1
|
Zhang A, Qu W, Guan P, Li Y, Liu Z. Single Living Cell "Observation-Analysis" Integrated Platform Decodes Cell Migration Plasticity Orchestrated by Nucleocytoplasmic STAT3. NANO LETTERS 2024; 24:8361-8368. [PMID: 38940365 DOI: 10.1021/acs.nanolett.4c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cell migration requires the interplay among diverse migration patterns. The molecular basis of distinct migration programs is undoubtedly vital but not fully explored. Meanwhile, the lack of tools for investigating spontaneous migratory plasticity in a single living cell also adds to the hindrance. Here, we developed a micro/nanotechnology-enabled single-cell analytical platform to achieve coherent monitoring of spontaneous migratory pattern and signaling molecules. Via the platform, we unveiled a previously unappreciated STAT3 regionalization on the multifunctional regulations of migration. Specifically, nuclear STAT3 is associated with amoeboid migration, while cytoplasmic STAT3 promotes mesenchymal movement. Opposing effects of JAK2 multisite phosphorylation shape its response to STAT3 distribution in a dynamic and antagonistic manner, eventually triggering a reversible amoeboid-mesenchymal transition. Based on the above results, bioinformatics further revealed a possible downstream regulator of nucleocytoplasmic STAT3. Thus, our platform, as an exciting technological advance in single-cell migration research, can provide in-depth mechanism interpretations of tumor metastasis and progression.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wanting Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
2
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
3
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
4
|
Glykofridis IE, Henneman AA, Balk JA, Goeij-de Haas R, Westland D, Piersma SR, Knol JC, Pham TV, Boekhout M, Zwartkruis FJT, Wolthuis RMF, Jimenez CR. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics 2022; 21:100263. [PMID: 35863698 PMCID: PMC9421328 DOI: 10.1016/j.mcpro.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/26/2022] Open
Abstract
In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114 and Ser122, which may be caused by fact that FLCNNEG cells experience oxidative stress. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alex A Henneman
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Richard Goeij-de Haas
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Michiel Boekhout
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Hu M, Yang T, Yang L, Niu L, Zhu J, Zhao A, Shi M, Yuan X, Tang M, Yang J, Pei H, Yang Z, Chen Q, Ye H, Niu T, Chen L. Preclinical studies of Flonoltinib Maleate, a novel JAK2/FLT3 inhibitor, in treatment of JAK2 V617F-induced myeloproliferative neoplasms. Blood Cancer J 2022; 12:37. [PMID: 35256594 PMCID: PMC8901636 DOI: 10.1038/s41408-022-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.
Collapse
Affiliation(s)
- Mengshi Hu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jinbing Zhu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ailin Zhao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
6
|
Gou P, Zhang W, Giraudier S. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:ijms23031013. [PMID: 35162937 PMCID: PMC8835324 DOI: 10.3390/ijms23031013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of blood cancers in which the bone marrow (BM) produces an overabundance of erythrocyte, white blood cells, or platelets. Philadelphia chromosome-negative MPN has three subtypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The over proliferation of blood cells is often associated with somatic mutations, such as JAK2, CALR, and MPL. JAK2V617F is present in 95% of PV and 50–60% of ET and PMF. Based on current molecular dynamics simulations of full JAK2 and the crystal structure of individual domains, it suggests that JAK2 maintains basal activity through self-inhibition, whereas other domains and linkers directly/indirectly enhance this self-inhibited state. Nevertheless, the JAK2V617F mutation is not the only determinant of MPN phenotype, as many normal individuals carry the JAK2V617F mutation without a disease phenotype. Here we review the major MPN phenotypes, JAK-STAT pathways, and mechanisms of development based on structural biology, while also describing the impact of other contributing factors such as gene mutation allele burden, JAK-STAT-related signaling pathways, epigenetic modifications, immune responses, and lifestyle on different MPN phenotypes. The cross-linking of these elements constitutes a complex network of interactions and generates differences in individual and cellular contexts that determine the phenotypic development of MPN.
Collapse
Affiliation(s)
- Panhong Gou
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| | - Wenchao Zhang
- BFA, UMR 8251, CNRS, Université de Paris, 75013 Paris, France;
| | - Stephane Giraudier
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| |
Collapse
|
7
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
8
|
Wu S, Luo P, Yu Y, Xiong B, Wang Y, Zuo X. Next-generation sequencing redefines the diagnosis of triple-negative myeloproliferative neoplasms. Ann Hematol 2021; 101:705-708. [PMID: 34518917 DOI: 10.1007/s00277-021-04561-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Yalan Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China.
| |
Collapse
|
9
|
JAK2S523L, a novel gain-of-function mutation in a critical autoregulatory residue in JAK2V617F- MPNs. Blood Adv 2021; 4:4554-4559. [PMID: 32956452 DOI: 10.1182/bloodadvances.2019001283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The SH2-JH2 linker domain of JAK2 has been implicated in the negative regulation of JAK2 activity. In 2 patients with myeloproliferative neoplasms (MPNs), we identified and characterized the novel JAK2 mutation S523L, which occurs in a key residue in the linker region. In 1 case, acquisition of JAK2S523L was associated with thrombocytosis and bone marrow megakaryocytic hyperplasia, and there were no other somatic alterations in this patient. The second patient with JAK2S523Lmutation presented with increased hematocrit and had concurrent mutations in RUNX1 and BCORL1. Consistent with the genetic and clinical data, expression of JAK2S523L causes interleukin-3-independent growth in Ba/F3 cells transduced with the erythropoietin receptor by constitutively active Jak2/Stat5 signaling.
