1
|
Jung J, Kim NH, Park J, Lim D, Kwon M, Gil W, Jung S, Go M, Kim C, Cheong YH, Lee MH, Park HS, Eom YB, Park SA. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res 2024; 26:174. [PMID: 39614338 DOI: 10.1186/s13058-024-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified. METHODS Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis. RESULTS The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1. CONCLUSIONS Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Suyeon Jung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minjeong Go
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Chaeeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd, Yongin, 17073, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
2
|
Zhao S, Wang C, Luo H, Li F, Wang Q, Xu J, Huang Z, Liu W, Zhang W. A role for Retinoblastoma 1 in hindbrain morphogenesis by regulating GBX family. J Genet Genomics 2024; 51:900-910. [PMID: 38570112 DOI: 10.1016/j.jgg.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The hindbrain, which develops from the anterior end of the neural tube expansion, can differentiate into the metencephalon and myelencephalon, with varying sizes and functions. The midbrain-hindbrain boundary (MHB) and hindbrain myelencephalon/ventral midline (HMVM) are known to be the source of the progenitors for the anterior hindbrain and myelencephalon, respectively. However, the molecular networks regulating hindbrain morphogenesis in these structures remain unclear. In this study, we show that retinoblastoma 1 (rb1) is highly expressed at the MHB and HMVM in zebrafish. Knocking out rb1 in mice and zebrafish results in an enlarged hindbrain due to hindbrain neuronal hyperproliferation. Further study reveals that Rb1 controls the hindbrain morphogenesis by suppressing the expression of Gbx1/Gbx2, essential transcription factors for hindbrain development, through its binding to E2f3/Hdac1, respectively. Interestingly, we find that Gbx1 and Gbx2 are expressed in different types of hindbrain neurons, suggesting distinct roles in hindbrain morphogenesis. In summary, our study clarifies the specific role of RB1 in hindbrain neural cell proliferation and morphogenesis by regulating the E2f3-Gbx1 axis and the Hdac1-Gbx2 axis. These findings provide a research paradigm for exploring the differential proliferation of neurons in various brain regions.
Collapse
Affiliation(s)
- Shuang Zhao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chen Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haiping Luo
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Feifei Li
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qiang Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Zhao S, Mo G, Wang Q, Xu J, Yu S, Huang Z, Liu W, Zhang W. Role of RB1 in neurodegenerative diseases: inhibition of post-mitotic neuronal apoptosis via Kmt5b. Cell Death Discov 2024; 10:182. [PMID: 38637503 PMCID: PMC11026443 DOI: 10.1038/s41420-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
During the development of the vertebrate nervous system, 50% of the nerve cells undergo apoptosis shortly after formation. This process is important for sculpting tissue during morphogenesis and removing transiently functional cells that are no longer needed, ensuring the appropriate number of neurons in each region. Dysregulation of neuronal apoptosis can lead to neurodegenerative diseases. However, the molecular events involved in activating and regulating the neuronal apoptosis program are not fully understood. In this study, we identified several RB1 mutations in patients with neurodegenerative diseases. Then, we used a zebrafish model to investigate the role of Rb1 in neuronal apoptosis. We showed that Rb1-deficient mutants exhibit a significant hindbrain neuronal apoptosis, resulting in increased microglia infiltration. We further revealed that the apoptotic neurons in Rb1-deficient zebrafish were post-mitotic neurons, and Rb1 inhibits the apoptosis of these neurons by regulating bcl2/caspase through binding to Kmt5b. Moreover, using this zebrafish mutant, we verified the pathogenicity of the R621S and L819V mutations of human RB1 in neuronal apoptosis. Collectively, our data indicate that the Rb1-Kmt5b-caspase/bcl2 axis is crucial for protecting post-mitotic neurons from apoptosis and provides an explanation for the pathogenesis of clinically relevant mutations.
Collapse
Affiliation(s)
- Shuang Zhao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Guiling Mo
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Qiang Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shihui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
4
|
SARS-CoV-2 Exacerbates Beta-Amyloid Neurotoxicity, Inflammation and Oxidative Stress in Alzheimer's Disease Patients. Int J Mol Sci 2021; 22:ijms222413603. [PMID: 34948400 PMCID: PMC8705864 DOI: 10.3390/ijms222413603] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the pandemic Coronavirus Disease 19 (COVID-19), causing millions of deaths. The elderly and those already living with comorbidity are likely to die after SARS-CoV-2 infection. People suffering from Alzheimer’s disease (AD) have a higher risk of becoming infected, because they cannot easily follow health roles. Additionally, those suffering from dementia have a 40% higher risk of dying from COVID-19. Herein, we collected from Gene Expression Omnibus repository the brain samples of AD patients who died of COVID-19 (AD+COVID-19), AD without COVID-19 (AD), COVID-19 without AD (COVID-19) and control individuals. We inspected the transcriptomic and interactomic profiles by comparing the COVID-19 cohort against the control cohort and the AD cohort against the AD+COVID-19 cohort. SARS-CoV-2 in patients without AD mainly activated processes related to immune response and cell cycle. Conversely, 21 key nodes in the interactome are deregulated in AD. Interestingly, some of them are linked to beta-amyloid production and clearance. Thus, we inspected their role, along with their interactors, using the gene ontologies of the biological process that reveals their contribution in brain organization, immune response, oxidative stress and viral replication. We conclude that SARS-CoV-2 worsens the AD condition by increasing neurotoxicity, due to higher levels of beta-amyloid, inflammation and oxidative stress.
Collapse
|
5
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Luo J, Liu P, Lu C, Bian W, Su D, Zhu C, Xie S, Pan Y, Li N, Cui W, Pei DS, Yang X. Stepwise crosstalk between aberrant Nf1, Tp53 and Rb signalling pathways induces gliomagenesis in zebrafish. Brain 2021; 144:615-635. [PMID: 33279959 PMCID: PMC7940501 DOI: 10.1093/brain/awaa404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023] Open
Abstract
The molecular pathogenesis of glioblastoma indicates that RTK/Ras/PI3K, RB and TP53 pathways are critical for human gliomagenesis. Here, several transgenic zebrafish lines with single or multiple deletions of nf1, tp53 and rb1 in astrocytes, were established to genetically induce gliomagenesis in zebrafish. In the mutant with a single deletion, we found only the nf1 mutation low-efficiently induced tumour incidence, suggesting that the Nf1 pathway is critical for the initiation of gliomagenesis in zebrafish. Combination of mutations, nf1;tp53 and rb1;tp53 combined knockout fish, showed much higher tumour incidences, high-grade histology, increased invasiveness, and shortened survival time. Further bioinformatics analyses demonstrated the alterations in RTK/Ras/PI3K, cell cycle, and focal adhesion pathways, induced by abrogated nf1, tp53, or rb1, were probably the critical stepwise biological events for the initiation and development of gliomagenesis in zebrafish. Gene expression profiling and histological analyses showed the tumours derived from zebrafish have significant similarities to the subgroups of human gliomas. Furthermore, temozolomide treatment effectively suppressed gliomagenesis in these glioma zebrafish models, and the histological responses in temozolomide-treated zebrafish were similar to those observed in clinically treated glioma patients. Thus, our findings will offer a potential tool for genetically investigating gliomagenesis and screening potential targeted anti-tumour compounds for glioma treatment.
