell and cell-cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses.
Collapse
Affiliation(s)
- Jeanne M Sisk
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
6
|
Kusumoto-Matsuo R, Ghosh D, Karmakar P, May A, Ramsden D, Bohr VA. Serines 440 and 467 in the Werner syndrome protein are phosphorylated by DNA-PK and affects its dynamics in response to DNA double strand breaks. Aging (Albany NY) 2014; 6:70-81. [PMID: 24429382 PMCID: PMC3927811 DOI: 10.18632/aging.100629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
WRN protein, defective in Werner syndrome (WS), a human segmental progeria, is a target of serine/threonine kinases involved in sensing DNA damage. DNA-PK phosphorylates WRN in response to DNA double strand breaks (DSBs). However, the main phosphorylation sites and functional importance of the phosphorylation of WRN has remained unclear. Here, we identify Ser-440 and -467 in WRN as major phosphorylation sites mediated by DNA-PK.In vitro, DNA-PK fails to phosphorylate a GST-WRN fragment with S440A and/or S467A substitution. In addition, full length WRN with the mutation expressed in 293T cells was not phosphorylated in response to DSBs produced by bleomycin. Accumulation of the mutant WRN at the site of laser-induced DSBs occurred with the same kinetics as wild type WRN in live HeLa cells. While the wild type WRN relocalized to the nucleoli after 24 hours recovery from etoposide-induced DSBs, the mutant WRN remained mostly in the nucleoplasm. Consistent with this, WS cells expressing the mutants exhibited less DNA repair efficiency and more sensitivity to etoposide, compared to those expressing wild type. Our findings indicate that phosphorylation of Ser-440 and -467 in WRN are important for relocalization of WRN to nucleoli, and that it is required for efficient DSB repair.
Collapse
Affiliation(s)
- Rika Kusumoto-Matsuo
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
7
|
Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities. Biogerontology 2014; 15:347-66. [PMID: 24965941 DOI: 10.1007/s10522-014-9506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.
Collapse
|
8
|
Oshitari T, Kitahashi M, Mizuno S, Baba T, Kubota-Taniai M, Takemoto M, Yokote K, Yamamoto S, Roy S. Werner syndrome with refractory cystoid macular edema and immunohistochemical analysis of WRN proteins in human retinas. BMC Ophthalmol 2014; 14:31. [PMID: 24620826 PMCID: PMC3995689 DOI: 10.1186/1471-2415-14-31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background To present our findings in a case of Werner syndrome with refractory cystoid macular edema (CME) and to determine the expression and the distribution of WRN proteins in human retinas. Case presentation A 35-year-old man with Werner syndrome who developed CME after YAG laser treatment was studied. Optical coherence tomographic (OCT) scans were used to examine the CME in the right eye. The patient received topical eye drops (0.1% bromfenac sodium hydrate twice daily and 1% dorzolamide hydrochloride thrice daily), sub-Tenon triamcinolone injection thrice, intravitreal bevacizumab injection twice, and pars plana vitrectomy of the right eye. Genetic analyses were performed to diagnose the disease. To examine the expression and distribution of WRN proteins in the retinas, immunohistochemistry for WRN proteins was performed in human retinas. The CME in the right eye was not improved by any of the treatments. During the follow-up period, CME developed in the left eye. Genetic analyses detected compound heterozygosity, Mut4 and Mut11, in the WRN gene and the individual was diagnosed with Werner syndrome. Immunohistochemical analysis of WRN proteins expression in human retinas showed that WRN proteins were expressed in the parts of the Müller cells in the inner nuclear layer and outer nuclear layer. Conclusion Patients with Werner syndrome can develop severe CME after laser treatment. A pathological link may exist between mutations in the WRN gene and the development of CME in patients with Werner syndrome.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
10
|
Jensen MB, Dunn CA, Keijzers G, Kulikowicz T, Rasmussen LJ, Croteau DL, Bohr VA. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging (Albany NY) 2013; 4:790-802. [PMID: 23238538 PMCID: PMC3560432 DOI: 10.18632/aging.100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations. These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase-dead, had marginal ATPase activity and may be structurally compromised, while the other two showed greatly reduced helicase and ATPase activities. The remaining biochemical activities and ability to recruit to damage sites were not significantly impaired for any of the mutants. Our findings demonstrate a consistent pattern of functional deficiency and provide further support for a helicase-dependent cellular function of RECQL4 in addition to its Nterminus-dependent role in initiation of replication, a function that may underlie the phenotype of RECQL4-linked disease.
Collapse
Affiliation(s)
- Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
Popp O, Veith S, Fahrer J, Bohr VA, Bürkle A, Mangerich A. Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. ACS Chem Biol 2013; 8:179-88. [PMID: 23082994 PMCID: PMC3549037 DOI: 10.1021/cb300363g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Werner syndrome is a premature aging disorder that is caused by defects in the Werner protein (WRN). WRN is a member of the RecQ helicase family and possesses helicase and exonuclease activities. It is involved in various aspects of DNA metabolism such as DNA repair, telomere maintenance, and replication. Poly(ADP-ribose) polymerase 1 (PARP1) is also involved in these processes by catalyzing the formation of the nucleic-acid-like biopolymer poly(ADP-ribose) (PAR). It was previously shown that WRN interacts with PARP1 and that WRN activity is inhibited by PARP1. Using several bioanalytical approaches, here we demonstrate that the enzymatic product of PARP1, i.e., PAR, directly interacts with WRN physically and functionally. First, WRN binds HPLC-size-fractionated short and long PAR in a noncovalent manner. Second, we identified and characterized a PAR-binding motif (PBM) within the WRN sequence and showed that several basic and hydrophobic amino acids are of critical importance for mediating the PAR binding. Third, PAR-binding inhibits the DNA-binding, the helicase and the exonuclease activities of WRN in a concentration-dependent manner. On the basis of our results we propose that the transient nature of PAR produced by living cells would provide a versatile and swiftly reacting control system for WRN's function. More generally, our work underscores the important role of noncovalent PAR-protein interactions as a regulatory mechanism of protein function.