Collapse
|
10
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
11
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
12
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
13
|
|
14
|
Zehender A, Huang J, Györfi AH, Matei AE, Trinh-Minh T, Xu X, Li YN, Chen CW, Lin J, Dees C, Beyer C, Gelse K, Zhang ZY, Bergmann C, Ramming A, Birchmeier W, Distler O, Schett G, Distler JHW. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun 2018; 9:3259. [PMID: 30108215 PMCID: PMC6092362 DOI: 10.1038/s41467-018-05768-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Uncontrolled activation of TGFβ signaling is a common denominator of fibrotic tissue remodeling. Here we characterize the tyrosine phosphatase SHP2 as a molecular checkpoint for TGFβ-induced JAK2/STAT3 signaling and as a potential target for the treatment of fibrosis. TGFβ stimulates the phosphatase activity of SHP2, although this effect is in part counterbalanced by inhibitory effects on SHP2 expression. Stimulation with TGFβ promotes recruitment of SHP2 to JAK2 in fibroblasts with subsequent dephosphorylation of JAK2 at Y570 and activation of STAT3. The effects of SHP2 on STAT3 activation translate into major regulatory effects of SHP2 on fibroblast activation and tissue fibrosis. Genetic or pharmacologic inactivation of SHP2 promotes accumulation of JAK2 phosphorylated at Y570, reduces JAK2/STAT3 signaling, inhibits TGFβ-induced fibroblast activation and ameliorates dermal and pulmonary fibrosis. Given the availability of potent SHP2 inhibitors, SHP2 might thus be a potential target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Xiaohan Xu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jianping Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive Indiana, West Lafayette, 47907, USA
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive Indiana, West Lafayette, 47907, USA
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
15
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
16
|
Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, Yao J, Mangala LS, Li C, Yang W, Park PK, Hawke DH, Zhou J, Zhou Y, Xia W, Hung MC, Marks JR, Gallick GE, Lopez-Berestein G, Flores ER, Sood AK, Huang S, Yu D, Yang L, Lin C. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Invest 2017; 127:4498-4515. [PMID: 29130936 DOI: 10.1172/jci91553] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M- and IL-6-triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular Cell Biology and Toxicology, School of Public Health.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, and.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuedong Yang
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenhao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David H Hawke
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health
| | - Yan Zhou
- Department of Oncology, Yixing People's Hospital, Yixing, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine and.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Liu CS, Yang-Yen HF, Suen CS, Hwang MJ, Yen JJY. Cbl-mediated K63-linked ubiquitination of JAK2 enhances JAK2 phosphorylation and signal transduction. Sci Rep 2017; 7:4613. [PMID: 28676638 PMCID: PMC5496907 DOI: 10.1038/s41598-017-04078-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
JAK2 activation is crucial for cytokine receptor signal transduction and leukemogenesis. However, the underlying processes that lead to full activation of JAK2 are unclear. Here, we report a positive role for ubiquitination of JAK2 during GM-CSF-induced activation. Upon GM-CSF stimulation, JAK2 ubiquitination is significantly enhanced through K63-linked poly-ubiquitination. Studies employing both knockout and overexpression of Cbl, an E3 ubiquitin ligase, led to the conclusion that Cbl specifically promotes JAK2 ubiquitination, and this was further confirmed in vitro using a Cbl ubiquitination assay. Moreover, following GM-CSF stimulation, the levels of phospho-JAK2 and -STAT5 and a STAT5 luciferase reporter assay were all reduced in Cbl knockout cells and this effect could be rescued by Cbl expression. Mechanistically, Cbl can interact with, and ubiquitinate JAK2 FERM and kinase domains via the Cbl TKB domain. Using lysine-to-arginine site-directed mutagenesis, K970 in the kinase domain of JAK2 was identified as the ubiquitination site important for promoting full JAK2 activation by Cbl via K63-conjugated poly-ubiquitination. Our study suggests that GM-CSF-induced JAK2 activation is enhanced by Cbl-mediated ubiquitination of JAK2. Targeting ubiquitination of JAK2 might offer a novel therapeutic strategy against JAK2-mediated disorders.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Jeffrey Jong-Young Yen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
18
|
Hubbard SR. Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne) 2017; 8:361. [PMID: 29379470 PMCID: PMC5770812 DOI: 10.3389/fendo.2017.00361] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
Collapse
Affiliation(s)
- Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
- *Correspondence: Stevan R. Hubbard,
| |
Collapse
|
19
|
Ndiaye K, Castonguay A, Benoit G, Silversides DW, Lussier JG. Differential regulation of Janus kinase 3 (JAK3) in bovine preovulatory follicles and identification of JAK3 interacting proteins in granulosa cells. J Ovarian Res 2016; 9:71. [PMID: 27793176 PMCID: PMC5086056 DOI: 10.1186/s13048-016-0280-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 11/11/2022] Open
Abstract
Background Janus kinase 3 (JAK3) is a member of the membrane-associated non-receptor tyrosine kinase protein family and is considered predominantly expressed in hematopoietic cells. We previously identified JAK3 as a differentially expressed gene in granulosa cells (GC) of bovine preovulatory follicles. The present study aimed to further investigate JAK3 regulation, to identify protein binding partners and better understand its mode of action in bovine reproductive cells. Results GC were obtained from small follicles (SF), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 h following hCG injection (OF). RT-PCR analyses showed greatest expression of JAK3 in GC of DF, while JAK3 expression was downregulated in OF (P < 0.0001). In addition, there was a 5- and 20-fold reduction of JAK3 steady-state mRNA levels in follicular walls, respectively at 12 and 24 hours post-hCG as compared to 0 h (P < 0.05). Similarly, JAK3 expression was downregulated by the endogenous LH surge. These results were confirmed in western blot analysis showing weakest JAK3 protein amounts in OF as compared to DF. Yeast two-hybrid screening of a DF-cDNA library resulted in the identification of JAK3 partners in GC that were confirmed by co-immunoprecipitation and included leptin receptor overlapping transcript-like 1 (LEPROTL1), inhibin beta A (INHBA) and cyclin-dependent kinase inhibitor 1B (CDKN1B). In functional studies using bovine endometrial cells, JAK3 increased phosphorylation of STAT3 and cell viability, while the addition of JANEX-1 inhibited JAK3 actions. Conclusion These results support a physiologically relevant role of JAK3 in follicular development and provide insights into the mode of action and function of JAK3 in reproductive tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0280-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalidou Ndiaye
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada. .,Faculté de médecine vétérinaire, Département de biomédecine vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Amélie Castonguay
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Gabriel Benoit
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - David W Silversides
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Jacques G Lussier
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
20
|
Bahar B, Barton K, Kini AR. The role of the Exon 13 G571S JAK2 mutation in myeloproliferative neoplasms. Leuk Res Rep 2016; 6:27-28. [PMID: 27924280 PMCID: PMC5128013 DOI: 10.1016/j.lrr.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/24/2016] [Indexed: 12/30/2022] Open
Abstract
The exon 14 JAK2 V617F mutation has been well established as a driver mutation in polycythemia vera (PV) and other myeloproliferative neoplasms. JAK2 exon 12 mutations have also been implicated in PV, although patients with these mutations may show isolated erythrocytosis. Recently additional JAK2point mutations have been described-all in regions encoding the pseudokinase domain that regulates the tyrosine kinase activity of JAK2. We present a case of a patient with erythrocytosis and an exon 13 G571S mutation, and discuss the putative role of this mutation in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Burak Bahar
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Barton
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Ameet R Kini
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
21
|
Panovska-Stavridis I, Eftimov A, Ivanovski M, Pivkova-Veljanovska A, Cevreska L, Hermouet S, Dimovski AJ. Essential Thrombocythemia Associated With Germline JAK2 G571S Variant and Somatic CALR Type 1 Mutation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:e55-7. [PMID: 27009537 DOI: 10.1016/j.clml.2016.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Irina Panovska-Stavridis
- University Clinic of Hematology, Medical Faculty, University St. Cyril and Methodius, Skopje, Republic of Macedonia.