Collapse
Affiliation(s)
- Juanjuan Luo
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Pei Liu
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
| | - Chunjiao Lu
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
| | - Wanping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dongsheng Su
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chenchen Zhu
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
| | - Shaolin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang 110016, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence may also be addressed to: De-Sheng Pei, PhD Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing 400714, China E-mail:
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou 515041, China
- Correspondence to: Xiaojun Yang, PhD Neuroscience Center, Shantou University Medical College Shantou 515041, China E-mail:
| |
Collapse
|
7
|
Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MA, Prado VF, Rothstein J, Rubenstein JL, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM. Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron 2020; 106:37-65.e5. [PMID: 32027825 PMCID: PMC7377387 DOI: 10.1016/j.neuron.2020.01.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.
Collapse
Affiliation(s)
- Lin Luo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Emilie Dumontier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | - Naosuke Hoshina
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Hsiang Huang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Mary Anne Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Itoh-Maruoka
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Pereira
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Philips
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer L. Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jeff A. Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02139, USA
| | | | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joke Wortel
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wenjia You
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA,Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Constance L. Cepko
- Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cagla Eroglu
- Department of Cell Biology, Department of Neurobiology, and Duke Institute for Brain Sciences, Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy N. Kay
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marco A.M. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vania F. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jeffrey Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
8
|
Xia P, Liu Y, Chen J, Cheng Z. Cell Cycle Proteins as Key Regulators of Postmitotic Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:641-650. [PMID: 31866779 PMCID: PMC6913832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell cycle progression in dividing cells, characterized by faithful replication of the genomic materials and duplication of the original cell, is fundamental for growth and reproduction of all mammalian organisms. Functional maturation of postmitotic cells, however, requires cell cycle exit and terminal differentiation. In mature postmitotic cells, many cell cycle proteins remain to be expressed, or can be induced and reactivated in pathological conditions such as traumatic injury and degenerative diseases. Interestingly, elevated levels of cell cycle proteins in postmitotic cells often do not induce proliferation, but result in aberrant cell cycle reentry and cell death. At present, the cell cycle machinery is known predominantly for regulating cell cycle progression and cell proliferation, albeit accumulating evidence indicates that cell cycle proteins may also control cell death, especially in postmitotic tissues. Herein, we provide a brief summary of these findings and hope to highlight the connection between cell cycle reentry and postmitotic cell death. In addition, we also outline the signaling pathways that have been identified in cell cycle-related cell death. Advanced understanding of the molecular mechanisms underlying cell cycle-related death is of paramount importance because this knowledge can be applied to develop protective strategies against pathologies in postmitotic tissues. Moreover, a full-scope understanding of the cell cycle machinery will allow fine tuning to favor cell proliferation over cell death, thereby potentially promoting tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Zhaokang Cheng
- To whom all correspondence should be addressed: Zhaokang Cheng, PhD, Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd. Spokane, WA 99202-2131; Tel: 509-358-7741,
| |
Collapse
|
9
|
Dominici C, Rappeneau Q, Zelina P, Fouquet S, Chédotal A. Non-cell autonomous control of precerebellar neuron migration by Slit and Robo proteins. Development 2018; 145:dev150375. [PMID: 29343636 DOI: 10.1242/dev.150375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/11/2017] [Indexed: 02/05/2023]
Abstract
During development, precerebellar neurons migrate tangentially from the dorsal hindbrain to the floor plate. Their axons cross it but their cell bodies stop their ventral migration upon reaching the midline. It has previously been shown that Slit chemorepellents and their receptors, Robo1 and Robo2, might control the migration of precerebellar neurons in a repulsive manner. Here, we have used a conditional knockout strategy in mice to test this hypothesis. We show that the targeted inactivation of the expression of Robo1 and Robo2 receptors in precerebellar neurons does not perturb their migration and that they still stop at the midline. The selective ablation of the expression of all three Slit proteins in floor-plate cells has no effect on pontine neurons and only induces the migration of a small subset of inferior olivary neurons across the floor plate. Likewise, we show that the expression of Slit proteins in the facial nucleus is dispensable for pontine neuron migration. Together, these results show that Robo1 and Robo2 receptors act non-cell autonomously in migrating precerebellar neurons and that floor-plate signals, other than Slit proteins, must exist to prevent midline crossing.
Collapse
Affiliation(s)
- Chloé Dominici
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Quentin Rappeneau
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Pavol Zelina
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| |
Collapse
|
10
|
Oshikawa M, Okada K, Tabata H, Nagata KI, Ajioka I. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division. Development 2017; 144:3303-3314. [PMID: 28928282 DOI: 10.1242/dev.154013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kei Okada
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan .,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Alessio N, Capasso S, Ferone A, Di Bernardo G, Cipollaro M, Casale F, Peluso G, Giordano A, Galderisi U. Misidentified Human Gene Functions with Mouse Models: The Case of the Retinoblastoma Gene Family in Senescence. Neoplasia 2017; 19:781-790. [PMID: 28865301 PMCID: PMC5577395 DOI: 10.1016/j.neo.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Although mice models rank among the most widely used tools for understanding human genetics, biology, and diseases, differences between orthologous genes among species as close as mammals are possible, particularly in orthologous gene pairs in which one or more paralogous (i.e., duplicated) genes appear in the genomes of the species. Duplicated genes can possess overlapping functions and compensate for each other. The retinoblastoma gene family demonstrates typical composite functionality in its three member genes (i.e., RB1, RB2/P130, and P107), all of which participate in controlling the cell cycle and associated phenomena, including proliferation, quiescence, apoptosis, senescence, and cell differentiation. We analyzed the role of the retinoblastoma gene family in regulating senescence in mice and humans. Silencing experiments with each member of the gene family in mesenchymal stromal cells (MSCs) and fibroblasts from mouse and human tissues demonstrated that RB1 may be indispensable for senescence in mouse cells, but not in human ones, as an example of species specificity. Furthermore, although RB2/P130 seems to be implicated in maintaining human cell senescence, the function of RB1 within any given species might differ by cell type, as an example of cell specificity. For instance, silencing RB1 in mouse fibroblasts induced a reduced senescence not observed in mouse MSCs. Our findings could be useful as a general paradigm of cautions to take when inferring the role of human genes analyzed in animal studies and when examining the role of the retinoblastoma gene family in detail.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Ferone
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fiorina Casale
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology, Temple University, Philadelphia PA; Department of Medicine, Surgery & Neuroscience, University of Siena, Siena, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology, Temple University, Philadelphia PA; Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy; Institute of Bioscience and Bioresources, CNR, Naples, Italy.
| |
Collapse
|
12
|
Matsui T, Nieto-Estévez V, Kyrychenko S, Schneider JW, Hsieh J. Retinoblastoma protein controls growth, survival and neuronal migration in human cerebral organoids. Development 2017; 144:1025-1034. [PMID: 28087635 DOI: 10.1242/dev.143636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/16/2016] [Indexed: 01/22/2023]
Abstract
The tumor suppressor retinoblastoma protein (RB) regulates S-phase cell cycle entry via E2F transcription factors. Knockout (KO) mice have shown that RB plays roles in cell migration, differentiation and apoptosis, in developing and adult brain. In addition, the RB family is required for self-renewal and survival of human embryonic stem cells (hESCs). Since little is known about the role of RB in human brain development, we investigated its function in cerebral organoids differentiated from gene-edited hESCs lacking RB. We show that RB is abundantly expressed in neural stem and progenitor cells in organoids at 15 and 28 days of culture. RB loss promoted S-phase entry in DCX+ cells and increased apoptosis in Sox2+ neural stem and progenitor cells, and in DCX+ and Tuj1+ neurons. Associated with these cell cycle and pro-apoptotic effects, we observed increased CCNA2 and BAX gene expression, respectively. Moreover, we observed aberrant Tuj1+ neuronal migration in RB-KO organoids and upregulation of the gene encoding VLDLR, a receptor important in reelin signaling. Corroborating the results in RB-KO organoids in vitro, we observed ectopically localized Tuj1+ cells in RB-KO teratomas grown in vivo Taken together, these results identify crucial functions for RB in the cerebral organoid model of human brain development.