Collapse
Affiliation(s)
- Oliver Popp
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Jörg Fahrer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Tang J, Wang JY, Parker LL. Detection of early Abl kinase activation after ionizing radiation by using a peptide biosensor. Chembiochem 2012; 13:665-73. [PMID: 22334513 PMCID: PMC3429332 DOI: 10.1002/cbic.201100763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Abl protein is a non-receptor tyrosine kinase that undergoes nuclear-cytoplasmic shuttling and is involved in many signaling pathways in the cell. Nuclear Abl is activated by DNA damage to regulate DNA repair, cell-cycle checkpoints and apoptosis. Previous studies have established that ataxia telangiectasia mutated (ATM) activates nuclear Abl by phosphorylating serine 465 (S465) in the kinase domain in response to ionizing radiation (IR). Using a peptide biosensor that specifically reports on the Abl kinase activity, we found that an Abl-S465A mutant, which is not capable of being activated by ATM through the canonical site, was still activated rapidly after IR. We established that DNA-dependent protein kinase (DNAPK) is likely to be responsible for a second pathway to activate Abl early on in the response to IR through phosphorylation at a site other than S465. Our findings show that nuclear and cytoplasmic Abl kinase is activated early on (within 5 min) in response to IR by both ATM and DNAPK, and that although one or the other of these kinases is required, either one is sufficient to activate Abl. These results support the concept of early Abl recruitment by both the ATM and the DNAPK pathways to regulate nuclear events triggered by DNA damage and potentially communicate them to proteins in the cytoplasm.
Collapse
Affiliation(s)
- Jiabin Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| | - Jean Y. Wang
- Department of Medicine and Division of Hematology-Oncology, Moores Cancer Center, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| |
Collapse
|
13
|
Cheng WH, Wu RTY, Wu M, Rocourt CRB, Carrillo JA, Song J, Bohr CT, Tzeng TJ. Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death. Biochem Biophys Res Commun 2012; 420:24-8. [PMID: 22390926 DOI: 10.1016/j.bbrc.2012.02.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022]
Abstract
Mutations in the Werner syndrome protein (WRN), a caretaker of the genome, result in Werner syndrome, which is characterized by premature aging phenotypes and cancer predisposition. Methylseleninic acid (MSeA) can activate DNA damage responses and is a superior compound to suppress tumorigenesis in mouse models of cancer. To test the hypothesis that targeting WRN can potentiate selenium toxicity in cancer cells, isogenic WRN small hairpin RNA (shRNA) and control shRNA U-2 OS osteosarcoma cells were treated with MSeA for 2d, followed by recovery for up to 7d. WRN deficiency sensitized U-2 OS cells to MSeA-induced necrotic death. Co-treatment with the ataxia-telangiectasia mutated (ATM) kinase inhibitor KU55933 desensitized the control shRNA cells, but not WRN shRNA cells, to MSeA treatment. WRN did not affect MSeA-induced ATM phosphorylation on Ser-1981 or H2A.X phosphorylation on Ser-139, but promoted recovery from the MSeA-induced DNA damage. Taken together, WRN protects U-2 OS osteosarcoma cells against MSeA-induced cytotoxicity, suggesting that oxidative DNA repair pathway is a promising target for improving the efficacy of selenium on tumor suppression.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
DNA damage response: The emerging role of c-Abl as a regulatory switch? Biochem Pharmacol 2011; 82:1269-76. [DOI: 10.1016/j.bcp.2011.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/20/2022]
|
15
|
The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling. Oncogene 2011; 31:2809-23. [PMID: 22002307 PMCID: PMC3272477 DOI: 10.1038/onc.2011.468] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The WRN protein belongs to the RecQ family of DNA helicases and is implicated in replication fork restart, but how its function is regulated remains unknown. We show that WRN interacts with the 9.1.1 complex, one of the central factors of the replication checkpoint. This interaction is mediated by the binding of the RAD1 subunit to the N-terminal region of WRN and is instrumental for WRN relocalisation in nuclear foci and its phosphorylation in response to replication arrest. We also find that ATR-dependent WRN phosphorylation depends on TopBP1, which is recruited by the 9.1.1 complex in response to replication arrest. Finally, we provide evidence for a cooperation between WRN and 9.1.1 complex in preventing accumulation of DNA breakage and maintaining genome integrity at naturally-occurring replication fork stalling sites. Taken together, our data unveil a novel functional interplay between WRN helicase and the replication checkpoint, contributing to shed light into the molecular mechanism underlying the response to replication fork arrest.
Collapse
|
16
|
RecQ helicases; at the crossroad of genome replication, repair, and recombination. Mol Biol Rep 2011; 39:4527-43. [PMID: 21947842 DOI: 10.1007/s11033-011-1243-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/14/2011] [Indexed: 01/07/2023]
Abstract
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA in an ATP-dependent and directionally specific manner. Such an action is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Here, I focus on a subgroup of DNA helicases, the RecQ family, which is highly conserved in evolution. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. In this review, protein structural motifs and the roles of different domains will be discussed first. The Review moves on to speculate about the different models to explain why RecQ helicases are required to protect against genome instability.