| | - Aleksandar Eftimov
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University St. Cyril and Methodius, Skopje, Republic of Macedonia
| | - Martin Ivanovski
- University Clinic of Hematology, Medical Faculty, University St. Cyril and Methodius, Skopje, Republic of Macedonia
| | | | - Lidija Cevreska
- University Clinic of Hematology, Medical Faculty, University St. Cyril and Methodius, Skopje, Republic of Macedonia
| | - Sylvie Hermouet
- Institut National de la Santé et de la Recherche Médicale UMR892/CNRS UMR6299, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - Aleksandar J Dimovski
- Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, University St. Cyril and Methodius, Skopje, Republic of Macedonia
| |
Collapse
|
22
|
Alghasham N, Alnouri Y, Abalkhail H, Khalil S. Detection of mutations inJAK2exons 12-15 by Sanger sequencing. Int J Lab Hematol 2015; 38:34-41. [DOI: 10.1111/ijlh.12425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Affiliation(s)
- N. Alghasham
- Pathology Department; College of Medicine; Qassim University; Buraidah Saudi Arabia
| | - Y. Alnouri
- Regional Lab and Blood Bank; King Saud Medical City; Riyadh Saudi Arabia
| | - H. Abalkhail
- Department of Pathology and Laboratory Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - S. Khalil
- Department of Pathology and Laboratory Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| |
Collapse
|
23
|
Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds. J DAIRY RES 2015; 82:287-92. [PMID: 26119533 DOI: 10.1017/s0022029915000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to the main components of the somatotrophic axis (GH/GHR/IGF-I/IGF-IR), great importance in the control of growth and development is also attached to the Janus kinase 2 (JAK2) pathway. Induced by the GH/GHR complex, JAK2 activates signal transducer and activator of transcription 5 (STAT5), and in consequence, may be involved in the regulation of expression of insulin-like growth factor I (IGF-I) in the mammary gland. Silent mutation (rs110298451) has been identified within exon 20 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 904 individuals of four dairy or dual-purpose breeds (Polish Holstein-Friesian, Montbeliarde, Simmental and Jersey) were genotyped. A genotypic imbalance in the populations was observed. In the case of dual-purpose breeds (Montbeliarde and Simmental), the frequencies of both alleles were almost equal. In contrary, the JAK2G allele was predominant in the Polish Holstein-Friesian breed while JAK2A allele in Jersey. A pronounced relationship between JAK2/RsaI polymorphism and milk production traits was found where, irrespective of breed and lactation order, the GG genotype was significantly associated with higher milk, protein and fat yields, as compared to the AA genotype. Heterozygous individuals were generally characterised by intermediate values of the analysed milk traits. It can be argued that the JAK2 gene polymorphism is a potential marker for milk production traits. However, due to the fact that rs110298451 SNP does not directly affect amino acid sequence, other association studies involving missense mutation should also be performed.
Collapse
|
24
|
Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125:3388-92. [PMID: 25824690 DOI: 10.1182/blood-2015-01-621110] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023] Open
Abstract
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
Collapse
|
25
|
Abstract
The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.
Collapse
|
26
|
Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H, Yamashita K, Silvennoinen O, Shaw DE, Hubbard SR. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol 2014; 21:579-84. [PMID: 24918548 DOI: 10.1038/nsmb.2849] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
Collapse
Affiliation(s)
- Yibing Shan
- 1] D. E. Shaw Research, New York, New York, USA. [2]
| | - Kavitha Gnanasambandan
- 1] Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA. [2]
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eric T Kim
- D. E. Shaw Research, New York, New York, USA
| | - Henrik Hammarén
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kazuo Yamashita
- Systems Immunology Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - David E Shaw
- 1] D. E. Shaw Research, New York, New York, USA. [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Varghese LN, Ungureanu D, Liau NPD, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochem J 2014; 458:395-405. [PMID: 24354892 PMCID: PMC4085142 DOI: 10.1042/bj20131516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
JAK2 (Janus kinase 2) initiates the intracellular signalling cascade downstream of cell surface receptor activation by cognate haemopoietic cytokines, including erythropoietin and thrombopoietin. The pseudokinase domain (JH2) of JAK2 negatively regulates the catalytic activity of the adjacent tyrosine kinase domain (JH1) and mutations within the pseudokinase domain underlie human myeloproliferative neoplasms, including polycythaemia vera and essential thrombocytosis. To date, the mechanism of JH2-mediated inhibition of JH1 kinase activation as well as the susceptibility of pathological mutant JAK2 to inhibition by the physiological negative regulator SOCS3 (suppressor of cytokine signalling 3) have remained unclear. In the present study, using recombinant purified JAK2JH1-JH2 proteins, we demonstrate that, when activated, wild-type and myeloproliferative neoplasm-associated mutants of JAK2 exhibit comparable enzymatic activity and inhibition by SOCS3 in in vitro kinase assays. SAXS (small-angle X-ray scattering) showed that JAK2JH1-JH2 exists in an elongated configuration in solution with no evidence for interaction between JH1 and JH2 domains in cis. Collectively, these data are consistent with a model in which JAK2's pseudokinase domain does not influence the activity of JAK2 once it has been activated. Our data indicate that, in the absence of the N-terminal FERM domain and thus cytokine receptor association, the wild-type and pathological mutants of JAK2 are enzymatically equivalent and equally susceptible to inhibition by SOCS3.