Collapse
Affiliation(s)
- Takeshi Matsui
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanesa Nieto-Estévez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergii Kyrychenko
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay W Schneider
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Abstract
As many as 5% of human cancers appear to be of hereditable etiology. Of the more than 50 characterized familial cancer syndromes, most involve disease affecting multiple organs and many can be traced to one or more abnormalities in specific genes. Studying these syndromes in humans is a difficult task, especially when it comes to genes that may manifest themselves early in gestation. It has been made somewhat easier with the development of genetically engineered mice (GEM) that phenotypically mimic many of these inheritable human cancers. The past 15 years has seen the establishment of mouse lines heterozygous or homozygous null for genes known or suspected of being involved in human cancer syndromes, including APC, ATM, BLM, BRCA1, BRCA2, LKB1, MEN1, MLH, MSH, NF1, TP53, PTEN, RB1, TSC1, TSC2, VHL, and XPA. These lines not only provide models for clinical disease and pathology, but also provide avenues to investigate molecular pathology, gene-gene and protein-tissue interaction, and, ultimately, therapeutic intervention. Possibly of even greater importance, they provide a means of looking at placental and fetal tissues, where genetic abnormalities are often first detected and where they may be most easily corrected. We will review these mouse models, examine their usefulness in medical research, and furnish sources of animals and references.
Collapse
Affiliation(s)
- Jerrold M Ward
- Veterinary and Tumor Pathology Section, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
14
|
Vandenbosch R, Clark A, Fong BC, Omais S, Jaafar C, Dugal-Tessier D, Dhaliwal J, Lagace DC, Park DS, Ghanem N, Slack RS. RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus. Hippocampus 2016; 26:1379-1392. [DOI: 10.1002/hipo.22613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Renaud Vandenbosch
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Bensun C. Fong
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Saad Omais
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Carine Jaafar
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Delphie Dugal-Tessier
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Diane C. Lagace
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - David S. Park
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Noël Ghanem
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| |
Collapse
|
15
|
Ajioka I. Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regen Ther 2016; 3:63-67. [PMID: 31245474 PMCID: PMC6581816 DOI: 10.1016/j.reth.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8510, Japan. Fax: +81 3 5803 4716.
| |
Collapse
|
16
|
Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, Zhu L. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem 2016; 291:10201-9. [PMID: 26966181 DOI: 10.1074/jbc.m116.718049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Tumor suppressor pRb represses Skp2, a substrate-recruiting subunit of the SCF(Skp2) ubiquitin ligase. Rb1(+/-) mice incur "two-hit" pituitary tumorigenesis; Skp2(-/-);Rb1(+/-) mice do not. Rb1(-/-) embryos die on embryonic day (E) 14.5-15.5. Here, we report that Skp2(-/-);Rb1(-/-) embryos died on E11.5, establishing an organismal level synthetic lethal relationship between Rb1 and Skp2 On E10.5, Rb1(-/-) placentas showed similarly active proliferation and similarly inactive apoptosis as WT placenta, whereas Rb1(-/-) embryos showed ectopic proliferation without increased apoptosis in the brain. Combining Skp2(-/-) did not reduce proliferation or increase apoptosis in the placentas but induced extensive apoptosis in the brain. We conditionally deleted Rb1 in neuronal lineage with Nes-Cre and reproduced the brain apoptosis in E13.5 Nes-Cre;Rb1(lox/lox);Skp2(-/-) embryos, demonstrating their synthetic lethal relationship at a cell autonomous level. Nes-Cre-mediated Rb1 deletion increased expression of proliferative E2F target genes in the brains of Skp2(+/+) embryos; the increases rose higher with activation of expression of apoptotic E2F target genes in Skp2(-/-) embryos. The brain apoptosis was independent of p53 but coincident with proliferation. The highly activated expression of proliferative and apoptotic E2F target genes subsided with gradually reduced roles of Skp2 in preventing p27 protein accumulation in the brain in late gestation, allowing the embryos to reach full term with normally sized brains. These findings establish that Rb1 and Skp2 deletions are synthetic lethal and suggest how this lethal relationship might be circumvented, which could help design better therapies for pRb-deficient cancer.
Collapse
Affiliation(s)
- Hongling Zhao
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hongbo Wang
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Frederick Bauzon
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Zhonglei Lu
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hao Fu
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jinhua Cui
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Liang Zhu
- From the Department of Developmental and Molecular Biology, and Ophthalmology & Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
17
|
Váraljai R, Islam ABMMK, Beshiri ML, Rehman J, Lopez-Bigas N, Benevolenskaya EV. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells. Genes Dev 2015; 29:1817-34. [PMID: 26314709 PMCID: PMC4573855 DOI: 10.1101/gad.264036.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022]
Abstract
The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.
Collapse
Affiliation(s)
- Renáta Váraljai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Abul B M M K Islam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA; Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona 08003, Spain; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Michael L Beshiri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jalees Rehman
- Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Nuria Lopez-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Elizaveta V Benevolenskaya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
18
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
19
|
Weng MK, Natarajan K, Scholz D, Ivanova VN, Sachinidis A, Hengstler JG, Waldmann T, Leist M. Lineage-specific regulation of epigenetic modifier genes in human liver and brain. PLoS One 2014; 9:e102035. [PMID: 25054330 PMCID: PMC4108363 DOI: 10.1371/journal.pone.0102035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
Despite an abundance of studies on chromatin states and dynamics, there is an astonishing dearth of information on the expression of genes responsible for regulating histone and DNA modifications. We used here a set of 156 defined epigenetic modifier genes (EMG) and profiled their expression pattern in cells of different lineages. As reference value, expression data from human embryonic stem cells (hESC) were used. Hepatocyte-like cells were generated from hESC, and their EMG expression was compared to primary human liver cells. In parallel, we generated postmitotic human neurons (Lu d6), and compared their relative EMG expression to human cortex (Ctx). Clustering analysis of all cell types showed that neuronal lineage samples grouped together (94 similarly regulated EMG), as did liver cells (61 similarly-regulated), while the two lineages were clearly distinct. The general classification was followed by detailed comparison of the major EMG groups; genes that were higher expressed in differentiated cells than in hESC included the acetyltransferase KAT2B and the methyltransferase SETD7. Neuro-specific EMGs were the histone deacetylases HDAC5 and HDAC7, and the arginine-methyltransferase PRMT8. Comparison of young (Lu d6) and more aged (Ctx) neuronal samples suggested a maturation-dependent switch in the expression of functionally homologous proteins. For instance, the ratio of the histone H3 K27 methyltransfereases, EZH1 to EZH2, was high in Ctx and low in Lu d6. The same was observed for the polycomb repressive complex 1 (PRC1) subunits CBX7 and CBX8. A large proportion of EMGs in differentiated cells was very differently expressed than in hESC, and absolute levels were significantly higher in neuronal samples than in hepatic cells. Thus, there seem to be distinct qualitative and quantitative differences in EMG expression between cell lineages.