Collapse
|
17
|
Pichierri P, Ammazzalorso F, Bignami M, Franchitto A. The Werner syndrome protein: linking the replication checkpoint response to genome stability. Aging (Albany NY) 2011; 3:311-8. [PMID: 21389352 PMCID: PMC3091524 DOI: 10.18632/aging.100293] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Werner syndrome protein (WRN) is a member of the human RecQ family DNA helicases implicated in the maintenance of genome stability. Loss of WRN gives rise to the Werner syndrome, a genetic disease characterised by premature aging and cancer predisposition. WRN plays a crucial role in the response to replication stress and significantly contributes to the recovery of stalled replication forks, although how this function is regulated is not fully appreciated. There is a growing body of evidence that WRN accomplishes its task in close connection with the replication checkpoint. In eukaryotic cells, the replication checkpoint response, which involves both the ATR and ATM kinase activities, is deputed to the maintenance of fork integrity and re-establishment of fork progression. Our recent findings indicate that ATR and ATM modulate WRN function at defined steps of the response to replication fork arrest. This review focuses on the novel evidence of a functional relationship between WRN and the replication checkpoint and how this cross-talk might contribute to prevent genome instability, a common feature of senescent and cancer cells.
Collapse
Affiliation(s)
- Pietro Pichierri
- Genome stability group, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
18
|
Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding. EMBO J 2011; 30:3368-82. [PMID: 21804533 PMCID: PMC3160658 DOI: 10.1038/emboj.2011.238] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
The DNA recombination mediator and annealing factor RAD52 is a target of c-ABL activated in response to DNA damage. Engineering of recombinant tyrosine-phosphomimetic RAD52 facilitated studying the consequences of this phosphorylation. RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52Y104pCMF retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52Y104pCMF specifically targets and wraps ssDNA. While RAD52Y104pCMF is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.
Collapse
|
19
|
Meltser V, Ben-Yehoyada M, Reuven N, Shaul Y. c-Abl downregulates the slow phase of double-strand break repair. Cell Death Dis 2011; 1:e20. [PMID: 21364621 PMCID: PMC3032510 DOI: 10.1038/cddis.2009.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair.
Collapse
Affiliation(s)
- V Meltser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
|
21
|
Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E, Nowicki MO, Blasiak J, Skorski T. BCR/ABL stimulates WRN to promote survival and genomic instability. Cancer Res 2010; 71:842-51. [PMID: 21123451 DOI: 10.1158/0008-5472.can-10-1066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSB) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), nonhomologous end-joining (NHEJ), and single-strand annealing (SSA). Here, we show that BCR/ABL enhances the expression and increase nuclear localization of WRN (mutated in Werner syndrome), which is required for processing DSB ends during the repair. Other fusion tyrosine kinases (FTK), such as TEL/ABL, TEL/JAK2, TEL/PDGFβR, and NPM/ALK also elevate WRN. BCR/ABL induces WRN mRNA and protein expression in part by c-MYC-mediated activation of transcription and Bcl-xL-dependent inhibition of caspase-dependent cleavage, respectively. WRN is in complex with BCR/ABL resulting in WRN tyrosine phosphorylation and stimulation of its helicase and exonuclease activities. Activated WRN protects BCR/ABL-positive cells from the lethal effect of oxidative and genotoxic stresses, which causes DSBs. In addition, WRN promotes unfaithful recombination-dependent repair mechanisms HRR and SSA, and enhances the loss of DNA bases during NHEJ in leukemia cells. In summary, we postulate that BCR/ABL-mediated stimulation of WRN modulates the efficiency and fidelity of major DSB repair mechanisms to protect leukemia cells from apoptosis and to facilitate genomic instability.
Collapse
Affiliation(s)
- Artur Slupianek
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qi Y, Schoene NW, Lartey FM, Cheng WH. Selenium compounds activate ATM-dependent DNA damage response via the mismatch repair protein hMLH1 in colorectal cancer cells. J Biol Chem 2010; 285:33010-33017. [PMID: 20709753 DOI: 10.1074/jbc.m110.137406] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR). Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells and the MMR-proficient HCT 116 cells with hMLH1 complementation to investigate the role of hMLH1 in selenium-induced DNA damage response, a tumorigenesis barrier. The ATM (ataxia telangiectasia mutated) protein responds to clastogens and initiates DNA damage response. We show that hMLH1 complementation sensitizes HCT 116 cells to methylseleninic acid, methylselenocysteine, and sodium selenite via reactive oxygen species and facilitates the selenium-induced oxidative 8-oxoguanine damage, DNA breaks, G(2)/M checkpoint response, and ATM pathway activation. Pretreatment of the hMLH1-complemented HCT 116 cells with the antioxidant N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl or the ATM kinase inhibitor KU55933 suppresses hMLH1-dependent DNA damage response to selenium exposure. Selenium treatment stimulates the association between hMLH1 and hPMS2 proteins, a heterodimer critical for functional MMR, in a manner dependent on ATM and reactive oxygen species. Taken together, the results suggest a new role of selenium in mitigating tumorigenesis by targeting the MMR pathway, whereby the lack of hMLH1 renders the HCT 116 colorectal cancer cells resistant to selenium-induced DNA damage response.