Collapse
Affiliation(s)
- Leila N. Varghese
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Nicholas P. D. Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Samuel N. Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Artem Laktyushin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Henrik Hammaren
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Isabelle S. Lucet
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nicos A. Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
28
|
A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood 2014; 123:1059-68. [DOI: 10.1182/blood-2012-12-473777] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
JAK2R564Q is the first germline JAK2 mutation found to contribute to a familial MPN that involves a residue other than V617. The kinase activity of JAK2R564Q and JAK2V617F are the same, but only V617F is able to escape regulation by SOCS3 and p27.
Collapse
|
29
|
New insights into the structure and function of the pseudokinase domain in JAK2. Biochem Soc Trans 2013; 41:1002-7. [PMID: 23863170 DOI: 10.1042/bst20130005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JAK (Janus kinase) 2 plays a critical role in signal transduction through several cytokine receptors. JAKs contain a typical tyrosine kinase domain preceded by a pseudokinase [JH2 (JAK homology 2)] domain which has been considered to be catalytically inactive. Identification of activating mutations in the JH2 domain of JAK2 as the major cause for polycythaemia vera and other MPNs (myeloproliferative neoplasms) demonstrate the critical regulatory function for this domain, but the underlying mechanisms have remained elusive. We have performed biochemical and functional analysis on the JH2 domain of JAK2. The results indicate that JH2 functions as an active protein kinase and phosphorylates two residues in JAK2 (Ser523 and Tyr570) that have been shown previously to be negative regulatory sites for JAK2 activity. The crystal structure of the JAK2 JH2 domain provides an explanation for the functional findings and shows that JH2 adopts a prototypical kinase fold, but binds MgATP through a non-canonical mode. The structure of the most prevalent pathogenic JH2 mutation V617F shows a high level of similarity to wild-type JH2. The most notable structural deviation is observed in the N-lobe αC-helix. The structural and biochemical data together with MD (molecular dynamics) simulations show that the V617F mutation rigidifies the αC-helix, which results in hyperactivation of the JH1 domain through an as yet unidentified mechanism. These results provide structural and functional insights into the normal and pathogenic function of the JH2 domain of JAK2.
Collapse
|
30
|
Nerstedt A, Cansby E, Amrutkar M, Smith U, Mahlapuu M. Pharmacological activation of AMPK suppresses inflammatory response evoked by IL-6 signalling in mouse liver and in human hepatocytes. Mol Cell Endocrinol 2013; 375:68-78. [PMID: 23707791 DOI: 10.1016/j.mce.2013.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) induces inflammatory signalling in liver, leading to impaired insulin action in hepatocytes. In this study, we demonstrate that pharmacological activation of AMP-activated protein kinase (AMPK) represses IL-6-stimulated expression of proinflammatory markers serum amyloid A (Saa) as well as suppressor of cytokine signalling 3 (Socs3) in mouse liver. Further studies using the human hepatocellular carcinoma cell line HepG2 suggest that AMPK inhibits IL-6 signalling by repressing IL-6-stimulated phosphorylation of several downstream components of the pathway such as Janus kinase 1 (JAK1), SH2-domain containing protein tyrosine phosphatase 2 (SHP2) and signal transducer and activator of transcription 3 (STAT3). In summary, inhibition of IL-6 signalling cascade in liver by the metabolic master switch of the body, AMPK, supports the role of this kinase as a crucial point of convergence of metabolic and inflammatory pathways in hepatocytes.
Collapse
Affiliation(s)
- Annika Nerstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
31
|
Chen X, Ying Z, Lin X, Lin H, Wu J, Li M, Song L. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. J Clin Invest 2013; 123:2576-89. [PMID: 23676499 DOI: 10.1172/jci68143] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/14/2013] [Indexed: 02/06/2023] Open
Abstract
JAK2 activity is tightly controlled through a self-inhibitory effect via its JAK homology domain 2 (JH2), which restricts the strength and duration of JAK2/STAT3 signaling under physiological conditions. Although multiple mutations within JAK2, which abrogate the function of JH2 and sustain JAK2 activation, are widely observed in hematological malignancies, comparable mutations have not been detected in solid tumors. How solid tumor cells override the autoinhibitory effect of the JH2 domain to maintain constitutive activation of JAK2/STAT3 signaling remains puzzling. Herein, we demonstrate that AGK directly interacted with the JH2 domain to relieve inhibition of JAK2 and activate JAK2/STAT3 signaling. Overexpression of AGK sustained constitutive JAK2/STAT3 activation, consequently promoting the cancer stem cell population and augmenting the tumorigenicity of esophageal squamous cell carcinoma (ESCC) cells both in vivo and in vitro. Furthermore, AGK levels significantly correlated with increased STAT3 phosphorylation, poorer disease-free survival, and shorter overall survival in primary ESCC. More importantly, AGK expression was significantly correlated with JAK2/STAT3 hyperactivation in ESCC, as well as in lung and breast cancer. These findings uncover a mechanism for constitutive activation of JAK2/STAT3 signaling in solid tumors and may represent a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiuting Chen
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
INTRODUCTION Dysregulation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is central to the pathophysiology of myeloproliferative neoplasms (MPN). Small molecule inhibitors of JAK family members are currently under investigation for the treatment of MPN. Of these, ruxolitinib has received approval for clinical use in myelofibrosis in the United States and Europe. AREAS COVERED The clinical results and future development program of major JAK inhibitors, including ruxolitinib, CYT387, SAR302503, lestaurtinib, pacritinib, XL-019, LY2784544, BMS-911453, AZD1480 and NS-018 are reviewed. EXPERT OPINION JAK inhibitors are effective in relieving organomegaly (splenomegaly and hepatomegaly) and constitutional symptoms of myelofibrosis and some modulate inflammatory cytokines. However, they have little impact on disease burden and bone marrow fibrosis. The relationship between clinical efficacy, toxicity profile and specificity of JAK family member inhibition (i.e., JAK2 specific vs JAK1/JAK2 active) is poorly defined. Novel resistance mechanisms including heterodimerization of JAK2 with other JAK family members have been described. It is likely that the future lies in the use of rational drug combinations that target multiple signaling pathways.