Collapse
Affiliation(s)
- Matthias K. Weng
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
- * E-mail:
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Cologne, Germany
| | - Diana Scholz
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Violeta N. Ivanova
- Nycomed-Chair for Bioinformatics and Information Mining, Dept. of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Cologne, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Park HJ, Hong M, Bronson RT, Israel MA, Frankel WN, Yun K. Elevated Id2 expression results in precocious neural stem cell depletion and abnormal brain development. Stem Cells 2014; 31:1010-21. [PMID: 23390122 DOI: 10.1002/stem.1351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/15/2013] [Indexed: 11/06/2022]
Abstract
Id2 is a helix-loop-helix transcription factor essential for normal development, and its expression is dysregulated in many human neurological conditions. Although it is speculated that elevated Id2 levels contribute to the pathogenesis of these disorders, it is unknown whether dysregulated Id2 expression is sufficient to perturb normal brain development or function. Here, we show that mice with elevated Id2 expression during embryonic stages develop microcephaly, and that females in particular are prone to generalized tonic-clonic seizures. Analyses of Id2 transgenic brains indicate that Id2 activity is highly cell context specific: elevated Id2 expression in naive neural stem cells (NSCs) in early neuroepithelium induces apoptosis and loss of NSCs and intermediate progenitors. Activation of Id2 in maturing neuroepithelium results in less severe phenotypes and is accompanied by elevation of G1 cyclin expression and p53 target gene expression. In contrast, activation of Id2 in committed intermediate progenitors has no significant phenotype. Functional analysis with Id2-overexpressing and Id2-null NSCs shows that Id2 negatively regulates NSC self-renewal in vivo, in contrast to previous cell culture experiments. Deletion of p53 function from Id2-transgenic brains rescues apoptosis and results in increased incidence of brain tumors. Furthermore, Id2 overexpression normalizes the increased self-renewal of p53-null NSCs, suggesting that Id2 activates and modulates the p53 pathway in NSCs. Together, these data suggest that elevated Id2 expression in embryonic brains can cause deregulated NSC self-renewal, differentiation, and survival that manifest in multiple neurological outcomes in mature brains, including microcephaly, seizures, and brain tumors.
Collapse
|
21
|
Capasso S, Alessio N, Di Bernardo G, Cipollaro M, Melone MA, Peluso G, Giordano A, Galderisi U. Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation. Cell Cycle 2013; 13:482-90. [PMID: 24281253 DOI: 10.4161/cc.27275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation. Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets. Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis. Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation.
Collapse
Affiliation(s)
- Stefania Capasso
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy; Institute of Protein Biochemistry; CNR; Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Mariarosa Ab Melone
- Department of Clinical and Experimental Medicine; Second University of Naples; Naples, Italy
| | - Gianfranco Peluso
- Institute of Protein Biochemistry; CNR; Naples, Italy; Institute of Biomedicine and Bioresources; CNR; Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Center For Biotechnology; Temple University; Philadelphia, PA USA; Department of Medicine, Surgery and Neurociences; University of Siena; Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy; Institute of Protein Biochemistry; CNR; Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center For Biotechnology; Temple University; Philadelphia, PA USA; GENKÖK; Genome and Stem Cell Center; Erciyes University; Kayseri, Turkey
| |
Collapse
|
22
|
Mutsaers AJ, Ng AJM, Baker EK, Russell MR, Chalk AM, Wall M, Liddicoat BJJ, Ho PWM, Slavin JL, Goradia A, Martin TJ, Purton LE, Dickins RA, Walkley CR. Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone 2013; 55:166-78. [PMID: 23486187 DOI: 10.1016/j.bone.2013.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 10/27/2022]
Abstract
Osteosarcoma is the most common primary cancer of bone and one that predominantly affects children and adolescents. Osteoblastic osteosarcoma represents the major subtype of this tumor, with approximately equal representation of fibroblastic and chondroblastic subtypes. We and others have previously described murine models of osteosarcoma based on osteoblast-restricted Cre:lox deletion of Trp53 (p53) and Rb1 (Rb), resulting in a phenotype most similar to fibroblastic osteosarcoma in humans. We now report a model of the most prevalent form of human osteosarcoma, the osteoblastic subtype. In contrast to other osteosarcoma models that have used Cre:lox mediated gene deletion, this model was generated through shRNA-based knockdown of p53. As is the case with the human disease the shRNA tumors most frequently present in the long bones and preferentially disseminate to the lungs; feature less consistently modeled using Cre:lox approaches. Our approach allowed direct comparison of the in vivo consequences of targeting the same genetic drivers using two different technologies, Cre:lox and shRNA. This demonstrated that the effects of Cre:lox and shRNA mediated knock-down are qualitatively different, at least in the context of osteosarcoma, and yielded distinct subtypes of osteosarcoma. Through the use of complementary genetic modification strategies we have established a model of the most common clinical subtype of osteosarcoma that was not previously represented and more fully recapitulated the clinical spectrum of this cancer.
