1
|
Mahrik L, Stefanovie B, Maresova A, Princova J, Kolesar P, Lelkes E, Faux C, Helmlinger D, Prevorovsky M, Palecek JJ. The SAGA histone acetyltransferase module targets SMC5/6 to specific genes. Epigenetics Chromatin 2023; 16:6. [PMID: 36793083 PMCID: PMC9933293 DOI: 10.1186/s13072-023-00480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin. RESULTS We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant. CONCLUSION Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.
Collapse
Affiliation(s)
- L Mahrik
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - B Stefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - A Maresova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - J Princova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - P Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - E Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - C Faux
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - D Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - M Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic.
| | - J J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
2
|
Brc1 Promotes the Focal Accumulation and SUMO Ligase Activity of Smc5-Smc6 during Replication Stress. Mol Cell Biol 2019; 39:MCB.00271-18. [PMID: 30348841 DOI: 10.1128/mcb.00271-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
As genetic instability drives disease or loss of cell fitness, cellular safeguards have evolved to protect the genome, especially during sensitive cell cycle phases, such as DNA replication. Fission yeast Brc1 has emerged as a key factor in promoting cell survival when replication forks are stalled or collapsed. Brc1 is a multi-BRCT protein that is structurally related to the budding yeast Rtt107 and human PTIP DNA damage response factors, but functional similarities appear limited. Brc1 is a dosage suppressor of a mutation in the essential Smc5-Smc6 genome stability complex and is thought to act in a bypass pathway. In this study, we reveal an unexpectedly intimate connection between Brc1 and Smc5-Smc6 function. Brc1 is required for the accumulation of the Smc5-Smc6 genome stability complex in foci during replication stress and for activation of the intrinsic SUMO ligase activity of the complex by collapsed replication forks. Moreover, we show that the chromatin association and SUMO ligase activity of Smc5-Smc6 require the Nse5-Nse6 heterodimer, explaining how this nonessential cofactor critically supports the DNA repair roles of Smc5-Smc6. We also found that Brc1 interacts with Nse5-Nse6, as well as gamma-H2A, so it can tether Smc5-Smc6 at replicative DNA lesions to promote survival.
Collapse
|
3
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
4
|
Multi-BRCT Domain Protein Brc1 Links Rhp18/Rad18 and γH2A To Maintain Genome Stability during S Phase. Mol Cell Biol 2017; 37:MCB.00260-17. [PMID: 28784724 DOI: 10.1128/mcb.00260-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
DNA replication involves the inherent risk of genome instability, since replisomes invariably encounter DNA lesions or other structures that stall or collapse replication forks during the S phase. In the fission yeast Schizosaccharomyces pombe, the multi-BRCT domain protein Brc1, which is related to budding yeast Rtt107 and mammalian PTIP, plays an important role in maintaining genome integrity and cell viability when cells experience replication stress. The C-terminal pair of BRCT domains in Brc1 were previously shown to bind phosphohistone H2A (γH2A) formed by Rad3/ATR checkpoint kinase at DNA lesions; however, the putative scaffold interactions involving the N-terminal BRCT domains 1 to 4 of Brc1 have remained obscure. Here, we show that these domains bind Rhp18/Rad18, which is an E3 ubiquitin protein ligase that has crucial functions in postreplication repair. A missense allele in BRCT domain 4 of Brc1 disrupts binding to Rhp18 and causes sensitivity to replication stress. Brc1 binding to Rhp18 and γH2A are required for the Brc1 overexpression suppression of smc6-74, a mutation that impairs the Smc5/6 structural maintenance of chromosomes complex required for chromosome integrity and repair of collapsed replication forks. From these findings, we propose that Brc1 provides scaffolding functions linking γH2A, Rhp18, and Smc5/6 complex at damaged replication forks.
Collapse
|
5
|
Peng J, Feng W. Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability. Nucleic Acids Res 2016; 44:10216-10229. [PMID: 27536003 PMCID: PMC5137426 DOI: 10.1093/nar/gkw720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/14/2022] Open
Abstract
The Smc5/6 complex is implicated in homologous recombination-mediated DNA repair during DNA damage or replication stress. Here, we analysed genome-wide replication dynamics in a hypomorphic budding yeast mutant, smc6-P4. The overall replication dynamics in the smc6 mutant is similar to that in the wild-type cells. However, we captured a difference in the replication profile of an early S phase sample in the mutant, prompting the hypothesis that the mutant incorporates ribonucleotides and/or accumulates single-stranded DNA gaps during replication. We tested if inhibiting the ribonucleotide excision repair pathway would exacerbate the smc6 mutant in response to DNA replication stress. Contrary to our expectation, impairment of ribonucleotide excision repair, as well as virtually all other DNA repair pathways, alleviated smc6 mutant's hypersensitivity to induced replication stress. We propose that nucleotide incision in the absence of a functional Smc5/6 complex has more disastrous outcomes than the damage per se. Our study provides novel perspectives for the role of the Smc5/6 complex during DNA replication.
Collapse
Affiliation(s)
- Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H, Novakova M, Jurcisinova L, Alt A, Oliver AW, Lehmann AR, Palecek JJ. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res 2016; 44:1064-79. [PMID: 26446992 PMCID: PMC4756808 DOI: 10.1093/nar/gkv1021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/13/2022] Open
Abstract
SMC5/6 is a highly conserved protein complex related to cohesin and condensin, which are the key components of higher-order chromatin structures. The SMC5/6 complex is essential for proliferation in yeast and is involved in replication fork stability and processing. However, the precise mechanism of action of SMC5/6 is not known. Here we present evidence that the NSE1/NSE3/NSE4 sub-complex of SMC5/6 binds to double-stranded DNA without any preference for DNA-replication/recombination intermediates. Mutations of key basic residues within the NSE1/NSE3/NSE4 DNA-binding surface reduce binding to DNA in vitro. Their introduction into the Schizosaccharomyces pombe genome results in cell death or hypersensitivity to DNA damaging agents. Chromatin immunoprecipitation analysis of the hypomorphic nse3 DNA-binding mutant shows a reduced association of fission yeast SMC5/6 with chromatin. Based on our results, we propose a model for loading of the SMC5/6 complex onto the chromatin.