Collapse
Affiliation(s)
- Constantine S Tam
- Peter MacCallum Cancer Center, Department of Hematology, Melbourne, Australia
| | | |
Collapse
|
33
|
Thrombocytosis and Essential Thrombocythemia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol Sci 2012; 33:574-82. [PMID: 22995223 DOI: 10.1016/j.tips.2012.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/23/2022]
Abstract
The Janus kinase (JAK) proteins are a family of intracellular nonreceptor tyrosine kinases involved in cytokine signaling via the JAK-STAT (signal transducers and activators of transcription) pathway. Genetic studies have identified somatic JAK2(V617F) mutations and other mutant alleles that activate JAK-STAT signaling in most patients with myeloproliferative neoplasms (MPNs). As a result, JAK inhibitors have been developed to treat various malignancies and have been shown to be efficacious in both preclinical and clinical settings. However, available ATP-competitive JAK (type I) inhibitors are associated with dose-dependent toxicities, and do not yet reduce disease burden in MPN patients. Recent studies suggest that genetic and epigenetic mechanisms can cause insensitivity to type I JAK inhibitors. Novel therapies include the development of type II JAK inhibitors and the use of alternative strategies to abrogate JAK-STAT signaling, perhaps with histone deacetylase (HDAC) and heat shock protein 90 (HSP90) inhibitors. These innovative therapies may translate to treatment of other diseases that are dependent on JAK signaling, including B-precursor acute lymphoblastic leukemia (B-ALL).
Collapse
|
35
|
Laurence A, Pesu M, Silvennoinen O, O’Shea J. JAK Kinases in Health and Disease: An Update. Open Rheumatol J 2012; 6:232-44. [PMID: 23028408 PMCID: PMC3460320 DOI: 10.2174/1874312901206010232] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022] Open
Abstract
Janus kinases (Jaks) are critical signaling elements for a large subset of cytokines. As a consequence they play pivotal roles in the patho-physiology of many diseases including neoplastic and autoimmune diseases. Small molecule Jak inhibitors as therapeutic agents have become a reality and the palette of such inhibitors will likely expand. This review will summarize our current knowledge on these key enzymes and their associated pharmaceutical inhibitors.
Collapse
Affiliation(s)
- Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marko Pesu
- Institute of Biomedical Technology, FI-33014 University of Tampere, Finland
- Centre for Laboratory Medicine, FI-33520 Tampere University Hospital, Finland
| | - Olli Silvennoinen
- Institute of Biomedical Technology, FI-33014 University of Tampere, Finland
- Centre for Laboratory Medicine, FI-33520 Tampere University Hospital, Finland
| | - John O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Anand S, Huntly BJP. Disordered signaling in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:1017-35. [PMID: 23009935 DOI: 10.1016/j.hoc.2012.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human myeloproliferative neoplasms (MPN) have long been associated with abnormal responses to cytokines and activation of signaling pathways, although the exact molecular mechanisms underlying these observations were unknown. This situation altered with the discovery of the JAK2 V617F, which presaged the ongoing description of further mutations predicted to activate canonical signaling pathways in MPN. This article covers the nature of these mutations and summarizes functional experiments in model systems and in human MPN cells to define the signaling pathways altered and how these drive and determine the MPN cellular phenotype. Also discussed are recently described, novel noncanonical signaling pathways to chromatin predicted to alter gene transcription more directly and to also contribute to the MPN phenotype.
Collapse
Affiliation(s)
- Shubha Anand
- Department of Haematology, Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
37
|
|
38
|
Tyrosine 201 is required for constitutive activation of JAK2V617F and efficient induction of myeloproliferative disease in mice. Blood 2012; 120:1888-98. [PMID: 22837531 DOI: 10.1182/blood-2011-09-380808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The JAK2V617F mutation has been detected in most cases of Ph-negative myeloproliferative neoplasms (MPNs). The JAK2V617F protein is a constitutively activated tyrosine kinase that leads to transformation of hematopoietic progenitors. Previous studies have shown that several tyrosine residues within JAK2 are phosphorylated on growth factor or cytokine stimulation. However, the role of these tyrosine residues in signaling and transformation mediated by JAK2V617F remains unclear. In this study, we sought to determine the role of tyrosine 201, which is a potential binding site for Src homology 2 domain-containing proteins, in JAK2V617F-induced hematopoietic transformation by introducing a tyrosine-to-phenylalanine point mutation (Y201F) at this site. We observed that the Y201F mutation significantly inhibited cytokine-independent cell growth and induced apoptosis in Ba/F3-EpoR cells expressing JAK2V617F. The Y201F mutation also resulted in significant inhibition of JAK2V617F-mediated transformation of hematopoietic cells. Biochemical analyzes revealed that the Y201F mutation almost completely inhibited constitutive phosphorylation/activation of JAK2V617F. We also show that the Y201 site of JAK2V617F promotes interaction with Stat5 and Shp2, and constitutive activation of downstream signaling pathways. Furthermore, using a BM transduction/transplantation approach, we found that tyrosine 201 plays an important role in the induction of MPNs mediated by JAK2V617F.