Collapse
Affiliation(s)
- Anthony J Mutsaers
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U. Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci 2013; 70:1637-51. [PMID: 23370776 PMCID: PMC11113310 DOI: 10.1007/s00018-012-1224-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
Abstract
Stem cell senescence is considered deleterious because it may impair tissue renewal and function. On the other hand, senescence may arrest the uncontrolled growth of transformed stem cells and protect organisms from cancer. This double function of senescence is strictly linked to the activity of genes that the control cell cycle such as the retinoblastoma proteins RB1, RB2/P130, and P107. We took advantage of the RNA interference technique to analyze the role of these proteins in the biology of mesenchymal stem cells (MSC). Cells lacking RB1 were prone to DNA damage. They showed elevated levels of p53 and p21(cip1) and increased regulation of RB2/P130 and P107 expression. These cells gradually adopted a senescent phenotype with impairment of self-renewal properties. No significant modification of cell growth was observed as it occurs in other cell types or systems. In cells with silenced RB2/P130, we detected a reduction of DNA damage along with a higher proliferation rate, an increase in clonogenic ability, and the diminution of apoptosis and senescence. Cells with silenced RB2/P130 were cultivated for extended periods of time without adopting a transformed phenotype. Of note, acute lowering of P107 did not induce relevant changes in the in vitro behavior of MSC. We also analyzed cell commitment and the osteo-chondro-adipogenic differentiation process of clones derived by MSC cultures. In all clones obtained from cells with silenced retinoblastoma genes, we observed a reduction in the ability to differentiate compared with the control clones. In summary, our data show evidence that the silencing of the expression of RB1 or RB2/P130 is not compensated by other gene family members, and this profoundly affects MSC functions.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Wolfgang Bohn
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Verena Rauchberger
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Flavio Rizzolio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Michael Rosemann
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Radiation Biology, Munich, Germany
| | - Martin Irmler
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
| | - Johannes Beckers
- Helmholtz Zentrum, National Research Center for Environment and Health, GmbH, Institute of Experimental Genetics, Munich, Germany
- WZW, Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 North 12th Street, Philadelphia, PA 19107-6799 USA
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
24
|
Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development 2013; 140:2310-20. [PMID: 23615279 DOI: 10.1242/dev.095653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cycle dysregulation leads to abnormal proliferation and cell death in a context-specific manner. Cell cycle progression driven via the Rb pathway forces neurons to undergo S-phase, resulting in cell death associated with the progression of neuronal degeneration. Nevertheless, some Rb- and Rb family (Rb, p107 and p130)-deficient differentiating neurons can proliferate and form tumors. Here, we found in mouse that differentiating cerebral cortical excitatory neurons underwent S-phase progression but not cell division after acute Rb family inactivation in differentiating neurons. However, the differentiating neurons underwent cell division and proliferated when Rb family members were inactivated in cortical progenitors. Differentiating neurons generated from Rb(-/-); p107(-/-); p130(-/-) (Rb-TKO) progenitors, but not acutely inactivated Rb-TKO differentiating neurons, activated the DNA double-strand break (DSB) repair pathway without increasing trimethylation at lysine 20 of histone H4 (H4K20), which has a role in protection against DNA damage. The activation of the DSB repair pathway was essential for the cell division of Rb-TKO differentiating neurons. These results suggest that newly born cortical neurons from progenitors become epigenetically protected from DNA damage and cell division in an Rb family-dependent manner.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
The retinoblastoma protein (Rb) family members are essential regulators of cell cycle progression, principally through regulation of the E2f transcription factors. Growing evidence indicates that abnormal cell cycle signals can participate in neuronal death. In this regard, the role of Rb (p105) itself has been controversial. Germline Rb deletion leads to massive neuronal loss, but initial reports argue that death is non-cell autonomous. To more definitively resolve this question, we generated acute murine knock-out models of Rb in terminally differentiated neurons in vitro and in vivo. Surprisingly, we report that acute inactivation of Rb in postmitotic neurons results in ectopic cell cycle protein expression and neuronal loss without concurrent induction of classical E2f-mediated apoptotic genes, such as Apaf1 or Puma. These results suggest that terminally differentiated neurons require Rb for continuous cell cycle repression and survival.
Collapse
|
26
|
Landman AS, Danielian PS, Lees JA. Loss of pRB and p107 disrupts cartilage development and promotes enchondroma formation. Oncogene 2012; 32:4798-805. [PMID: 23146901 DOI: 10.1038/onc.2012.496] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 01/20/2023]
Abstract
The pocket proteins pRB, p107 and p130 have established roles in regulating the cell cycle through the control of E2F activity. The pocket proteins regulate differentiation of a number of tissues in both cell cycle-dependent and -independent manners. Prior studies showed that mutation of p107 and p130 in the mouse leads to defects in cartilage development during endochondral ossification, the process by which long bones form. Despite evidence of a role for pRB in osteoblast differentiation, it is unknown whether it functions during cartilage development. Here, we show that mutation of Rb in the early mesenchyme of p107-mutant mice results in severe cartilage defects in the growth plates of long bones. This is attributable to inappropriate chondrocyte proliferation that persists after birth and leads to the formation of enchondromas in the growth plates as early as 8 weeks of age. Genetic crosses show that development of these tumorigenic lesions is E2f3 dependent. These results reveal an overlapping role for pRB and p107 in cartilage development, endochondral ossification and enchondroma formation that reflects their coordination of cell-cycle exit at appropriate developmental stages.
Collapse
Affiliation(s)
- A S Landman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
27
|
Abstract
Stem cells play a critical role during embryonic development and in the maintenance of homeostasis in adult individuals. A better understanding of stem cell biology, including embryonic and adult stem cells, will allow the scientific community to better comprehend a number of pathologies and possibly design novel approaches to treat patients with a variety of diseases. The retinoblastoma tumor suppressor RB controls the proliferation, differentiation, and survival of cells, and accumulating evidence points to a central role for RB activity in the biology of stem and progenitor cells. In some contexts, loss of RB function in stem or progenitor cells is a key event in the initiation of cancer and determines the subtype of cancer arising from these pluripotent cells by altering their fate. In other cases, RB inactivation is often not sufficient to initiate cancer but may still lead to some stem cell expansion, raising the possibility that strategies aimed at transiently inactivating RB might provide a novel way to expand functional stem cell populations. Future experiments dedicated to better understanding how RB and the RB pathway control a stem cell's decisions to divide, self-renew, or give rise to differentiated progeny may eventually increase our capacity to control these decisions to enhance regeneration or help prevent cancer development.
Collapse
Affiliation(s)
- Julien Sage
- Department of Pediatrics, Department of Genetics, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Institute, Stanford, California 94305, USA.
| |
Collapse
|
28
|
Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Moonen G, Malgrange B. Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis. Cell Mol Life Sci 2012; 69:1493-503. [PMID: 22068613 PMCID: PMC11114951 DOI: 10.1007/s00018-011-0880-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/10/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
Abstract
The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain.
Collapse
Affiliation(s)
- Pierre Beukelaers
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
- Present Address: Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Nicolas Caron
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Gustave Moonen
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
- Department of Neurology, C.H.U. Sart Tilman, B35, 4000 Liège, Belgium
| | - Brigitte Malgrange
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| |
Collapse
|
29
|
Helmbold H, Galderisi U, Bohn W. The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence. J Cell Physiol 2012; 227:508-13. [PMID: 21465484 DOI: 10.1002/jcp.22786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular senescence is a response to genotoxic stress that results in an irreversible cell cycle arrest. Activation of this pathway relies on the activity of the retinoblastoma proteins and proteins of the DNA damage response cascade. Here, we discuss the functional relevance of the switch from pRb/p105 to Rb2/p130 that becomes apparent when cells enter senescent arrest.
Collapse
Affiliation(s)
- Heike Helmbold
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
30
|
Mendrysa SM, Ghassemifar S, Malek R. p53 in the CNS: Perspectives on Development, Stem Cells, and Cancer. Genes Cancer 2011; 2:431-42. [PMID: 21779511 DOI: 10.1177/1947601911409736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The p53 tumor suppressor potently limits the growth of immature and mature neurons under conditions of cellular stress. Although loss of p53 function contributes to the pathogenesis of central nervous system (CNS) tumors, excessive p53 function is implicated in neural tube defects, embryonic lethality, and neuronal degeneration. Thus, p53 function must be tightly controlled. The anti-proliferative properties of p53 are mediated, in part, through the induction of apoptosis, cell cycle arrest, and senescence. Although there is still much to be learned about the role of p53 in these processes, recent evidence supports exciting new roles for p53 in a wide range of processes, including neural precursor cell self-renewal, differentiation, and cell fate decisions. Understanding the full repertoire of p53 function in CNS development and tumorigenesis may provide us with novel points of therapeutic intervention for human diseases of the CNS.