Collapse
Affiliation(s)
- Katerina Zabrady
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Marek Adamus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Lucie Vondrova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Chunyan Liao
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Hana Skoupilova
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Marketa Novakova
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Lenka Jurcisinova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Aaron Alt
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Antony W Oliver
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Jan J Palecek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| |
Collapse
|
7
|
Jacome A, Gutierrez-Martinez P, Schiavoni F, Tenaglia E, Martinez P, Rodríguez-Acebes S, Lecona E, Murga M, Méndez J, Blasco MA, Fernandez-Capetillo O. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J 2015; 34:2604-19. [PMID: 26443207 DOI: 10.15252/embj.201591829] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO- and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.
Collapse
Affiliation(s)
- Ariana Jacome
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Federica Schiavoni
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Enrico Tenaglia
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre, Madrid, Spain Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Sánchez A, Russell P. Ku stabilizes replication forks in the absence of Brc1. PLoS One 2015; 10:e0126598. [PMID: 25965521 PMCID: PMC4428774 DOI: 10.1371/journal.pone.0126598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/21/2022] Open
Abstract
DNA replication errors are a major source of genome instability in all organisms. In the fission yeast Schizosaccharomyces pombe, the DNA damage response protein Brc1 binds phospho-histone H2A (γH2A)-marked chromatin during S-phase, but how Brc1 protects genome integrity remains unclear. Here we report that the non-homologous end-joining (NHEJ) protein Ku becomes critical for survival of replication stress in brc1∆ cells. Ku’s protective activity in brc1∆ cells does not involve its canonical NHEJ function or its roles in protecting telomeres or shielding DNA ends from Exo1 exonuclease. In brc1∆ pku80∆ cells, nuclear foci of Rad52 homologous recombination (HR) protein increase and Mus81-Eme1 Holliday junction resolvase becomes critical, indicating increased replication fork instability. Ku’s localization at a ribosomal DNA replication fork barrier associated with frequent replisome-transcriptosome collisions increases in brc1∆ cells and increased collisions correlate with an enhanced requirement for Brc1. These data indicate that Ku stabilizes replication forks in the absence of Brc1.
Collapse
Affiliation(s)
- Arancha Sánchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants. G3-GENES GENOMES GENETICS 2015; 5:953-62. [PMID: 25795664 PMCID: PMC4426379 DOI: 10.1534/g3.115.017251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses.
Collapse
|
10
|
Tapia-Alveal C, Lin SJ, O’Connell MJ. Functional interplay between cohesin and Smc5/6 complexes. Chromosoma 2014; 123:437-45. [PMID: 24981336 PMCID: PMC4169997 DOI: 10.1007/s00412-014-0474-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J. O’Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
11
|
Gallego-Paez LM, Tanaka H, Bando M, Takahashi M, Nozaki N, Nakato R, Shirahige K, Hirota T. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell 2013; 25:302-17. [PMID: 24258023 PMCID: PMC3890350 DOI: 10.1091/mbc.e13-01-0020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Smc5/6 complex plays a critical role in processing DNA replication and is indispensable for sister chromatid assembly and faithful segregation in mitosis. The structural maintenance of chromosomes (SMC) proteins constitute the core of critical complexes involved in structural organization of chromosomes. In yeast, the Smc5/6 complex is known to mediate repair of DNA breaks and replication of repetitive genomic regions, including ribosomal DNA loci and telomeres. In mammalian cells, which have diverse genome structure and scale from yeast, the Smc5/6 complex has also been implicated in DNA damage response, but its further function in unchallenged conditions remains elusive. In this study, we addressed the behavior and function of Smc5/6 during the cell cycle. Chromatin fractionation, immunofluorescence, and live-cell imaging analyses indicated that Smc5/6 associates with chromatin during interphase but largely dissociates from chromosomes when they condense in mitosis. Depletion of Smc5 and Smc6 resulted in aberrant mitotic chromosome phenotypes that were accompanied by the abnormal distribution of topoisomerase IIα (topo IIα) and condensins and by chromosome segregation errors. Importantly, interphase chromatin structure indicated by the premature chromosome condensation assay suggested that Smc5/6 is required for the on-time progression of DNA replication and subsequent binding of topo IIα on replicated chromatids. These results indicate an essential role of the Smc5/6 complex in processing DNA replication, which becomes indispensable for proper sister chromatid assembly in mitosis.