Collapse
|
39
|
Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 2012; 19:754-9. [PMID: 22820988 PMCID: PMC3414675 DOI: 10.1038/nsmb.2348] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 11/09/2022]
Abstract
The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.
Collapse
Affiliation(s)
- Rajintha M Bandaranayake
- Structural Biology Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
40
|
Onnebo SMN, Rasighaemi P, Kumar J, Liongue C, Ward AC. Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica 2012; 97:1895-903. [PMID: 22733019 DOI: 10.3324/haematol.2012.064659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chromosomal translocations resulting in alternative fusions of the human TEL (ETV6) and JAK2 genes have been observed in cases of acute lymphoblastic leukemia and chronic myelogenous leukemia, but a full understanding of their role in disease etiology has remained elusive. In this study potential differences between these alternative TEL-JAK2 fusions, including their lineage specificity, were investigated. DESIGN AND METHODS TEL-JAK2 fusion types derived from both T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia were generated using the corresponding zebrafish tel and jak2a genes and placed under the control of either the white blood cell-specific spi1 promoter or the ubiquitously-expressed cytomegalovirus promoter. These constructs were injected into zebrafish embryos and their effects on hematopoiesis examined using a range of molecular approaches. In addition, the functional properties of the alternative fusions were investigated in vitro. RESULTS Injection of the T-cell acute lymphoblastic leukemia-derived tel-jak2a significantly perturbed lymphopoiesis with a lesser effect on myelopoiesis in zebrafish embryos. In contrast, injection of the atypical chronic myelogenous leukemia-derived tel-jak2a resulted in significant perturbation of the myeloid compartment. These phenotypes were observed regardless of whether expressed in a white blood cell-specific or ubiquitous manner, with no overt cellular proliferation outside of the hematopoietic cells. Functional studies revealed subtle differences between the alternative forms, with the acute lymphoblastic leukemia variant showing higher activity, but reduced downstream signal transducer and activator of transcription activation and decreased sensitivity to JAK2 inhibition. JAK2 activity was required to mediate the effects of both variants on zebrafish hematopoiesis. CONCLUSIONS This study indicates that the molecular structure of alternative TEL-JAK2 fusions likely contributes to the etiology of disease. The data further suggest that this class of oncogene exerts its effects in a cell lineage-specific manner, which may be due to differences in downstream signaling.
Collapse
Affiliation(s)
- Sara M N Onnebo
- School of Life & Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | | | |
Collapse
|
41
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
42
|
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971-6. [PMID: 21841788 DOI: 10.1038/nsmb.2099] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.
Collapse
|
43
|
Octa-arginine mediated delivery of wild-type Lnk protein inhibits TPO-induced M-MOK megakaryoblastic leukemic cell growth by promoting apoptosis. PLoS One 2011; 6:e23640. [PMID: 21853157 PMCID: PMC3154509 DOI: 10.1371/journal.pone.0023640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Lnk plays a non-redundant role by negatively regulating cytokine signaling of TPO, SCF or EPO. Retroviral expression of Lnk has been shown to suppress hematopoietic leukemic cell proliferation indicating its therapeutic value in cancer therapy. However, retroviral gene delivery carries risks of insertional mutagenesis. To circumvent this undesired consequence, we fused a cell permeable peptide octa-arginine to Lnk and evaluated the efficacy of inhibition of leukemic cell proliferation in vitro. Methodology/Principal Findings In this study, proliferation assays, flow cytometry, Western Blot analyses were performed on wild-type (WT), mutant Lnk R8 or BSA treated M-MOK cells. We found that delivered WT, but not mutant Lnk R8 blocked TPO-induced M-MOK megakaryoblastic leukemic cell proliferation. In contrast, WT Lnk R8 showed no growth inhibitive effect on non-hematopoietic HELA or COS-7 cell. Moreover, we demonstrated that TPO-induced M-MOK cell growth inhibition by WT Lnk R8 was dose-dependent. Penetrated WT Lnk R8 induced cell cycle arrest and apoptosis. Immunoprecipitation and Western blots data indicated WT Lnk R8 interacted with endogeneous Jak2 and downregulated Jak-Stat and MAPK phosphorylation level in M-MOK cells after TPO stimulation. Treatment with specific inhibitors (TG101348 and PD98059) indicated Jak-Stat and MAPK pathways were crucial for TPO-induced proliferation of M-MOK cells. Further analyses using TF-1 and HEL leukemic cell-lines showed that WT Lnk R8 inhibited Jak2-dependent cell proliferation. Using cord blood-derived CD34+ stem cells, we found that delivered WT Lnk R8 blocked TPO-induced megakaryopoiesis in vitro. Conclusions/Significance Intracellular delivery of WT Lnk R8 fusion protein efficiently inhibited TPO-induced M-MOK leukemic cell growth by promoting apoptosis. WT Lnk R8 protein delivery may provide a safer and more practical approach to inhibit leukemic cell growth worthy of further development.
Collapse
|
44
|
Sayyah J, Gnanasambandan K, Kamarajugadda S, Tsuda S, Caldwell-Busby J, Sayeski PP. Phosphorylation of Y372 is critical for Jak2 tyrosine kinase activation. Cell Signal 2011; 23:1806-15. [PMID: 21726629 DOI: 10.1016/j.cellsig.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Jak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation. Mutation of Y372 to F (Y372F) significantly inhibited Jak2 phosphorylation, including that of Y1007, whereas the Jak2-Y373F mutant displayed only modest reduction in phosphorylation. Relative to Jak2-WT, the ability of Jak2-Y372F to bind to and phosphorylate STAT1 was decreased, resulting in reduced Jak2-mediated downstream gene transcription. While the Y372F mutation had no effect on receptor-independent, hydrogen peroxide-mediated Jak2 activation, it impaired interferon-gamma (IFNγ) and epidermal growth factor (EGF)-dependent Jak2 activation. Interestingly however, the Y372F mutant exhibited normal receptor binding properties. Finally, co-expression of SH2-Bβ only partially restored the activation of the Jak2-Y372F mutant suggesting that the mechanism whereby phosphorylation of Y372 is important for Jak2 activation is via dimerization. As such, our results indicate that Y372 plays a critical yet differential role in Jak2 activation and function via a mechanism involving Jak2 dimerization and stabilization of the active conformation.