Collapse
Affiliation(s)
- Susan M Mendrysa
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
31
|
Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011; 25:1734-45. [PMID: 21816922 DOI: 10.1101/gad.17027411] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The miR-17~92 cluster is a potent microRNA-encoding oncogene. Here, we show that miR-17~92 synergizes with loss of Rb family members to promote retinoblastoma. We observed miR-17~92 genomic amplifications in murine retinoblastoma and high expression of miR-17~92 in human retinoblastoma. While miR-17~92 was dispensable for mouse retinal development, miR-17~92 overexpression, together with deletion of Rb and p107, led to rapid emergence of retinoblastoma with frequent metastasis to the brain. miR-17~92 oncogenic function in retinoblastoma was not mediated by a miR-19/PTEN axis toward apoptosis suppression, as found in lymphoma/leukemia models. Instead, miR-17~92 increased the proliferative capacity of Rb/p107-deficient retinal cells. We found that deletion of Rb family members led to compensatory up-regulation of the cyclin-dependent kinase inhibitor p21Cip1. miR-17~92 overexpression counteracted p21Cip1 up-regulation, promoted proliferation, and drove retinoblastoma formation. These results demonstrate that the oncogenic determinants of miR-17~92 are context-specific and provide new insights into miR-17~92 function as an RB-collaborating gene in cancer.
Collapse
Affiliation(s)
- Karina Conkrite
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW, Baker SJ. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 2011; 19:305-16. [PMID: 21397855 PMCID: PMC3060664 DOI: 10.1016/j.ccr.2011.01.039] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/23/2010] [Accepted: 01/10/2011] [Indexed: 12/26/2022]
Abstract
Mutations in the PTEN, TP53, and RB1 pathways are obligate events in the pathogenesis of human glioblastomas. We induced various combinations of deletions in these tumor suppressors in astrocytes and neural precursors in mature mice, resulting in astrocytomas ranging from grade III to grade IV (glioblastoma). There was selection for mutation of multiple genes within a pathway, shown by somatic amplifications of genes in the PI3K or Rb pathway in tumors in which Pten or Rb deletion was an initiating event. Despite multiple mutations within PI3K and Rb pathways, elevated Mapk activation was not consistent. Gene expression profiling revealed striking similarities to subclasses of human diffuse astrocytoma. Astrocytomas were found within and outside of proliferative niches in the adult brain.
Collapse
Affiliation(s)
- Lionel M.L. Chow
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Raelene Endersby
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Sherri Rankin
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Chunxu Qu
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Junyuan Zhang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Alberto Broniscer
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - David W. Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
33
|
Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA, Viatour P, Vogel H, Chang HY, Meissner A, Sage J. G1 arrest and differentiation can occur independently of Rb family function. ACTA ACUST UNITED AC 2010; 191:809-25. [PMID: 21059851 PMCID: PMC2983066 DOI: 10.1083/jcb.201003048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of E2F target genes is required for cell cycle arrest in Rb family (Rb, p107, and p130)-deficient cells. The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dual loss of rb1 and Trp53 in the adrenal medulla leads to spontaneous pheochromocytoma. Neoplasia 2010; 12:235-43. [PMID: 20234817 DOI: 10.1593/neo.91646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 12/12/2022] Open
Abstract
Using a Cre/loxP system, we have determined the phenotypic consequences attributable to in vivo deletion of both Rb1 and Trp53 in the mouse adrenal medulla. The coablation of these two tumor suppressor genes during embryogenesis did not disrupt adrenal gland development but resulted in the neoplastic transformation of the neural crest-derived adrenal medulla, yielding pheochromocytomas (PCCs) that developed with complete penetrance and were inevitably bilateral. Despite their typically benign status, these PCCs had profound ramifications on mouse vitality, with effected mice having a median survival of only 121 days. Evaluation of these PCCs by both immunohistochemistry and electron microscopy revealed that most Rb1(-/-):Trp53(-/-) chromaffin cells possessed atypical chromagenic vesicles that did not seem capable of appropriately storing synthesized catecholamines. The structural remodeling of the heart in mice harboring Rb1(-/-):Trp53(-/-) PCCs suggests that the mortality of these mice may be attributable to the inappropriate release of catecholamines from the mutated adrenal chromaffin cells. On the basis of the collective data from Rb1 and Trp53 knockout mouse models, it seems that the conversion of Rb1 loss-driven adrenal medulla hyperplasia to PCC can be greatly enhanced by the compound loss of Trp53, whereas the loss of Trp53 alone is generally ineffectual on adrenal chromaffin cell homeostasis. Consequently, the Trp53 tumor suppressor gene is an efficient genetic modifier of Rb1 loss in the development of PCC, and their compound loss in the adrenal medulla has a profound impact on both cellular homeostasis and animal vitality.
Collapse
|
35
|
Swiss VA, Casaccia P. Cell-context specific role of the E2F/Rb pathway in development and disease. Glia 2010; 58:377-90. [PMID: 19795505 DOI: 10.1002/glia.20933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of the central nervous system (CNS) requires the generation of neuronal and glial cell subtypes in appropriate numbers, and this demands the careful coordination of cell-cycle exit, survival, and differentiation. The E2F/Rb pathway is critical for cell-cycle regulation and also modulates survival and differentiation of distinct cell types in the developing and adult CNS. In this review, we first present the specific temporal patterns of expression of the E2F and Rb family members during CNS development and then discuss the genetic ablation of single or multiple members of these two families. Overall, the available data suggest a time-dependent and cell-context specific role of E2F and Rb family members in the developing and adult CNS.
Collapse
Affiliation(s)
- Victoria A Swiss
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
36
|
The p107/E2F pathway regulates fibroblast growth factor 2 responsiveness in neural precursor cells. Mol Cell Biol 2009; 29:4701-13. [PMID: 19564414 DOI: 10.1128/mcb.01767-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that p107, a member of the retinoblastoma (Rb) cell cycle regulatory family, has a unique function in regulating the pool of neural precursor cells. As the pool of progenitors is regulated by a limiting supply of trophic factors, we asked if the Rb/E2F pathway may control the size of the progenitor population by regulating the levels of growth factors or their receptors. Here, we demonstrate that fibroblast growth factor 2 (FGF2) is aberrantly upregulated in the brains of animals lacking Rb family proteins and that the gene encoding the FGF2 ligand is directly regulated by p107 and E2F3. Chromatin immunoprecipitation assays demonstrated that E2F3 and p107 occupy E2F consensus sites on the FGF2 promoter in the context of native chromatin. To evaluate the physiological consequence of FGF2 deregulation in both p107 and E2F3 mutants, we measured neural progenitor responsiveness to growth factors. Our results demonstrate that E2F3 and p107 are each mediators of FGF2 growth factor responsiveness in neural progenitor cells. These results support a model whereby p107 regulates the pool of FGF-responsive progenitors by directly regulating FGF2 gene expression in vivo. By identifying novel roles for p107/E2F in regulating genes outside of the classical cell cycle machinery targets, we uncover a new mechanism whereby Rb/E2F mediates proliferation through regulating growth factor responsiveness.