Collapse
Affiliation(s)
- Lina Marcela Gallego-Paez
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan Bio-Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8501, Japan Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lilienthal I, Kanno T, Sjögren C. Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLoS Genet 2013; 9:e1003898. [PMID: 24244180 PMCID: PMC3820751 DOI: 10.1371/journal.pgen.1003898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways. Most eukaryotic cells are diploid, which means that they contain two copies of each chromosome – one from each parent. In order to preserve the chromosome number from generation to generation, diploid organisms employ a process called meiosis to form gametes containing only one copy of each chromosome. During sexual reproduction, two gametes (sperm and eggs in mammals) fuse to form a zygote with the same chromosome number as the parents. This zygote will develop into a new organism that has genetic characteristics unique from, but still related to, both parents. The reduction of chromosome number and the reshuffling of genetic traits during meiosis depend on the repair of naturally occurring DNA breaks. Improper break repair during meiosis may block meiosis altogether or form genetically instable gametes, leading to fertility problems or defects in the offspring. The study presented here demonstrates the importance of the evolutionarily conserved Smc5/6 protein complex in upholding the integrity of meiotic repair processes. Our results show that cells deficient in components of the Smc5/6 complex lead to inviable meiotic products. Cells lacking functional Smc5/6 complex are unable to direct DNA repair to the proper template and accumulate abnormal repair intermediates, which inhibit the reductive division.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Takaharu Kanno
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Camilla Sjögren
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
13
|
Wehrkamp-Richter S, Hyppa RW, Prudden J, Smith GR, Boddy MN. Meiotic DNA joint molecule resolution depends on Nse5-Nse6 of the Smc5-Smc6 holocomplex. Nucleic Acids Res 2012; 40:9633-46. [PMID: 22855558 PMCID: PMC3479181 DOI: 10.1093/nar/gks713] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Faithful chromosome segregation in meiosis is crucial to form viable, healthy offspring and in most species, it requires programmed recombination between homologous chromosomes. In fission yeast, meiotic recombination is initiated by Rec12 (Spo11 homolog) and generates single Holliday junction (HJ) intermediates, which are resolved by the Mus81–Eme1 endonuclease to generate crossovers and thereby allow proper chromosome segregation. Although Mus81 contains the active site for HJ resolution, the regulation of Mus81–Eme1 is unclear. In cells lacking Nse5–Nse6 of the Smc5–Smc6 genome stability complex, we observe persistent meiotic recombination intermediates (DNA joint molecules) resembling HJs that accumulate in mus81Δ cells. Elimination of Rec12 nearly completely rescues the meiotic defects of nse6Δ and mus81Δ single mutants and partially rescues nse6Δ mus81Δ double mutants, indicating that these factors act after DNA double-strand break formation. Likewise, expression of the bacterial HJ resolvase RusA partially rescues the defects of nse6Δ, mus81Δ and nse6Δ mus81Δ mitotic cells, as well as the meiotic defects of nse6Δ and mus81Δ cells. Partial rescue likely reflects the accumulation of structures other than HJs, such as hemicatenanes, and an additional role for Nse5–Nse6 most prominent during mitotic growth. Our results indicate a regulatory role for the Smc5–Smc6 complex in HJ resolution via Mus81–Eme1.
Collapse
|
14
|
Bass KL, Murray JM, O'Connell MJ. Brc1-dependent recovery from replication stress. J Cell Sci 2012; 125:2753-64. [PMID: 22366461 DOI: 10.1242/jcs.103119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BRCT-containing protein 1 (Brc1) is a multi-BRCT (BRCA1 carboxyl terminus) domain protein in Schizosaccharomyces pombe that is required for resistance to chronic replicative stress, but whether this reflects a repair or replication defect is unknown and the subject of this study. We show that brc1Δ cells are significantly delayed in recovery from replication pausing, though this does not activate a DNA damage checkpoint. DNA repair and recombination protein Rad52 is a homologous recombination protein that loads the Rad51 recombinase at resected double-stranded DNA (dsDNA) breaks and is also recruited to stalled replication forks, where it may stabilize structures through its strand annealing activity. Rad52 is required for the viability of brc1Δ cells, and brc1Δ cells accumulate Rad52 foci late in S phase that are potentiated by replication stress. However, these foci contain the single-stranded DNA (ssDNA) binding protein RPA, but not Rad51 or γH2A. Further, these foci are not associated with increased recombination between repeated sequences, or increased post-replication repair. Thus, these Rad52 foci do not represent sites of recombination. Following the initiation of DNA replication, the induction of these foci by replication stress is suppressed by defects in origin recognition complex (ORC) function, which is accompanied by loss of viability and severe mitotic defects. This suggests that cells lacking Brc1 undergo an ORC-dependent rescue of replication stress, presumably through the firing of dormant origins, and this generates RPA-coated ssDNA and recruits Rad52. However, as Rad51 is not recruited, and the checkpoint effector kinase Chk1 is not activated, these structures must not contain the unprotected primer ends found at sites of DNA damage that are required for recombination and checkpoint activation.
Collapse
Affiliation(s)
- Kirstin L Bass
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
15
|
Abstract
Topology is the study of geometric properties that are preserved during bending, twisting and stretching of objects. In the context of the genome, topology is discussed at two interconnected and overlapping levels. The first focuses the DNA double helix itself, and includes alterations such as those triggered by DNA interacting proteins, processes which require the separation of the two DNA strands and DNA knotting. The second level is centered on the higher order organization of DNA into chromosomes, as well as dynamic conformational changes that occur on a chromosomal scale. Here, we refer to the first level as "DNA topology", the second as "chromosome topology". Since their identification, evidences suggesting that the so called structural maintenance of chromosomes (SMC) protein complexes are central to the interplay between DNA and chromosome topology have accumulated. The SMC complexes regulate replication, segregation, repair and transcription, all processes which influence, and are influenced by, DNA and chromosome topology. This review focuses on the details of the relationship between the SMC complexes and topology. It also discusses the possibility that the SMC complexes are united by a capability to sense the geometrical chirality of DNA crossings.
Collapse
Affiliation(s)
- Sidney D Carter
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | | |
Collapse
|
16
|
The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett 2011; 585:2907-13. [PMID: 21550342 DOI: 10.1016/j.febslet.2011.04.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 01/21/2023]
Abstract
There exist three highly-conserved structural maintenance of chromosomes (Smc) complexes that ensure genome stability during eukaryotic cell division. There are the well-characterized cohesin and condensin complexes and the third Smc complex, Smc5/6. Nse2/Mms21, a SUMO ligase, is a component of the Smc5/6 complex and recent data have indicated that Nse1 may function as a ubiquitin ligase. Smc5/6 regulates sister chromatid cohesion, homologous recombination and chromatin structure and conformation. This review examines the functions of Smc5/6 in DNA repair and the maintenance of genomic integrity and explores the roles of the associated SUMO and ubiquitin ligases. Recent findings have indicated that Smc5/6 may play a topological role in chromosome dynamics, which may help understand the complexity of its activities.