Collapse
Affiliation(s)
- Jacqueline Sayyah
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tom RZ, Sjögren RJO, Vieira E, Glund S, Iglesias-Gutiérrez E, Garcia-Roves PM, Myers MG, Björnholm M. Increased hepatic insulin sensitivity in mice lacking inhibitory leptin receptor signals. Endocrinology 2011; 152:2237-46. [PMID: 21521753 DOI: 10.1210/en.2010-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin regulates food intake and energy expenditure by activating the long form of the leptin receptor (LepRb). Leptin also regulates glucose homeostasis by improving whole-body insulin sensitivity, but the mechanism remains undefined. Leptin action is mediated by phosphorylation of several tyrosine residues on LepRb. LepRb-Tyr985 plays an important role in the attenuation of LepRb signaling. We determined the contribution of LepRb-Tyr985-mediated signals to leptin action on insulin sensitivity using LepRb-Tyr985 mutant mice (l/l mice). Glucose tolerance and whole-body insulin-mediated glucose utilization were determined in wild-type (+/+) and l/l mice. Glucose tolerance was unaltered between female +/+ and l/l mice but enhanced in the male l/l mice. Serum insulin concentration was decreased at baseline and 15 min after a glucose injection in female l/l vs. +/+ mice (P < 0.05) but unaltered in the male l/l mice. However, basal and insulin-stimulated glucose transport in isolated soleus and extensor digitorum longus muscle was similar between +/+ and l/l mice, indicating skeletal muscle insulin sensitivity in vitro was not enhanced. Moreover, euglycemic-hyperinsulinemic clamps reveal hepatic, rather than peripheral, insulin sensitivity is enhanced in female l/l mice, whereas male l/l mice display both improved hepatic and peripheral insulin sensitivity. In conclusion, signals emanating from leptin receptor Tyr985 control hepatic insulin sensitivity in both female and male l/l mice. Lack of LepRb-Tyr985 signaling enhances whole-body insulin sensitivity partly through increased insulin action on the suppression of hepatic glucose production.
Collapse
Affiliation(s)
- Robby Zachariah Tom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Argetsinger LS, Stuckey JA, Robertson SA, Koleva RI, Cline JM, Marto JA, Myers MG, Carter-Su C. Tyrosines 868, 966, and 972 in the kinase domain of JAK2 are autophosphorylated and required for maximal JAK2 kinase activity. Mol Endocrinol 2010; 24:1062-76. [PMID: 20304997 DOI: 10.1210/me.2009-0355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Janus kinase 2 (JAK2) is activated by a majority of cytokine family receptors including receptors for GH, leptin, and erythropoietin. To identify novel JAK2-regulatory and/or -binding sites, we set out to identify autophosphorylation sites in the kinase domain of JAK2. Two-dimensional phosphopeptide mapping of in vitro autophosphorylated JAK2 identified tyrosines 868, 966, and 972 as sites of autophosphorylation. Phosphorylated tyrosines 868 and 972 were also identified by mass spectrometry analysis of JAK2 activated by an erythropoietin-bound chimeric erythropoietin receptor/leptin receptor. Phosphospecific antibodies suggest that the phosphorylation of all three tyrosines increases in response to GH. Compared with wild-type JAK2, which is constitutively active when overexpressed, JAK2 lacking tyrosine 868, 966, or 972 has substantially reduced activity. Coexpression with GH receptor and protein tyrosine phosphatase1B allowed us to investigate GH-dependent activation of these mutated JAK2s in human embryonic kidney 293T cells. All three mutated JAK2s are activated by GH, although to a lesser extent than wild-type JAK2. The three mutated JAK2s also mediate GH activation of signal transducer and activator of transcription 3 (Stat3), signal transducer and activator of transcription 5b (Stat5b) and ERK1, but at reduced levels. Coexpression with Src-homology 2B1beta (SH2B1beta), like coexpression with GH-bound GH receptor, partially restores the activity of all three JAK2 mutants. Based on these results and the crystal structure of the JAK2 kinase domain, we hypothesize that small changes in the conformation of the regions of JAK2 surrounding tyrosines 868, 966, and 972 due to e.g. phosphorylation, binding to a ligand-bound cytokine receptor, and/or binding to Src-homology 2B1, may be essential for JAK2 to assume a maximally active conformation.