Collapse
|
37
|
Lee EY, Yuan TL, Danielian PS, West JC, Lees JA. E2F4 cooperates with pRB in the development of extra-embryonic tissues. Dev Biol 2009; 332:104-15. [PMID: 19433082 DOI: 10.1016/j.ydbio.2009.05.541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/09/2009] [Accepted: 05/04/2009] [Indexed: 12/20/2022]
Abstract
The retinoblastoma gene, RB-1, was the first identified tumor suppressor. Rb(-/-) mice die in mid-gestation with defects in proliferation, differentiation and apoptosis. The activating E2F transcription factors, E2F1-3, contribute to these embryonic defects, indicating that they are key downstream targets of the retinoblastoma protein, pRB. E2F4 is the major pRB-associated E2F in vivo, yet its role in Rb(-/-) embryos is unknown. Here we establish that E2f4 deficiency reduced the lifespan of Rb(-/-) embryos by exacerbating the Rb mutant placental defect. We further show that this reflects the accumulation of trophectoderm-like cells in both Rb and Rb;E2f4 mutant placentas. Thus, Rb and E2f4 play cooperative roles in placental development. We used a conditional mouse model to allow Rb(-/-);E2f4(-/-) embryos to develop in the presence of Rb wild-type placentas. Under these conditions, Rb(-/-);E2f4(-/-) mutants survived to birth. These Rb(-/-);E2f4(-/-) embryos exhibited all of the defects characteristic of the Rb and E2f4 single mutants and had no novel defects. Taken together, our data show that pRB and E2F4 cooperate in placental development, but play largely non-overlapping roles in the development of many embryonic tissues.
Collapse
Affiliation(s)
- Eunice Y Lee
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
38
|
Cell Cycle Activation and CNS Injury. Neurotox Res 2009; 16:221-37. [PMID: 19526282 DOI: 10.1007/s12640-009-9050-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/28/2022]
|
39
|
Ianari A, Natale T, Calo E, Ferretti E, Alesse E, Screpanti I, Haigis K, Gulino A, Lees JA. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell 2009; 15:184-94. [PMID: 19249677 PMCID: PMC2880703 DOI: 10.1016/j.ccr.2009.01.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/03/2008] [Accepted: 01/26/2009] [Indexed: 12/25/2022]
Abstract
The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell-cycle genes. E2F1 can also activate proapoptotic genes in response to genotoxic or oncogenic stress. However, pRB's role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promote formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to proapoptotic promoters that are transcriptionally active, and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress.
Collapse
Affiliation(s)
- Alessandra Ianari
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Tiziana Natale
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Eliezer Calo
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Elisabetta Ferretti
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Edoardo Alesse
- Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
| | - Kevin Haigis
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, MA 02129
| | - Alberto Gulino
- Department of Experimental Medicine, La Sapienza University of Rome, 00161 Rome, Italy
- Neuromed Institute, 86077 Pozzilli, Italy
- Corresponding authors: (A.G.) Department of Experimental Medicine and Pathology, La Sapienza, University of Rome, Viale Regina Elena 324, Rome, Italy 00161, Tel. (39 06) 446 4021, . (J.A.L.) MIT Koch Institute, E17-517B, 40 Ames St., Cambridge, MA 02139, (617) 252 1972,
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
- Corresponding authors: (A.G.) Department of Experimental Medicine and Pathology, La Sapienza, University of Rome, Viale Regina Elena 324, Rome, Italy 00161, Tel. (39 06) 446 4021, . (J.A.L.) MIT Koch Institute, E17-517B, 40 Ames St., Cambridge, MA 02139, (617) 252 1972,
| |
Collapse
|
40
|
|
41
|
Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, Levi D, Gaetani P, Tunici P, Finocchiaro G, Baena RRY, Capra M, Helin K. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med 2009; 13:136-46. [PMID: 18363832 PMCID: PMC3823042 DOI: 10.1111/j.1582-4934.2008.00307.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 03/05/2008] [Indexed: 01/07/2023] Open
Abstract
Abstract Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically up-regulated in glioma and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally, we show that ectopic expression of HEY1 induces cell proliferation in neural stem cells, while depletion of HEY1 by RNA interference reduces proliferation of glioblastoma cells in tissue culture. Together, these data imply a role for HEY1 in the progression of GBM, and therefore we propose that HEY1 may be a therapeutic target for glioblastoma patients. Moreover, HEY1 may represent a molecular marker to distinguish GBM patients with a longer survival prognosis from those at high risk.
Collapse
Affiliation(s)
| | - Micaela Quarto
- The FIRC Institute for Molecular Oncology, Via Adamello, Milan, Italy
| | | | | | - Elena Colli
- European Institute of Oncology, Via Ripamonti, Milan, Italy
| | - Johan M Kros
- Department of Pathology, ErasmusMC, Dr Molenwaterplein, Rotterdam, The Netherlands
| | - Daniel Levi
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Paolo Gaetani
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Patrizia Tunici
- Istituto Nazionale Neurologico C. Besta, Department of Experimental Neuro-oncology and diagnostics, Via Celoria, Milan, Italy
| | - Gaetano Finocchiaro
- Istituto Nazionale Neurologico C. Besta, Department of Experimental Neuro-oncology and diagnostics, Via Celoria, Milan, Italy
| | | | - Maria Capra
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Kristian Helin
- European Institute of Oncology, Via Ripamonti, Milan, Italy
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej, Copenhagen, Denmark
| |
Collapse
|
42
|
Yamanaka S, Zahanich I, Wersto RP, Boheler KR. Enhanced proliferation of monolayer cultures of embryonic stem (ES) cell-derived cardiomyocytes following acute loss of retinoblastoma. PLoS One 2008; 3:e3896. [PMID: 19066628 PMCID: PMC2588539 DOI: 10.1371/journal.pone.0003896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/14/2008] [Indexed: 12/14/2022] Open
Abstract
Background Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are >98% pure, and at least 85% of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint and maturation of heart cells. We conclude that this in vitro model will facilitate the analysis of cell cycle control mechanisms of CMs.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Ihor Zahanich
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Robert P. Wersto
- Resource Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Liem DA, Zhao P, Angelis E, Chan SS, Zhang J, Wang G, Berthet C, Kaldis P, Ping P, MacLellan WR. Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2008; 45:610-6. [PMID: 18692063 PMCID: PMC2603425 DOI: 10.1016/j.yjmcc.2008.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 01/22/2023]
Abstract
Ischemia/reperfusion (I/R) injury to the heart is accompanied by the upregulation and posttranslational modification of a number of proteins normally involved in regulating cell cycle progression. Two such proteins, cyclin-dependent kinase-2 (Cdk2) and its downstream target, the retinoblastoma gene product (Rb), also play a critical role in the control of apoptosis. Myocardial ischemia activates Cdk2, resulting in the phosphorylation and inactivation of Rb. Blocking Cdk2 activity reduces apoptosis in cultured cardiac myocytes. Genetic or pharmacological inhibition of Cdk2 activity in vivo during I/R injury led to a 36% reduction in infarct size (IFS), when compared to control mice, associated with a reduction in apoptotic myocytes. To confirm that Rb was the critical target in Cdk2-mediated I/R injury, we determined the consequences of I/R injury in cardiac-specific Rb-deficient mice (CRb(L/L)). IFS was increased 140% in CRb(L/L) mice compared to CRb+/+ controls. TUNEL positive nuclei and caspase-3 activity were augmented by 92% and 36%, respectively, following injury in the CRb(L/L) mice demonstrating that loss of Rb in the heart significantly exacerbates I/R injury. These data suggest that Cdk2 signaling pathways are critical regulators of cardiac I/R injury in vivo and support a cardioprotective role for Rb.