Collapse
Affiliation(s)
- Yongmei Qi
- From the Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742; School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Norberta W Schoene
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, United States Department of Agriculture, Beltsville, Maryland 20705
| | - Frederick M Lartey
- From the Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742
| | - Wen-Hsing Cheng
- From the Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742.
| |
Collapse
|
23
|
Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair (Amst) 2010; 9:796-804. [PMID: 20451470 DOI: 10.1016/j.dnarep.2010.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 12/16/2022]
Abstract
Humans have five members of the well conserved RecQ helicase family: RecQ1, Bloom syndrome protein (BLM), Werner syndrome protein (WRN), RecQ4, and RecQ5, which are all known for their roles in maintaining genome stability. BLM, WRN, and RecQ4 are associated with premature aging and cancer predisposition. Of the three, RecQ4's biological and cellular roles have been least thoroughly characterized. Here we tested the helicase activity of purified human RecQ4 on various substrates. Consistent with recent results, we detected ATP-dependent RecQ4 unwinding of forked duplexes. However, our results provide the first evidence that human RecQ4's unwinding is independent of strand annealing, and that it does not require the presence of excess ssDNA. Moreover, we demonstrate that a point mutation of the conserved lysine in the Walker A motif abolished helicase activity, implying that not the N-terminal portion, but the helicase domain is solely responsible for the enzyme's unwinding activity. In addition, we demonstrate a novel stimulation of RecQ4's helicase activity by replication protein A, similar to that of RecQ1, BLM, WRN, and RecQ5. Together, these data indicate that specific biochemical activities and protein partners of RecQ4 are conserved with those of the other RecQ helicases.
Collapse
Affiliation(s)
- Marie L Rossi
- National Institute on Aging, Baltimore, MD 21224, United States
| | | | | | | | | |
Collapse
|
24
|
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9:331-44. [PMID: 20075015 DOI: 10.1016/j.dnarep.2009.12.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner syndrome (WS). WRN is one of the best characterized of the RecQ helicases and is known to have roles in DNA replication and repair, transcription, and telomere maintenance. Studies both in vitro and in vivo indicate that the roles of WRN in a variety of DNA processes are mediated by post-translational modifications, as well as several important protein-protein interactions. In this work, we will summarize some of the early studies on the cellular roles of WRN and highlight the recent findings that shed some light on the link between the protein with its cellular functions and the disease pathology.
Collapse
Affiliation(s)
- Marie L Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
25
|
Lachaud AA, Auclair-Vincent S, Massip L, Audet-Walsh E, Lebel M, Anderson A. Werner's syndrome helicase participates in transcription of phenobarbital-inducible CYP2B genes in rat and mouse liver. Biochem Pharmacol 2009; 79:463-70. [PMID: 19737542 DOI: 10.1016/j.bcp.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Werner's syndrome (WS) is a rare human autosomal recessive segmental progeroid syndrome clinically characterized by atherosclerosis, cancer, osteoporosis, type 2 diabetes mellitus and ocular cataracts. The WRN gene codes for a RecQ helicase which is present in many tissues. Although the exact functions of the WRN protein remain unclear, accumulating evidence suggests that it participates in DNA repair, replication, recombination and telomere maintenance. It has also been proposed that WRN participates in RNA polymerase II-dependent transcription. However no promoter directly targeted by WRN has yet been identified. In this work, we report mammalian genes that are WRN targets. The rat CYP2B2 gene and its closely related mouse homolog, Cyp2b10, are both strongly induced in liver by phenobarbital. We found that there is phenobarbital-dependent recruitment of WRN to the promoter of the CYP2B2 gene as demonstrated by chromatin immunoprecipitation analysis. Mice homozygous for a Wrn mutation deleting part of the helicase domain showed a decrease in basal and phenobarbital-induced CYP2B10 mRNA levels compared to wild type animals. The phenobarbital-induced level of CYP2B10 protein was also reduced in the mutant mice. Electrophoretic mobility shift assays showed that WRN can participate in the formation of a complex with a specific sequence within the CYP2B2 basal promoter. Hence, there is a WRN binding site in a region of DNA sequence to which WRN is recruited in vivo. Taken together, these results suggest that WRN participates in transcription of CYP2B genes in liver and identifies the first physical interaction between a specific promoter sequence and WRN.
Collapse
Affiliation(s)
- Antoine Amaury Lachaud
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Liu FJ, Barchowsky A, Opresko PL. The Werner syndrome protein functions in repair of Cr(VI)-induced replication-associated DNA damage. Toxicol Sci 2009; 110:307-18. [PMID: 19487340 DOI: 10.1093/toxsci/kfp104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Werner syndrome is a premature aging disorder characterized by cancer predisposition that is caused by loss of the Werner syndrome protein (WRN) helicase/exonuclease DNA repair protein. Hexavalent chromium is an environmental carcinogen and genotoxicant that is associated with respiratory cancers and induces several forms of DNA damage, including lesions that interfere with DNA replication. Based on the evidence that WRN protein facilitates repair of stalled and collapsed replication forks, we hypothesized that WRN functions in the cellular response to and recovery from Cr(VI)-induced genotoxicity and genomic instability. Here we report that human cells deficient in WRN protein are hypersensitive to Cr(VI) toxicity, and exhibit a delayed reduction in DNA breaks and stalled replication forks, indicated by gammaH2AX foci, during recovery from Cr(VI) exposure. Cr(VI)-induced WRN protein translocation from the nucleoli into nucleoplasmic foci in S-phase cells, and these foci colocalized with gammaH2AX foci indicating WRN responds to replication-associated DNA damage. As further evidence that Cr(VI) triggers stalled DNA replication, we observed Cr(VI) treatment induced an accumulation of cells in S-phase that exhibited high levels of gammaH2AX foci. Therefore, these data demonstrate a novel role for WRN protein in cellular protection against the environmental genotoxicant Cr(VI) and further provide evidence that Cr(VI) induces DNA replicative stress which has implications for aging and cancer.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