Collapse
|
17
|
Rai R, Varma SPMV, Shinde N, Ghosh S, Kumaran SP, Skariah G, Laloraya S. Small ubiquitin-related modifier ligase activity of Mms21 is required for maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in Saccharomyces cerevisiae. J Biol Chem 2011; 286:14516-30. [PMID: 21324902 PMCID: PMC3077650 DOI: 10.1074/jbc.m110.157149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 02/12/2011] [Indexed: 01/01/2023] Open
Abstract
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
Collapse
Affiliation(s)
- Ragini Rai
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Satya P. M. V. Varma
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Nikhil Shinde
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Shilpa Ghosh
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Srikala P. Kumaran
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Geena Skariah
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Shikha Laloraya
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| |
Collapse
|
18
|
Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol Cell Biol 2011; 31:1369-81. [PMID: 21245390 DOI: 10.1128/mcb.00786-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.
Collapse
|
19
|
Boyd LK, Mercer B, Thompson D, Main E, Watts FZ. Characterisation of the SUMO-like domains of Schizosaccharomyces pombe Rad60. PLoS One 2010; 5:e13009. [PMID: 20885950 PMCID: PMC2946365 DOI: 10.1371/journal.pone.0013009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/24/2010] [Indexed: 11/25/2022] Open
Abstract
The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3 is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2Δ cells are sensitive to DNA damaging agents and hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies, FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-SLD2Δ, implying that as well as having a role in the sumoylation process as previously described [1], Rad60 has a Hus5-independent function.
Collapse
Affiliation(s)
- Lara K. Boyd
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brenda Mercer
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Darren Thompson
- Division of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ewan Main
- Division of Chemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Miyabe I, Morishita T, Shinagawa H, Carr AM. Schizosaccharomyces pombe Cds1Chk2 regulates homologous recombination at stalled replication forks through the phosphorylation of recombination protein Rad60. J Cell Sci 2009; 122:3638-43. [PMID: 19755492 DOI: 10.1242/jcs.046508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Schizosaccharomyces pombe rad60 gene is essential for cell growth and is involved in repairing DNA double-strand breaks. Rad60 physically interacts with, and is functionally related to, the structural maintenance of chromosomes 5 and 6 protein complex (Smc5/6). Rad60 is phosphorylated in response to hydroxyurea (HU)-induced DNA replication arrest in a Cds1(Chk2)-dependent manner. Rad60 localizes in nucleus in unchallenged cells, but becomes diffused throughout the cell in response to HU. To understand the role of Rad60 phosphorylation, we mutated the putative phosphorylation target motifs of Cds1(Chk2) and have identified two Cds1(Chk2) target residues responsible for Rad60 dispersal in response to HU. We show that the phosphorylation-defective rad60 mutation partially suppresses HU sensitivity and the elevated recombination frequency of smc6-X. Our data suggest that Rad60 phosphorylation is required to regulate homologous recombination at stalled replication forks, probably by regulating Smc5/6.
Collapse
Affiliation(s)
- Izumi Miyabe
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | |
Collapse
|
21
|
Outwin EA, Irmisch A, Murray JM, O'Connell MJ. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol Cell Biol 2009; 29:4363-75. [PMID: 19528228 PMCID: PMC2725735 DOI: 10.1128/mcb.00377-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/14/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022] Open
Abstract
The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants.
Collapse
Affiliation(s)
- Emily A Outwin
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
22
|
White GE, Erickson HP. The coiled coils of cohesin are conserved in animals, but not in yeast. PLoS One 2009; 4:e4674. [PMID: 19262687 PMCID: PMC2650401 DOI: 10.1371/journal.pone.0004674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/27/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4) showed moderate sequence divergence (approximately 10-15%) consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3), however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence.
Collapse
Affiliation(s)
- Glenn E. White
- Department of Biological and Environmental Sciences, Longwood University, Farmville, Virginia, United Kingdom
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
23
|
Deshpande GP, Hayles J, Hoe KL, Kim DU, Park HO, Hartsuiker E. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair (Amst) 2009; 8:672-9. [PMID: 19264558 DOI: 10.1016/j.dnarep.2009.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/27/2022]
Abstract
The maintenance of genome stability is essential for an organism to avoid cell death and cancer. Based on screens for mutant sensitivity against DNA damaging agents a large number of DNA repair and DNA damage checkpoint genes have previously been identified in genetically amenable model organisms. These screens have however not been exhaustive and various genes have been, and remain to be, identified by other means. We therefore screened a genome-wide Schizosaccharomyces pombe deletion library for mutants sensitive against various DNA damaging agents. Screening the library on different concentrations of these genotoxins allowed us to assign a semi-quantitative score to each mutant expressing the degree of sensitivity. We isolated a total of 229 mutants which show sensitivity to one or more of the DNA damaging agents used. This set of mutants was significantly enriched for processes involved in DNA replication, DNA repair, DNA damage checkpoint, response to UV, mating type switching, telomere length maintenance and meiosis, and also for processes involved in the establishment and maintenance of chromatin architecture (notably members of the SAGA complex), transcription (members of the CCR4-Not complex) and microtubule related processes (members of the DASH complex). We also identified 23 sensitive mutants which had previously been classified as "sequence orphan" or as "conserved hypothetical". Among these, we identified genes showing extensive homology to CtIP, Stra13, Ybp1/Ybp2, Human Fragile X mental retardation interacting protein NUFIP1, and Aprataxin. The identification of these homologues will provide a basis for the further characterisation of the role of these conserved proteins in the genetically amenable model organism S. pombe.
Collapse
Affiliation(s)
- Gaurang P Deshpande
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | |
Collapse
|
24
|
Irmisch A, Ampatzidou E, Mizuno K, O'Connell MJ, Murray JM. Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J 2009; 28:144-55. [PMID: 19158664 DOI: 10.1038/emboj.2008.273] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023] Open
Abstract
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis-segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome-wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage-induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination-competent conformation primed for replication restart.