Collapse
Affiliation(s)
- David A. Liem
- The Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Peng Zhao
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Ekaterini Angelis
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Shing S. Chan
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Jun Zhang
- The Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Guangwu Wang
- The Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Cyril Berthet
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Philipp Kaldis
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Peipei Ping
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
- The Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - W. Robb MacLellan
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
- The Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| |
Collapse
|
44
|
Walkley CR, Sankaran VG, Orkin SH. Rb and hematopoiesis: stem cells to anemia. Cell Div 2008; 3:13. [PMID: 18775080 PMCID: PMC2562376 DOI: 10.1186/1747-1028-3-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
The retinoblastoma protein, Rb, was one of the first tumor suppressor genes identified as a result of the familial syndrome retinoblastoma. In the period since its identification and cloning a large number of studies have described its role in various cellular processes. The application of conditional somatic mutation with lineage and temporally controlled gene deletion strategies, thus circumventing the lethality associated with germ-line deletion of Rb, have allowed for a reanalysis of the in vivo role of Rb. In the hematopoietic system, such approaches have led to new insights into stem cell biology and the role of the microenvironment in regulating hematopoietic stem cell fate. They have also clarified the role that Rb plays during erythropoiesis and defined a novel mechanism linking mitochondrial function to terminal cell cycle withdrawal. These studies have shed light on the in vivo role of Rb in the regulation of hematopoiesis and also prompt further analysis of the role that Rb plays in both the regulation of hematopoietic stem cells and the terminal differentiation of their progeny.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,St. Vincent's Institute, Department of Medicine at St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
45
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
46
|
Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, Rodda SJ, Snay E, Dunning P, Fahey FH, Alt FW, McMahon AP, Orkin SH. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22:1662-76. [PMID: 18559481 DOI: 10.1101/gad.1656808] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone. Analysis of familial cancer syndromes and sporadic cases has strongly implicated both p53 and pRb in its pathogenesis; however, the relative contribution of these mutations to the initiation of osteosarcoma is unclear. We describe here the generation and characterization of a genetically engineered mouse model in which all animals develop short latency malignant osteosarcoma. The genetically engineered mouse model is based on osteoblast-restricted deletion of p53 and pRb. Osteosarcoma development is dependent on loss of p53 and potentiated by loss of pRb, revealing a dominance of p53 mutation in the development of osteosarcoma. The model reproduces many of the defining features of human osteosarcoma including cytogenetic complexity and comparable gene expression signatures, histology, and metastatic behavior. Using a novel in silico methodology termed cytogenetic region enrichment analysis, we demonstrate high conservation of gene expression changes between murine osteosarcoma and known cytogentically rearranged loci from human osteosarcoma. Due to the strong similarity between murine osteosarcoma and human osteosarcoma in this model, this should provide a valuable platform for addressing the molecular genetics of osteosarcoma and for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The DNA-dependent protein kinase (DNA-PK) is central to the process of nonhomologous end joining because it recognizes and then binds double strand breaks initiating repair. It has long been appreciated that DNA-PK protects DNA ends to promote end joining. Here we review recent work from our laboratories and others demonstrating that DNA-PK can regulate end access both positively and negatively. This is accomplished via distinct autophosphorylation events that result in opposing effects on DNA end access. Additional autophosphorylations that are both physically and functionally distinct serve to regulate kinase activity and complex dissociation. Finally, DNA-PK both positively and negatively regulates DNA end access to repair via the homologous recombination pathway. This has particularly important implications in human cells because of DNA-PK's cellular abundance.
Collapse
Affiliation(s)
- Katheryn Meek
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
48
|
Abstract
Neurons are highly differentiated cells that normally never enter a cell cycle; if they do, the result is usually death, not division. For example, cerebellar granule neurons in staggerer and lurcher mutant mice initiate a cell cycle-like process just before they die. E2F1 is a transcription factor that promotes cell cycle progression. Because E2F1 is also involved in apoptosis, we bred double mutants (E2f1-/-; staggerer and E2f1-/-; lurcher) to assess its role in the cell cycle-related death of cerebellar granule cells in vivo. We found neither granule cell cycle initiation nor cell death was significantly altered in either double mutant. However, after postnatal day 10, neurons throughout the CNS of E2f1-/- and E2f1+/- animals were found to express cell cycle proteins and replicate their DNA. Whereas Map2 and synapsin1 staining are little altered, there is a reduction of calbindin in Purkinje cell dendrites at 1 year of age, suggesting that the mutant cells also undergo a slow, subtle atrophy. These events are cell autonomous, because cultured E2f1-/- cortical neurons "cycle" in vitro, whereas wild-type neurons do not. Our results suggest that, in mature CNS neurons, E2F1 functions as a cell cycle suppressor.
Collapse
|
49
|
Zhu X, Siedlak SL, Wang Y, Perry G, Castellani RJ, Cohen ML, Smith MA. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol Appl Neurobiol 2007; 34:457-65. [PMID: 17995921 DOI: 10.1111/j.1365-2990.2007.00908.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The literature and teachings instruct that neurones in the adult brain are fully differentiated, quiescent cells that never divide. Somewhat surprisingly, and counter to such dogma, susceptible neurones in Alzheimer disease display an activated cell cycle phenotype. However, whether this leads to a coordinated procession through the cell cycle is unclear, particularly whether neurones enter anaphase and beyond. To begin to address this issue, in this study we sought to determine whether nuclear division occurs in these neurones. METHODS We examined a series of 101 archived, routinely stained hippocampal sections collected at post mortem for neuropathological evaluation for evidence of neuronal binucleation. RESULTS We report for the first time, binucleated neurones within the hippocampus in cases of Alzheimer disease but not in control cases (P < 0.05). CONCLUSIONS While a relatively rare event, occurring once every 20,000 neurones, this morphological evidence that neuronal cells within the cortical regions of the adult human brain in Alzheimer disease contain two nuclei supports the hypothesis that neuronal cells can re-enter into a coordinated cell cycle that culminates in nuclear division.
Collapse
Affiliation(s)
- X Zhu
- Department of Pathology, Case Western Reserve University, Cleveland 44106, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27:6229-42. [PMID: 17576813 PMCID: PMC1952167 DOI: 10.1128/mcb.02246-06] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/29/2006] [Accepted: 06/10/2007] [Indexed: 12/18/2022] Open
Abstract
Hypoxia and nutrient deprivation are environmental stresses governing the survival and adaptation of tumor cells in vivo. We have identified a novel role for the Rb tumor suppressor in protecting against nonapoptotic cell death in the developing mouse fetal liver, in primary mouse embryonic fibroblasts, and in tumor cell lines. Loss of pRb resulted in derepression of BNip3, a hypoxia-inducible member of the Bcl-2 superfamily of cell death regulators. We identified BNIP3 as a direct target of pRB/E2F-mediated transcriptional repression and showed that pRB attenuates the induction of BNIP3 by hypoxia-inducible factor to prevent autophagic cell death. BNIP3 was essential for hypoxia-induced autophagy, and its ability to promote autophagosome formation was enhanced under conditions of nutrient deprivation. Knockdown of BNIP3 reduced cell death, and remaining deaths were necrotic in nature. These studies identify BNIP3 as a key regulator of hypoxia-induced autophagy and suggest a novel role for the RB tumor suppressor in preventing nonapoptotic cell death by limiting the extent of BNIP3 induction in cells.
Collapse
Affiliation(s)
- Kristin Tracy
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th St., Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|