27
|
Dejmek J, Iglehart JD, Lazaro JB. DNA-dependent protein kinase (DNA-PK)-dependent cisplatin-induced loss of nucleolar facilitator of chromatin transcription (FACT) and regulation of cisplatin sensitivity by DNA-PK and FACT. Mol Cancer Res 2009; 7:581-91. [PMID: 19372586 DOI: 10.1158/1541-7786.mcr-08-0049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both the Ku subunit of the DNA-dependent protein kinase (DNA-PK) and the facilitator of chromatin transcription (FACT) complex reportedly bind cisplatin-DNA adducts. For this study, we developed an immunocytochemical assay based on detergent extraction allowing unveiling nucleolar subpopulations of proteins present in both the nucleoplasm and the nucleolus. Immunofluorescence analysis in various human cancer cell lines and immunoblotting of isolated nucleoli show that DNA-PK catalytic subunit (DNA-PKcs), Ku86, the Werner syndrome protein (WRN), and the structure-specific recognition protein 1 (SSRP1) subunit of FACT colocalize in the nucleolus and exit the nucleolus after cisplatin treatment. Nucleolar localization of Ku is also lost after gamma or UV irradiation and exposure to DNA-damaging drugs, such as actinomycin D, mitomycin C, hydroxyurea, and doxorubicin. Ku86 and WRN leave the nucleolus after exposure to low (>1 microg/mL) doses of cisplatin. In contrast, the SSRP1 association with the nucleolus was disrupted only by high (50-100 microg/mL) doses of cisplatin. Both cisplatin-induced loss of nucleolar SSRP1 and DNA-PK activation are suppressed by pretreatment of the cells with wortmannin or the DNA-PK inhibitor NU7026 but not by the phosphatidylinositol 3-kinase inhibitor LY294002. In the same conditions, kinase inhibitors did not alter the exit of DNA-PKcs and WRN, suggesting that different mechanisms regulate the exit of DNA-PK/WRN and FACT from the nucleolus. Furthermore, RNA silencing of DNA-PKcs blocked the cisplatin-induced exit of nucleolar SSRP1. Finally, silencing of DNA-PKcs or SSRP1 by short hairpin RNA significantly increased the sensitivity of cancer cells to cisplatin.
Collapse
Affiliation(s)
- Janna Dejmek
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
28
|
Vindigni A, Hickson ID. RecQ helicases: multiple structures for multiple functions? HFSP JOURNAL 2009; 3:153-64. [PMID: 19949442 DOI: 10.2976/1.3079540] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 11/19/2022]
Abstract
Approximately 1% of the open reading frames in the human genome encode proteins that function as DNA or RNA helicases. These enzymes act in all aspects of nucleic acid metabolism where the complementary strands of DNA:DNA or DNA:RNA duplexes require to be transiently opened. However, they perform wider roles in nucleic acid metabolism due to their ability to couple the energy derived from hydrolysis of ATP to their unidirectional translocation along strands of DNARNA. In this way, helicases can displace proteins from DNARNA, drive the migration of DNA junctions (such as the Holliday junction recombination intermediate), or generate superhelical tension in nucleic acid duplexes. Here, we review a subgroup of DNA helicase enzymes, the RecQ family, that has attracted considerable interest in recent years due to their role not only in suppression of genome instability, but also in the avoidance of human disease. We focus particularly on the protein structural motifs and the multiple assembly states that characterize RecQ helicases and discuss novel biophysical techniques to study the different RecQ structures present in solution. We also speculate on the roles of the different domains and oligomeric forms in defining which DNA structures will represent substrates for RecQ helicase-mediated transactions.
Collapse
|
29
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
30
|
Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 2008; 33:609-20. [PMID: 18926708 DOI: 10.1016/j.tibs.2008.09.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The RecQ helicases are guardians of the genome. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. The results of in vitro cellular and biochemical studies have been complimented by recent in vivo studies using genetically modified mouse strains. Together, these approaches are helping to unravel the mechanism(s) of action and biological functions of the RecQ helicases.
Collapse
Affiliation(s)
- Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 2008; 19:3923-33. [PMID: 18596239 PMCID: PMC2526706 DOI: 10.1091/mbc.e07-07-0698] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 04/25/2008] [Accepted: 06/20/2008] [Indexed: 12/18/2022] Open
Abstract
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link-induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, gamma H2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link-induced collapsed replication forks.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- *Laboratory of Molecular Gerontology and
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742
| | - Diana Muftic
- *Laboratory of Molecular Gerontology and
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | | | - Lale Dawut
- *Laboratory of Molecular Gerontology and
| | - Christa Morris
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas Helleday
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | - Yosef Shiloh
- David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
32
|
Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 2008; 112:1413-23. [PMID: 18524993 DOI: 10.1182/blood-2007-07-104257] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of oncogenic BCR-ABL in chronic myeloid leukemia (CML) results in increased reactive oxygen species (ROS) that in turn cause increased DNA damage, including DNA double-strand breaks (DSBs). We have previously shown increased error-prone repair of DSBs by nonhomologous end-joining (NHEJ) in CML cells. Recent reports have identified alternative NHEJ pathways that are highly error prone, prompting us to examine the role of the alternative NHEJ pathways in BCR-ABL-positive CML. Importantly, we show that key proteins in the major NHEJ pathway, Artemis and DNA ligase IV, are down-regulated, whereas DNA ligase IIIalpha, and the protein deleted in Werner syndrome, WRN, are up-regulated. DNA ligase IIIalpha and WRN form a complex that is recruited to DSBs in CML cells. Furthermore, "knockdown" of either DNA ligase IIIalpha or WRN leads to increased accumulation of unrepaired DSBs, demonstrating that they contribute to the repair of DSBs. These results indicate that altered DSB repair in CML cells is caused by the increased activity of an alternative NHEJ repair pathway, involving DNA ligase IIIalpha and WRN. We suggest that, although the repair of ROS-induced DSBs by this pathway contributes to the survival of CML cells, the resultant genomic instability drives disease progression.