Collapse
Affiliation(s)
- Anja Irmisch
- Genome Damage and Stability Centre, University of Sussex, Brighton, E. Sussex, UK
| | | | | | | | | |
Collapse
|
25
|
Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell 2009; 20:1671-82. [PMID: 19158389 DOI: 10.1091/mbc.e08-08-0875] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is important for DNA repair, but it can also contribute to genome rearrangements. RecQ helicases, including yeast Sgs1 and human BLM, safeguard genome integrity through their functions in DNA recombination. Sgs1 prevents the accumulation of Rad51-dependent sister chromatid junctions at damaged replication forks, and its functionality seems to be regulated by Ubc9- and Mms21-dependent sumoylation. We show that mutations in Smc5-6 and Esc2 also lead to an accumulation of recombinogenic structures at damaged replication forks. Because Smc5-6 is sumoylated in an Mms21-dependent manner, this finding suggests that Smc5-6 may be a crucial target of Mms21 implicated in this process. Our data reveal that Smc5-6 and Esc2 are required to tolerate DNA damage and that their functionality is critical in genotoxic conditions in the absence of Sgs1. As reported previously for Sgs1 and Smc5-6, we find that Esc2 physically interacts with Ubc9 and SUMO. This interaction is correlated with the ability of Esc2 to promote DNA damage tolerance. Collectively, these data suggest that Esc2 and Smc5-6 act in concert with Sgs1 to prevent the accumulation of recombinogenic structures at damaged replication forks, likely by integrating sumoylation activities to regulate the repair pathways in response to damaged DNA.
Collapse
Affiliation(s)
- Julie Sollier
- IFOM, The FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The structural maintenance of chromosome (SMC) proteins constitute the cores of three protein complexes involved in chromosome metabolism; cohesin, condensin and the Smc5-Smc6 complex. While the roles of cohesin and condensin in sister chromatid cohesion and chromosome condensation respectively have been described, the cellular function of Smc5-Smc6 is as yet not understood, consequently the less descriptive name. The complex is involved in a variety of DNA repair pathways. It contains activities reminiscent of those described for cohesin and condensin, as well as several DNA helicases and endonucleases. It is required for sister chromatid recombination, and smc5-smc6 mutants suffer from the accumulation of unscheduled recombination intermediates. The complex contains a SUMO-ligase and potentially an ubiquitin-ligase; thus Smc5-Smc6 might presently have a dull name, but it seems destined to be recognized as a key player in the maintenance of chromosome stability. In this review we summarize our present understanding of this enigmatic protein complex.
Collapse
Affiliation(s)
- Giacomo De Piccoli
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
27
|
Pebernard S, Schaffer L, Campbell D, Head SR, Boddy MN. Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J 2008; 27:3011-23. [PMID: 18923417 DOI: 10.1038/emboj.2008.220] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/22/2008] [Indexed: 01/19/2023] Open
Abstract
The Smc5/6 holocomplex executes key functions in genome maintenance that include ensuring the faithful segregation of chromosomes at mitosis and facilitating critical DNA repair pathways. Smc5/6 is essential for viability and therefore, dissecting its chromosome segregation and DNA repair roles has been challenging. We have identified distinct epigenetic and post-translational modifications that delineate roles for fission yeast Smc5/6 in centromere function, versus replication fork-associated DNA repair. We monitored Smc5/6 subnuclear and genomic localization in response to different replicative stresses, using fluorescence microscopy and chromatin immunoprecipitation (ChIP)-on-chip methods. Following hydroxyurea treatment, and during an unperturbed S phase, Smc5/6 is transiently enriched at the heterochromatic outer repeats of centromeres in an H3-K9 methylation-dependent manner. In contrast, methyl methanesulphonate treatment induces the accumulation of Smc5/6 at subtelomeres, in an Nse2 SUMO ligase-dependent, but H3-K9 methylation-independent manner. Finally, we determine that Smc5/6 loads at all genomic tDNAs, a phenomenon that requires intact consensus TFIIIC-binding sites in the tDNAs.
Collapse
Affiliation(s)
- Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Khasanov FK, Salakhova AF, Khasanova OS, Grishchuk AL, Chepurnaja OV, Korolev VG, Kohli J, Bashkirov VI. Genetic analysis reveals different roles of Schizosaccharomyces pombe sfr1/dds20 in meiotic and mitotic DNA recombination and repair. Curr Genet 2008; 54:197-211. [PMID: 18769921 DOI: 10.1007/s00294-008-0212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 11/26/2022]
Abstract
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Delta is epistatic to rad18 (-) and rad60 (-), and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Delta strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.
Collapse
Affiliation(s)
- Fuat K Khasanov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pebernard S, Perry JJP, Tainer JA, Boddy MN. Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol Biol Cell 2008; 19:4099-109. [PMID: 18667531 DOI: 10.1091/mbc.e08-02-0226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein-protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.
Collapse
Affiliation(s)
- Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
30
|
Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 2008; 28:3639-51. [PMID: 18378696 DOI: 10.1128/mcb.01828-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.
Collapse
|
31
|
Murray JM, Carr AM. Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 2008; 9:177-82. [PMID: 18059412 DOI: 10.1038/nrm2309] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity.
Collapse
Affiliation(s)
- Johanne M Murray
- Johanne M. Murray and Antony M. Carr are at the Genome Damage and Stability Centre, University of Sussex, Brighton, Sussex, BN1 9RQ, UK.
| | | |
Collapse
|
32
|
Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol Cell Biol 2007; 28:1197-206. [PMID: 18086888 DOI: 10.1128/mcb.00767-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SMC protein complexes play important roles in chromosome dynamics. The function of the SMC5-6 complex remains unclear, though it is involved in resolution of different DNA structures by recombination. We have now identified and characterized the four non-SMC components of the human complex and in particular demonstrated that the MAGEG1 protein is part of this complex. MAGE proteins play important but as yet undefined roles in carcinogenesis, apoptosis, and brain development. We show that, with the exception of the SUMO ligase hMMS21/hNSE2, depletion of any of the components results in degradation of all the other components. Depletion also confers sensitivity to methyl methanesulfonate. Several of the components are modified by sumoylation and ubiquitination.