Collapse
Affiliation(s)
- Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Treebak JT, Taylor EB, Witczak CA, An D, Toyoda T, Koh HJ, Xie J, Feener EP, Wojtaszewski JFP, Hirshman MF, Goodyear LJ. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C377-85. [PMID: 19923418 DOI: 10.1152/ajpcell.00297.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBC1D4 (also known as AS160) regulates glucose transporter 4 (GLUT4) translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of serine (S)/threonine (T) residues by upstream kinases resulting in inactivation of Rab-GTPase-activating protein (Rab-GAP) activity leading to GLUT4 mobilization. The majority of known phosphorylation sites on TBC1D4 lie within the Akt consensus motif and are phosphorylated by insulin stimulation. However, the 5'-AMP-activated protein kinase (AMPK) and other kinases may also phosphorylate TBC1D4, and therefore we hypothesized the presence of additional phosphorylation sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted that S711 would be recognized by AMPK. Using a phosphospecific antibody against S711, we found that AICAR and contraction increased S711 phosphorylation in mouse skeletal muscle, and this increase was abolished in muscle-specific AMPKalpha2 kinase-dead transgenic mice. Exercise in human vastus lateralis muscle also increased TBC1D4 S711 phosphorylation. Recombinant AMPK, but not Akt1, Akt2, or PKCzeta, phosphorylated purified muscle TBC1D4 on S711 in vitro. Interestingly, S711 was also phosphorylated in response to insulin in an Akt2- and rapamycin-independent, but a wortmannin-sensitive, manner, suggesting this site is regulated by one or more additional upstream kinases. Despite increased S711 phosphorylation with AICAR, contraction, and insulin, mutation of S711 to alanine did not alter glucose uptake in response to these stimuli. S711 is a novel TBC1D4 phosphorylation site regulated by AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Jonas T Treebak
- Joslin Diabetes Center, Section on Metabolism, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kurdi M, Booz GW. JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 2009; 297:H1545-56. [PMID: 19717737 DOI: 10.1152/ajpheart.00032.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A number of type 1 receptor cytokine family members protect the heart from acute and chronic oxidative stress. This protection involves activation of two intracellular signaling cascades: the reperfusion injury salvage kinase (RISK) pathway, which entails activation of phosphatidylinositol 3-kinase (PI3-kinase) and ERK1/2, and JAK-STAT signaling, which involves activation of transcription factor signal transducer and activator of transcription 3 (STAT3). Obligatory for activation of both RISK and STAT3 by nearly all of these cytokines are the kinases JAK1 and JAK2. Yet surprisingly little is known about how JAK1 and JAK2 are regulated in the heart or how they couple to PI3-kinase activation. Although the JAKs are linked to antioxidative stress programs in the heart, we recently reported that these kinases are inhibited by oxidative stress in cardiac myocytes. In contrast, others have reported that cardiac JAK2 is activated by acute oxidative stress by an undefined process. Here we summarize recent insights into the regulation of JAK1 and JAK2. Besides oxidative stress, inhibitory regulation involves phosphorylation, nitration, and intramolecular restraints. Stimulatory regulation involves phosphorylation and adaptor proteins. The net effect of stress on JAK activity in the heart likely represents the sum of both inhibitory and stimulatory processes, along with their dynamic interaction. Thus the regulation of JAKs in the heart, once touted as the paragon of simplicity, is proving rather complicated indeed, requiring a second look. It is our contention that a better understanding of the regulation of this kinase family that is implicated in cardiac protection could translate into effective therapeutic strategies for preventing myocardial damage or repairing the injured heart.
Collapse
Affiliation(s)
- Mazen Kurdi
- Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University, Rafic Hariri Educational Campus, Hadath, Lebanon
| | | |
Collapse
|
49
|
Zhao L, Dong H, Zhang CC, Kinch L, Osawa M, Iacovino M, Grishin NV, Kyba M, Huang LJS. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation. J Biol Chem 2009; 284:26988-98. [PMID: 19638629 DOI: 10.1074/jbc.m109.011387] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JAK2 (Janus kinase 2) is essential for cytokine receptor signaling, and several lines of evidence support a causal role of an activating JAK2 mutation in myeloproliferative disorders. JAK2 activity is autoinhibited by its pseudokinase domain in the basal state, and the inhibition is released by cytokine stimulation; how engagement of the cognate receptor triggers this release is unknown. From a functional screen for gain-of-function JAK2 mutations, we discovered 13 missense mutations, nine in the pseudokinase domain and four in the Src homology 2 (SH2)-pseudokinase domain linker. These mutations identified determinants for autoinhibition and inducible activation in JAK2. Two of the mutants, K539I and N622I, resulted in erythrocytosis in mice. Scanning mutagenesis of the SH2-pseudokinase domain linker indicated that its N-terminal part was essential for interaction of JAK2 with the Epo receptor, whereas certain mutations in the C-terminal region conferred constitutive activation. We further showed that substitutions for Glu(543)-Asp(544) in this linker or Leu(611), Arg(683), or Phe(694) in the hinge proximal region of the pseudokinase domain resulted in activated JAK2 mutants that could not be further stimulated by Epo. These results suggest that the SH2-pseudokinase domain linker acts as a switch that relays cytokine engagement to JAK2 activation by flexing the pseudokinase domain hinge.
Collapse
Affiliation(s)
- Lequn Zhao
- Department of Cell Biology, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: What do we know now, and where are we headed? Leuk Lymphoma 2009; 47:177-94. [PMID: 16321848 DOI: 10.1080/10428190500301348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activating tyrosine kinase (TK) mutations disrupt cellular proliferation and survival pathways and are increasingly recognized as a fundamental cause of human cancers. Until very recently, the only TK mutations widely observed in myeloid neoplasia were the BCR/ABL1 fusions characteristic of chronic myeloid leukemia and some acute leukemias, and FLT3 activating mutations in a minority of acute myeloid leukemias. Several rare TK mutations are found in various atypical myeloproliferative disorders, but big pieces of the pathobiological puzzle were glaringly missing. In the first half of 2005, one gap was filled in: 7 studies identified the same acquired amino acid substitution (V617F) in the Janus kinase 2 (JAK2) TK in large numbers of patients with diverse clonal myeloid disorders. Most affected patients suffer from the classic BCR/ABL1-negative myeloproliferative disorders (MPD), especially polycythemia vera (74% of n = 506), but a subset of people with essential thrombocythemia (36% of n = 339) or myelofibrosis with myeloid metaplasia (44% of n = 127) bear the identical mutation, as do a few individuals with myelodysplastic syndromes or an atypical myeloid disorder (7% of n = 556). This long-sought common mutation in BCR/ABL1-negative MPD raises many provocative biological and clinical questions, and demands re-evaluation of prevailing diagnostic algorithms for erythrocytosis and thrombocytosis. JAK2 V617F may provide novel molecular targets for drug therapy, and suggests other places to seek cooperating mutations or mutations associated with similar phenotypes. The story of this exciting finding will unfold rapidly in the years ahead, and ongoing developments will be important for all hematologists to understand.
Collapse
Affiliation(s)
- Maria E Nelson
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|