Collapse
|
33
|
Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M. Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 2008; 99:843-8. [PMID: 18312465 PMCID: PMC11158842 DOI: 10.1111/j.1349-7006.2008.00778.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 11/30/2022] Open
Abstract
Werner syndrome (WS) is an autosomal recessive genetic disorder causing premature aging, and WRN has been identified as the causative gene of WS. The product of the WRN gene (WRN) acts as a DNA helicase with exonuclease activity, and data have accumulated showing that the WRN gene strongly participates in carcinogenesis: (1) the normal WRN gene likely participates in the immortalization of B-lymphoblastoid cell lines through telomeric crisis caused by telomere shortening, (2) a much higher incidence of rare cancers occurs in WS patients than in other kinds of patients, and (3) levels of WRN expressed in virus-transformed cells and cancer cells are usually markedly up-regulated and are inversely correlated with the sensitivity of these cells against various genotoxins, including camptothecin. In this paper, we review the events that show a close correlation of the WRN gene and WRN with carcinogenesis and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, TECOM 2nd Building, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | |
Collapse
|
34
|
Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One 2008; 3:e1918. [PMID: 18398454 PMCID: PMC2276247 DOI: 10.1371/journal.pone.0001918] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/22/2008] [Indexed: 11/19/2022] Open
Abstract
Background The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol β-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER.
Collapse
|
35
|
Fanta S, Sonnenberg M, Skorta I, Duyster J, Miething C, Aulitzky WE, van der Kuip H. Pharmacological inhibition of c-Abl compromises genetic stability and DNA repair in Bcr-Abl-negative cells. Oncogene 2008; 27:4380-4. [DOI: 10.1038/onc.2008.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
37
|
Giri B, Dixit VD, Ghosh MC, Collins GD, Khan IU, Madara K, Weeraratna AT, Taub DD. CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function. Eur J Immunol 2007; 37:2104-16. [PMID: 17634952 PMCID: PMC2271046 DOI: 10.1002/eji.200636680] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid rafts play an important role in signal integration and in the cellular activation of a number of cytokine and growth factor receptors. It has recently been demonstrated that flotillin proteins are recruited to lipid raft microdomains upon cellular activation and play a role in neural cell regeneration, receptor signaling and lymphocyte activation. However, little is known about the relevance of the flotillin proteins during T cell responses to chemoattractant stimulation. To this end, cytoplasmic and lipid raft fractions from human T cells were analyzed for flotillin protein redistribution prior to and after CXCL12 stimulation. Flotillin-1, but not flotillin-2, redistributes to lipid rafts upon CXCR4 ligation. Moreover, in CXCL12-treated T cells, flotillin-1 also associates with several raft proteins including LAT, CD48 and CD11a but not Lck. In addition, an increase in CXCR4 association with flotillin-1 in lipid rafts was observed after chemokine treatment. RNAi technology was also utilized to inhibit the expression of flotillin-1, resulting in an inhibition of CXCL12-mediated signaling, function and CXCR4 recruitment into lipid rafts. Together, these data suggest that the increased association of cellular flotillin-1 with lipid raft microdomains during chemokine exposure may play an important role in chemokine receptor signaling and receptor partitioning with lipid rafts.
Collapse
Affiliation(s)
- Banabihari Giri
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
- Department of Internal Medicine, Section of Rheumatology, Wake Forest University Health Sciences, Winston-Salem, USA
| | - Vishwa D. Dixit
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Manik C. Ghosh
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Gary D. Collins
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Islam U. Khan
- Department of Internal Medicine, Section of Rheumatology, Wake Forest University Health Sciences, Winston-Salem, USA
| | - Karen Madara
- Clinical Research Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Ashani T. Weeraratna
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Dennis D. Taub
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA
| |
Collapse
|
38
|
Turaga RVN, Massip L, Chavez A, Johnson FB, Lebel M. Werner syndrome protein prevents DNA breaks upon chromatin structure alteration. Aging Cell 2007; 6:471-81. [PMID: 17521388 DOI: 10.1111/j.1474-9726.2007.00301.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Werner syndrome is a rare disorder characterized by genome instability and the premature onset of several pathologies associated with aging. The gene responsible for Werner syndrome codes for a RecQ-type DNA helicase and is believed to be involved in different aspects of DNA repair, replication, and transcription. The human Werner protein (WRN) translocates from nucleoli to the nucleoplasm upon DNA damage. Here, for the first time we show WRN translocation following treatment with chloroquine (CHL) or trichostatin A (TSA), agents that alter chromatin structure without producing DNA breaks. In contrast to normal cells, WRN deficient human and murine cells incurred extensive DNA breaks upon CHL or TSA treatment, indicating a functional role for WRN in the proper response to these agents. Cells deficient for another RecQ-type helicase, Bloom syndrome, were not sensitive to these agents. WRN is known from in vitro studies to bind and stimulate the activity of topoisomerase I (Topol). CHL enhanced the association between WRN and Topol, suggesting that topological stress elicits a requirement for the stimulation of Topol by WRN. Supporting this idea, overexpression of Topol reduced CHL and TSA-induced DNA breaks in WRN null cells. We thus describe a novel function for WRN in ensuring genome stability to act in concert with Topol to prevent DNA breaks, following alterations in chromatin topology.