Collapse
|
33
|
Parenti R, Paratore S, Torrisi A, Cavallaro S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β-amyloid-induced apoptosis. Eur J Neurosci 2007; 26:2444-57. [DOI: 10.1111/j.1460-9568.2007.05864.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007. [PMID: 17487278 DOI: 10.1371/.pone.0000430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 2006; 127:509-22. [PMID: 17081974 DOI: 10.1016/j.cell.2006.08.050] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/19/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022]
Abstract
The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.
Collapse
Affiliation(s)
- Dana Branzei
- FIRC Institute of Molecular Oncology Foundation and Department of Biomedical Sciences and Biotechnology, Università degli Studi di Milano, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tsuyama T, Inou K, Seki M, Seki T, Kumata Y, Kobayashi T, Kimura K, Hanaoka F, Enomoto T, Tada S. Chromatin loading of Smc5/6 is induced by DNA replication but not by DNA double-strand breaks. Biochem Biophys Res Commun 2006; 351:935-9. [PMID: 17094943 DOI: 10.1016/j.bbrc.2006.10.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
Smc6, a member of the structural maintenance of chromosomes (SMC) family of proteins, forms a complex with related Smc5. Genetic analyses of yeast have demonstrated the involvement of Smc6 in DNA repair and checkpoint responses. In this study, we investigated the role of the Smc5/6 complex in higher eukaryotes by analyzing its behavior in Xenopus laevis egg extracts. Smc5/6 was loaded onto chromatin during DNA replication in a manner dependent on the initiation of DNA synthesis, and it dissociated from chromatin during mitosis. Moreover, the induction of DNA double-strand breaks following replication did not significantly affect the amount of chromatin-associated Smc6. These findings suggest that the Smc5/6 complex is regulated during the cell cycle, presumably in anticipation of DNA damage that may arise during replication.
Collapse
Affiliation(s)
- Takashi Tsuyama
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ampatzidou E, Irmisch A, O'Connell MJ, Murray JM. Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 2006; 26:9387-401. [PMID: 17030601 PMCID: PMC1698528 DOI: 10.1128/mcb.01335-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.
Collapse
Affiliation(s)
- Eleni Ampatzidou
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | | | |
Collapse
|
39
|
Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR. The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem 2006; 281:36952-9. [PMID: 17005570 DOI: 10.1074/jbc.m608004200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) proteins play fundamental roles in many aspects of chromosome organization and dynamics. The SMC complexes form unique structures with long coiled-coil arms folded at a hinge domain, so that the globular N- and C-terminal domains are brought together to form a "head." Within the Smc5-Smc6 complex, we previously identified two subcomplexes containing Smc6-Smc5-Nse2 and Nse1-Nse3-Nse4. A third subcomplex containing Nse5 and -6 has also been identified recently. We present evidence that Nse4 is the kleisin component of the complex, which bridges the heads of Smc5 and -6. The C-terminal part of Nse4 interacts with the head domain of Smc5, and structural predictions for Nse4 proteins suggest similar motifs that are shared within the kleisin family. Specific mutations within a predicted winged helix motif of Nse4 destroy the interaction with Smc5. We propose that Nse4 and its orthologs form the delta-kleisin subfamily. We further show that Nse3, as well as Nse5 and Nse6, also bridge the heads of Smc5 and -6. The Nse1-Nse3-Nse4 and Nse5-Nse6 subcomplexes bind to the Smc5-Smc6 heads domain at different sites.
Collapse
Affiliation(s)
- Jan Palecek
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Betts Lindroos H, Ström L, Itoh T, Katou Y, Shirahige K, Sjögren C. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 2006; 22:755-767. [PMID: 16793545 DOI: 10.1016/j.molcel.2006.05.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/31/2006] [Accepted: 05/12/2006] [Indexed: 01/25/2023]
Abstract
The SMC protein complexes safeguard genomic integrity through their functions in chromosome segregation and repair. The chromosomal localization of the budding yeast Smc5/6 complex determined here reveals that the complex works specifically on the duplicated genome in differently regulated pathways. The first controls the association to centromeres and chromosome arms in unchallenged cells, the second regulates the association to DNA breaks, and the third directs the complex to the chromosome arm that harbors the ribosomal DNA arrays. The chromosomal interaction pattern predicts a function that becomes more important with increasing chromosome length and that the complex's role in unchallenged cells is independent of DNA damage. Additionally, localization of Smc6 to collapsed replication forks indicates an involvement in their rescue. Altogether this shows that the complex maintains genomic integrity in multiple ways, and evidence is presented that the Smc5/6 complex is needed during replication to prevent the accumulation of branched chromosome structures.
Collapse
Affiliation(s)
- Hanna Betts Lindroos
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute, Inc., Tokyo 100-8141, Japan
| | - Yuki Katou
- Gene Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan
| | - Katsuhiko Shirahige
- Gene Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan.