Collapse
Affiliation(s)
- Ramachander V N Turaga
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Imam SZ, Indig FE, Cheng WH, Saxena SP, Stevnsner T, Kufe D, Bohr VA. Cockayne syndrome protein B interacts with and is phosphorylated by c-Abl tyrosine kinase. Nucleic Acids Res 2007; 35:4941-51. [PMID: 17626041 PMCID: PMC1976445 DOI: 10.1093/nar/gkm386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Cockayne Syndrome group B (CSB) protein plays important roles in transcription, transcription-coupled nucleotide excision repair and base excision DNA repair. c-Abl kinase also plays a role in DNA repair as a regulator/coordinator of the DNA damage response. This study presents evidence that the N-terminal region of CSB interacts with the SH3 domain of c-Abl in vitro and in vivo. In addition, c-Abl kinase phosphorylates CSB at Tyr932. The subcellular localization of CSB to the nucleus and nucleolus is altered after phosphorylation by c-Abl. c-Abl-dependent phosphorylation of CSB increased in cells treated with hydrogen peroxide and decreased in cells pre-treated with STI-571, a c-Abl-specific protein kinase inhibitor. Activation of the c-Abl kinase in response to oxidative damage is not observed in CSB null cells. These results suggest that c-Abl and CSB may regulate each other in a reciprocal manner in response to oxidative stress.
Collapse
Affiliation(s)
- Syed Z. Imam
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fred E. Indig
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Wen-Hsing Cheng
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Satya P. Saxena
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tinna Stevnsner
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donald Kufe
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Research Resource Branch, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA, Danish Center for Molecular Gerontology, MBI, University of Aarhus, Denmark and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- *To whom correspondence should be addressed.+1-410-558-8162+1-410-558-8157
| |
Collapse
|
40
|
Wong HK, Muftuoglu M, Beck G, Imam SZ, Bohr VA, Wilson DM. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res 2007; 35:4103-13. [PMID: 17567611 PMCID: PMC1919475 DOI: 10.1093/nar/gkm404] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cockayne syndrome B (CSB) protein--defective in a majority of patients suffering from the rare autosomal disorder CS--is a member of the SWI2/SNF2 family with roles in DNA repair and transcription. We demonstrate herein that purified recombinant CSB and the major human apurinic/apyrimidinic (AP) endonuclease, APE1, physically and functionally interact. CSB stimulates the AP site incision activity of APE1 on normal (i.e. fully paired) and bubble AP-DNA substrates, with the latter being more pronounced (up to 6-fold). This activation is ATP-independent, and specific for the human CSB and full-length APE1 protein, as no CSB-dependent stimulation was observed with Escherichia coli endonuclease IV or an N-terminal truncated APE1 fragment. CSB and APE1 were also found in a common protein complex in human cell extracts, and recombinant CSB, when added back to CSB-deficient whole cell extracts, resulted in increased total AP site incision capacity. Moreover, human fibroblasts defective in CSB were found to be hypersensitive to both methyl methanesulfonate (MMS) and 5-hydroxymethyl-2'-deoxyuridine, agents that introduce base excision repair (BER) DNA substrates/intermediates.
Collapse
Affiliation(s)
- Heng-Kuan Wong
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Gad Beck
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Syed Z. Imam
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- *To whom correspondence should be addressed. 410 558 8153410 558 8157
| |
Collapse
|
41
|
Cheng WH, Muftuoglu M, Bohr VA. Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 2007; 42:871-8. [PMID: 17587522 DOI: 10.1016/j.exger.2007.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 12/14/2022]
Abstract
Werner syndrome (WS) is an excellent model system for the study of human aging. WRN, a nuclear protein mutated in WS, plays multiple roles in DNA metabolism. Our understanding about the metabolic regulation and function of this RecQ helicase has advanced greatly during the past decade, largely due to the availability of purified WRN protein, WRN knockdown cells, and WRN knockout mice. Recent biochemical and genetic studies indicate that WRN plays significant roles in DNA replication, DNA repair, and telomere maintenance. Interestingly, many WRN functions require handling of DNA ends during S-phase, and evidence suggests that WRN plays both upstream and downstream roles in the response to DNA damage. Future research should focus on the mechanism(s) of WRN in the regulation of the various DNA metabolism pathways and development of therapeutic approaches to treat premature aging syndromes such as WS.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
42
|
Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6:695-711. [PMID: 17337257 PMCID: PMC1995033 DOI: 10.1016/j.dnarep.2007.01.009] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 12/29/2022]
Abstract
Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neuro-degeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multi-protein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation.
Collapse
Affiliation(s)
- Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave., Providence RI 02908-1991
| | - Robert W. Sobol
- Department of Pharmacology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863
- *To whom correspondence should be addressed: Robert W. Sobol, Ph.D., Tel. 412-623-7764, Fax 412-623-7761, e-mail
| |
Collapse
|
43
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
44
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
45
|
Killoran MP, Keck JL. Sit down, relax and unwind: structural insights into RecQ helicase mechanisms. Nucleic Acids Res 2006; 34:4098-105. [PMID: 16935877 PMCID: PMC1616949 DOI: 10.1093/nar/gkl538] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/29/2006] [Accepted: 07/13/2006] [Indexed: 01/25/2023] Open
Abstract
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund-Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities.
Collapse
Affiliation(s)
- Michael P. Killoran
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public HealthMadison, WI 53706-1532, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public HealthMadison, WI 53706-1532, USA
| |
Collapse
|
46
|
Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA. Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 2006; 34:2751-60. [PMID: 16714450 PMCID: PMC1464112 DOI: 10.1093/nar/gkl362] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs.