| | - Camilla Sjögren
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Potts PR, Porteus MH, Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 2006; 25:3377-88. [PMID: 16810316 PMCID: PMC1523187 DOI: 10.1038/sj.emboj.7601218] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/07/2006] [Indexed: 01/09/2023] Open
Abstract
The structural maintenance of chromosomes (SMC) family of proteins has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The SMC1/3 cohesin complex is thought to promote HR by maintaining the close proximity of sister chromatids at DSBs. The SMC5/6 complex is also required for DNA repair, but the mechanism by which it accomplishes this is unclear. Here, we show that RNAi-mediated knockdown of the SMC5/6 complex components in human cells increases the efficiency of gene targeting due to a specific requirement for hSMC5/6 in sister chromatid HR. Knockdown of the hSMC5/6 complex decreases sister chromatid HR, but does not reduce nonhomologous end-joining (NHEJ) or intra-chromatid, homologue, or extrachromosomal HR. The hSMC5/6 complex is itself recruited to nuclease-induced DSBs and is required for the recruitment of cohesin to DSBs. Our results establish a mechanism by which the hSMC5/6 complex promotes DNA repair and suggest a novel strategy to improve the efficiency of gene targeting in mammalian somatic cells.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew H Porteus
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongtao Yu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Calonge TM, O'Connell MJ. Antagonism of Chk1 signaling in the G2 DNA damage checkpoint by dominant alleles of Cdr1. Genetics 2006; 174:113-23. [PMID: 16816416 PMCID: PMC1569782 DOI: 10.1534/genetics.106.060970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the Chk1 protein kinase by DNA damage enforces a checkpoint that maintains Cdc2 in its inactive, tyrosine-15 (Y15) phosphorylated state. Chk1 downregulates the Cdc25 phosphatases and concomitantly upregulates the Wee1 kinases that control the phosphorylation of Cdc2. Overproduction of Chk1 causes G(2) arrest/delay independently of DNA damage and upstream checkpoint genes. We utilized this to screen fission yeast for mutations that alter sensitivity to Chk1 signaling. We describe three dominant-negative alleles of cdr1, which render cells supersensitive to Chk1 levels, and suppress the checkpoint defects of chk1Delta cells. Cdr1 encodes a protein kinase previously identified as a negative regulator of Wee1 activity in response to limited nutrition, but Cdr1 has not previously been linked to checkpoint signaling. Overproduction of Cdr1 promotes checkpoint defects and exacerbates the defective response to DNA damage of cells lacking Chk1. We conclude that regulation of Wee1 by Cdr1 and possibly by related kinases is an important antagonist of Chk1 signaling and represents a novel negative regulation of cell cycle arrest promoted by this checkpoint.
Collapse
Affiliation(s)
- Teresa M Calonge
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
43
|
Pebernard S, Wohlschlegel J, McDonald WH, Yates JR, Boddy MN. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol Cell Biol 2006; 26:1617-30. [PMID: 16478984 PMCID: PMC1430260 DOI: 10.1128/mcb.26.5.1617-1630.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution.
Collapse
Affiliation(s)
- Stephanie Pebernard
- The Scripps Research Institute, Rm. MB107, 10550 North Torrey Pines Rd., Molecular Biology, MB-3, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
44
|
Miyabe I, Morishita T, Hishida T, Yonei S, Shinagawa H. Rhp51-dependent recombination intermediates that do not generate checkpoint signal are accumulated in Schizosaccharomyces pombe rad60 and smc5/6 mutants after release from replication arrest. Mol Cell Biol 2006; 26:343-53. [PMID: 16354704 PMCID: PMC1317627 DOI: 10.1128/mcb.26.1.343-353.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe rad60 gene is essential for cell growth and is involved in repairing DNA double-strand breaks. Rad60 physically interacts with and is functionally related to the structural maintenance of chromosomes 5 and 6 (SMC5/6) protein complex. In this study, we investigated the role of Rad60 in the recovery from the arrest of DNA replication induced by hydroxyurea (HU). rad60-1 mutant cells arrested mitosis normally when treated with HU. Significantly, Rad60 function is not required during HU arrest but is required on release. However, the mutant cells underwent aberrant mitosis accompanied by irregular segregation of chromosomes, and DNA replication was not completed, as revealed by pulsed-field gel electrophoresis. The deletion of rhp51 suppressed the aberrant mitosis of rad60-1 cells and caused mitotic arrest. These results suggest that Rhp51 and Rad60 are required for the restoration of a stalled or collapsed replication fork after release from the arrest of DNA replication by HU. The rad60-1 mutant was proficient in Rhp51 focus formation after release from the HU-induced arrest of DNA replication or DNA-damaging treatment. Furthermore, the lethality of a rad60-1 rqh1Delta double mutant was suppressed by the deletion of rhp51 or rhp57. These results suggest that Rad60 is required for recombination repair at a step downstream of Rhp51. We propose that Rhp51-dependent DNA structures that cannot activate the mitotic checkpoints accumulate in rad60-1 cells.
Collapse
Affiliation(s)
- Izumi Miyabe
- Genome Dynamics Group, Research Institute for Microbial Disease, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
45
|
Cost GJ, Cozzarelli NR. Smc5p promotes faithful chromosome transmission and DNA repair in Saccharomyces cerevisiae. Genetics 2006; 172:2185-200. [PMID: 16452135 PMCID: PMC1456416 DOI: 10.1534/genetics.105.053876] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heterodimers of structural maintenance of chromosomes (SMC) proteins form the core of several protein complexes involved in the organization of DNA, including condensation and cohesion of the chromosomes at metaphase. The functions of the complexes with a heterodimer of Smc5p and Smc6p are less clear. To better understand them, we created two S. cerevisiae strains bearing temperature-sensitive alleles of SMC5. When shifted to the restrictive temperature, both mutants lose viability gradually, concomitant with the appearance of nuclear abnormalities and phosphorylation of the Rad53p DNA damage checkpoint protein. Removal of Rad52p or overexpression of the SUMO ligase Mms21p partially suppresses the temperature sensitivity of smc5 strains and increases their survival at the restrictive temperature. At the permissive temperature, smc5-31 but not smc5-33 cells exhibit hypersensitivity to several DNA-damaging agents despite induction of the DNA damage checkpoint. Similarly, smc5-31 but not smc5-33 cells are killed by overexpression of the SUMO ligase-defective Mms21-SAp but not by overexpression of wild-type Mms21p. Both smc5 alleles are synthetically lethal with mms21-SA and exhibit Rad52p-independent chromosome fragmentation and loss at semipermissive temperatures. Our data indicate a critical role for the S. cerevisiae Smc5/6-containing complexes in both DNA repair and chromosome segregation.
Collapse
Affiliation(s)
- Gregory J Cost
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
46
|
Morishita T, Furukawa F, Sakaguchi C, Toda T, Carr AM, Iwasaki H, Shinagawa H. Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol Cell Biol 2005; 25:8074-83. [PMID: 16135799 PMCID: PMC1234317 DOI: 10.1128/mcb.25.18.8074-8083.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.
Collapse
Affiliation(s)
- Takashi Morishita
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Structural maintenance of chromosomes (SMC) proteins are chromosomal ATPases, highly conserved from bacteria to humans, that play fundamental roles in many aspects of higher-order chromosome organization and dynamics. In eukaryotes, SMC1 and SMC3 act as the core of the cohesin complexes that mediate sister chromatid cohesion, whereas SMC2 and SMC4 function as the core of the condensin complexes that are essential for chromosome assembly and segregation. Another complex containing SMC5 and SMC6 is implicated in DNA repair and checkpoint responses. The SMC complexes form unique ring- or V-shaped structures with long coiled-coil arms, and function as ATP-modulated, dynamic molecular linkers of the genome. Recent studies shed new light on the mechanistic action of these SMC machines and also expanded the repertoire of their diverse cellular functions. Dissecting this class of chromosomal ATPases is likely to be central to our understanding of the structural basis of genome organization, stability, and evolution.
Collapse
Affiliation(s)
- Ana Losada
- Spanish National Cancer Center (CNIO), Madrid
| | | |
Collapse
|
48
|
Abstract
DNA repair is required for the genomic stability and well-being of an organism. In yeasts, a multisubunit complex consisting of SMC5, SMC6, MMS21/NSE2, and other non-SMC proteins is required for DNA repair through homologous recombination. The yeast MMS21 protein is a SUMO ligase. Here we show that the human homolog of MMS21 is also a SUMO ligase. hMMS21 stimulates sumoylation of hSMC6 and the DNA repair protein TRAX. Depletion of hMMS21 by RNA interference (RNAi) sensitizes HeLa cells toward DNA damage-induced apoptosis. Ectopic expression of wild-type hMMS21, but not its ligase-inactive mutant, rescues this hypersensitivity of hMMS21-RNAi cells. ATM/ATR are hyperactivated in hMMS21-RNAi cells upon DNA damage. Consistently, hMMS21-RNAi cells show an increased number of phospho-CHK2 foci. Finally, we show that hMMS21-RNAi cells show a decreased capacity to repair DNA lesions as measured by the comet assay. Our findings suggest that the human SMC5/6 complex and the SUMO ligase activity of hMMS21 are required for the prevention of DNA damage-induced apoptosis by facilitating DNA repair in human cells.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, 75390-9041, USA
| | | |
Collapse
|
49
|
Hu B, Liao C, Millson SH, Mollapour M, Prodromou C, Pearl LH, Piper PW, Panaretou B. Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. Mol Microbiol 2005; 55:1735-50. [PMID: 15752197 DOI: 10.1111/j.1365-2958.2005.04531.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrate a role for Qri2 in the essential DNA repair function of the Smc5/6 complex in Saccharomyces cerevisiae. We generated temperature-sensitive (ts) mutants in QRI2 and characterized their properties. The mutants arrest after S phase and prior to mitosis. Furthermore, the arrest is dependant on the Rad24 checkpoint, and is also accompanied by phosphorylation of the Rad53 checkpoint effector kinase. The mutants also display genome instability and are sensitive to agents that damage DNA. Two-hybrid screens reveal a physical interaction between Qri2 and proteins that are non-Smc elements of the Smc5/6 DNA repair complex, which is why we propose the name NSE4 for the open reading frame previously known as QRI2. A key role for Nse4 in Smc5/6 function is likely, as overexpressing known subunits of the Smc5/6 complex suppresses nse4(ts) cell cycle arrest. The nse4(ts) growth arrest is non-lethal and unlike the catastrophic nuclear fragmentation phenotype of smc6(ts) mutants, the nucleus remains intact; replicative intermediates and sheared DNA are not detected. This could imply a role for Nse4 in maintenance of higher order chromosome structure.
Collapse
Affiliation(s)
- Bin Hu
- Department of Life Sciences, King's College London, London SE1 9NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM, Tapia-Alveal C, Harvey SH, Murray JM, O'Connell MJ. Brc1-mediated DNA repair and damage tolerance. Genetics 2005; 171:457-68. [PMID: 15972456 PMCID: PMC1456763 DOI: 10.1534/genetics.105.044966] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structural maintenance of chromosome (SMC) proteins are key elements in controlling chromosome dynamics. In eukaryotic cells, three essential SMC complexes have been defined: cohesin, condensin, and the Smc5/6 complex. The latter is essential for DNA damage responses; in its absence both repair and checkpoint responses fail. In fission yeast, the UV-C and ionizing radiation (IR) sensitivity of a specific hypomorphic allele encoding the Smc6 subunit, rad18-74 (renamed smc6-74), is suppressed by mild overexpression of a six-BRCT-domain protein, Brc1. Deletion of brc1 does not result in a hypersensitivity to UV-C or IR, and thus the function of Brc1 relative to the Smc5/6 complex has remained unclear. Here we show that brc1Delta cells are hypersensitive to a range of radiomimetic drugs that share the feature of creating lesions that are an impediment to the completion of DNA replication. Through a genetic analysis of brc1Delta epistasis and by defining genes required for Brc1 to suppress smc6-74, we find that Brc1 functions to promote recombination through a novel postreplication repair pathway and the structure-specific nucleases Slx1 and Mus81. Activation of this pathway through overproduction of Brc1 bypasses a repair defect in smc6-74, reestablishing resolution of lesions by recombination.
Collapse
Affiliation(s)
- Daniel M Sheedy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|