Collapse
Affiliation(s)
| | | | | | | | - Shurong Huang
- Lawrence Berkeley National Laboratory, BerkeleyCA 94720, USA
| | - Matthew L. Nicolette
- Department of Molecular Genetics and Microbiology, University of Texas at AustinAustin, TX 78712, USA
| | - Tanya T. Paull
- Department of Molecular Genetics and Microbiology, University of Texas at AustinAustin, TX 78712, USA
| | - Judith Campisi
- Lawrence Berkeley National Laboratory, BerkeleyCA 94720, USA
| | | | - Vilhelm A. Bohr
- To whom correspondence should be addressed. Tel: +1 410 558 8162; Fax: +1 410 558 8157;
| |
Collapse
|
47
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
48
|
Yi W, Lee TH, Tompkins JD, Zhu F, Wu X, Her C. Physical and functional interaction between hMSH5 and c-Abl. Cancer Res 2006; 66:151-8. [PMID: 16397227 DOI: 10.1158/0008-5472.can-05-3019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite being a member of the mismatch repair family of proteins, the biological functions of hMSH5 in human cells are presently elusive. Here, we report a novel physical and functional interaction between hMSH5 and c-Abl; the latter is a critical non-receptor tyrosine kinase involved in many critical cellular functions including DNA damage response, in which the kinase activity is normally suppressed in the absence of biological challenges. Our data indicate that hMSH5 associates with c-Abl in vivo, which is mediated by a direct physical interaction between the NH2 terminus (residues 1-109) of hMSH5 and the c-Abl SH3 domain. This physical interaction facilitates the activation of c-Abl tyrosine kinase and the phosphorylation of hMSH5 in response to ionizing radiation. Our data also indicate that the hMSH5 P29S variant overactivates the c-Abl tyrosine kinase activity. Furthermore, it seems that the tyrosine phosphorylation of hMSH5 promotes the dissociation of hMSH4-hMSH5 heterocomplex. Together, the revealed physical and functional interaction of hMSH5 with c-Abl implies that the interplay between hMSH5 and c-Abl could manipulate cellular responses to ionizing radiation-induced DNA damages.
Collapse
Affiliation(s)
- Wei Yi
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | | | | | |
Collapse
|
49
|
Muftuoglu M, Wong HK, Imam SZ, Wilson DM, Bohr VA, Opresko PL. Telomere repeat binding factor 2 interacts with base excision repair proteins and stimulates DNA synthesis by DNA polymerase beta. Cancer Res 2006; 66:113-24. [PMID: 16397223 DOI: 10.1158/0008-5472.can-05-2742] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ends of linear chromosomes are capped and protected by protein-DNA complexes termed telomeres. Consequences of telomere dysfunction include genomic instability that can contribute to neoplastic transformation and progression. Telomere binding proteins interact with numerous proteins involved in DNA repair, underscoring the importance of regulating DNA repair pathways at telomeres. Telomeric DNA is particularly susceptible to oxidative damage, and such damage is repaired primarily via the base excision repair (BER) pathway. Using a screen for potential interactions between telomere repeat binding factor 2 (TRF2) and proteins involved in BER of oxidized bases in vitro, we found that TRF2 physically bound DNA polymerase beta (Pol beta) and flap endonuclease 1 (FEN-1). The interactions with endogenous proteins in human cell extracts were confirmed by coimmunoprecipitation experiments. The primary binding sites for both Pol beta and FEN-1 mapped to the TRF2 NH2-terminal and COOH-terminal domains. We further tested the ability of TRF2 to modulate BER protein partners individually on a variety of substrates in vitro. TRF2 stimulated Pol beta primer extension DNA synthesis on telomeric and nontelomeric primer/template substrates, resulting in up to a 75% increase in the proportion of longer products. TRF2 also stimulated Pol beta strand displacement DNA synthesis in reconstituted BER reactions and increased the percent of long-patch BER intermediates on both telomeric and nontelomeric substrates. Potential roles of TRF2 in cooperation with BER proteins for DNA repair pathways at telomeres, as well as other genomic regions, are discussed.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Werner syndrome (WS) is a premature aging disorder characterized by genomic instability and increased cancer risk (Martin, 1978). The WRN gene product defective in WS belongs to the RecQ family of DNA helicases (Yu et al., 1996). Mutations in RecQ family members BLM and RecQ4 result in two other disorders associated with elevated chromosomal instability and cancer, Bloom syndrome and Rothmund-Thomson syndrome, respectively (for review see Opresko et al., 2004a). RecQ helicase mutants display defects in DNA replication, recombination, and repair, suggesting a role for RecQ helicases in maintaining genomic integrity. The WRN gene encodes a 1,432 amino acid protein that has several catalytic activities (Brosh and Bohr, 2002) (Fig. 1). WRN is a DNA-dependent ATPase and utilizes the energy from ATP hydrolysis to unwind double-stranded DNA. WRN is also a 3' to 5' exonuclease, consistent with the presence of three conserved exonuclease motifs homologous to the exonuclease domain of Escherichia coli DNA polymerase I and RNase D. Most recently, WRN (Machwe et al., 2005) and other human RecQ helicases (Garcia et al., 2004; Machwe et al., 2005; Sharma et al., 2005) have been reported to possess an intrinsic single-strand annealing activity. In addition to its catalytic activities, WRN interacts with a number of proteins involved in various aspects of DNA metabolism. To understand the role of WRN in the maintenance of genome stability, a number of laboratories have undertaken a thorough characterization of its molecular and cellular functions. Here, we describe methods and approaches used for the functional and mechanistic analysis of WRN helicase or exonuclease activity. Protocols for measuring ATP hydrolysis, DNA binding, and catalytic unwinding or exonuclease activity of WRN protein are provided. Application of these procedures should enable the researcher to address fundamental questions regarding the biochemical properties of WRN or related helicases or nucleases, which would serve as a platform for further investigation of its molecular and cellular functions.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute of Aging-IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|