1
|
Son SM, Park SJ, Breusegem SY, Larrieu D, Rubinsztein DC. p300 nucleocytoplasmic shuttling underlies mTORC1 hyperactivation in Hutchinson-Gilford progeria syndrome. Nat Cell Biol 2024; 26:235-249. [PMID: 38267537 PMCID: PMC10866696 DOI: 10.1038/s41556-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism and autophagy. Multiple pathways modulate mTORC1 in response to nutrients. Here we describe that nucleus-cytoplasmic shuttling of p300/EP300 regulates mTORC1 activity in response to amino acid or glucose levels. Depletion of these nutrients causes cytoplasm-to-nucleus relocalization of p300 that decreases acetylation of the mTORC1 component raptor, thereby reducing mTORC1 activity and activating autophagy. This is mediated by AMP-activated protein kinase-dependent phosphorylation of p300 at serine 89. Nutrient addition to starved cells results in protein phosphatase 2A-dependent dephosphorylation of nuclear p300, enabling its CRM1-dependent export to the cytoplasm to mediate mTORC1 reactivation. p300 shuttling regulates mTORC1 in most cell types and occurs in response to altered nutrients in diverse mouse tissues. Interestingly, p300 cytoplasm-nucleus shuttling is altered in cells from patients with Hutchinson-Gilford progeria syndrome. p300 mislocalization by the disease-causing protein, progerin, activates mTORC1 and inhibits autophagy, phenotypes that are normalized by modulating p300 shuttling. These results reveal how nutrients regulate mTORC1, a cytoplasmic complex, by shuttling its positive regulator p300 in and out of the nucleus, and how this pathway is misregulated in Hutchinson-Gilford progeria syndrome, causing mTORC1 hyperactivation and defective autophagy.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sophia Y Breusegem
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Delphine Larrieu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Ibarra-Sánchez A, González-Espinosa C, Pérez-Tapia SM, Flores-Borja F, Estrada-Parra S, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep 2022; 12:15685. [PMID: 36127495 PMCID: PMC9489790 DOI: 10.1038/s41598-022-20054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22. Col. Sección XVI, C.P. 14080, México City, México.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
4
|
Hamed M, Chen J, Li Q. Regulation of Dystroglycan Gene Expression in Early Myoblast Differentiation. Front Cell Dev Biol 2022; 10:818701. [PMID: 35330913 PMCID: PMC8940196 DOI: 10.3389/fcell.2022.818701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dystroglycan, a component of the dystrophin-associated glycoprotein complex, connects the extracellular matrix and cytoskeleton to maintain muscle membrane integrity. As such, abnormalities of dystroglycan are linked to different types of muscular dystrophies. In an effort to develop therapeutic approaches to re-establish signal integration for muscle repair and homeostasis, we have previously determined that a clinically approved agonist of retinoid X receptor enhances myoblast differentiation through direct regulation of gene expression of the muscle master regulator MyoD. Using comprehensive omics and molecular analyses, we found that dystroglycan gene expression is responsive to retinoid X receptor-selective signaling in early myoblast differentiation. In addition, the dystroglycan gene is a MyoD target, and residue-specific histone acetylation coincides with the occupancy of histone acetyltransferase p300 at the MyoD binding sites. Consequently, the p300 function is important for rexinoid-augmented dystroglycan gene expression. Finally, dystroglycan plays a role in myoblast differentiation. Our study sheds new light on dystroglycan regulation and function in myoblast differentiation and presents a potential avenue for re-establishing signal integration of a specific chromatin state pharmacologically to overcome muscle pathology and identify additional myogenic interactions for therapeutic applications.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Qiao Li,
| |
Collapse
|
5
|
Khilji S, Hamed M, Chen J, Li Q. Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation. Commun Biol 2020; 3:315. [PMID: 32555436 PMCID: PMC7303199 DOI: 10.1038/s42003-020-1043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Khilji S, Hamed M, Chen J, Li Q. Loci-specific histone acetylation profiles associated with transcriptional coactivator p300 during early myoblast differentiation. Epigenetics 2018; 13:642-654. [PMID: 29927685 PMCID: PMC6140897 DOI: 10.1080/15592294.2018.1489659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Molecular regulation of stem cell differentiation is exerted through both genetic and epigenetic determinants over distal regulatory or enhancer regions. Understanding the mechanistic action of active or poised enhancers is therefore imperative for control of stem cell differentiation. Based on the genome-wide co-occurrence of different epigenetic marks in committed proliferating myoblasts, we have previously generated a 14-state chromatin state model to profile rexinoid-responsive histone acetylation in early myoblast differentiation. Here, we delineate the functional mode of transcription regulators during early myogenic differentiation using genome-wide chromatin state association. We define a role of transcriptional coactivator p300, when recruited by muscle master regulator MyoD, in the establishment and regulation of myogenic loci at the onset of myoblast differentiation. In addition, we reveal an enrichment of loci-specific histone acetylation at p300 associated active or poised enhancers, particularly when enlisted by MyoD. We provide novel molecular insights into the regulation of myogenic enhancers by p300 in concert with MyoD. Our studies present a valuable aptitude for driving condition-specific chromatin state or enhancers pharmacologically to treat muscle-related diseases and for the identification of additional myogenic targets and molecular interactions for therapeutic development. Abbreviations: MRF: Muscle regulatory factor; HAT: Histone acetyltransferase; CBP: CREB-binding protein; ES: Embryonic stem; ATCC: American type culture collection; DM: Differentiation medium; DMEM: Dulbecco’s Modified Eagle Medium; GM: Growth medium; GO: Gene ontology; GREAT: Genomic regions enrichment of annotations tool; FPKM: Fragments per kilobase of transcript per million; GEO: Gene expression omnibus; MACS: Model-based analysis for ChIP-seq
Collapse
Affiliation(s)
- Saadia Khilji
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Munerah Hamed
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Jihong Chen
- b Department of Pathology and Laboratory Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Qiao Li
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada.,b Department of Pathology and Laboratory Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
7
|
Hamed M, Khilji S, Dixon K, Blais A, Ioshikhes I, Chen J, Li Q. Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Res 2017; 45:11236-11248. [PMID: 28981706 PMCID: PMC5737385 DOI: 10.1093/nar/gkx800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the genome-wide impact of rexinoids on myogenic differentiation through integral RNA-seq and ChIP-seq analyses. We found that bexarotene promotes myoblast differentiation through the coordination of exit from the cell cycle and the activation of muscle-related genes. We uncovered a new mechanism of rexinoid action which is mediated by the nuclear receptor and largely reconciled through a direct regulation of MyoD gene expression. In addition, we determined a rexinoid-responsive residue-specific histone acetylation at a distinct chromatin state associated to MyoD and myogenin. Thus, we provide novel molecular insights into the interplay between RXR signaling and chromatin states pertinent to myogenic programs in early myoblast differentiation.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Katherine Dixon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
8
|
Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis. Reprod Toxicol 2017; 74:32-39. [PMID: 28865949 DOI: 10.1016/j.reprotox.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.
Collapse
|
9
|
Lamparter CL, Winn LM. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells. Toxicol Appl Pharmacol 2016; 306:69-78. [PMID: 27381264 DOI: 10.1016/j.taap.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations.
Collapse
Affiliation(s)
- Christina L Lamparter
- Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
10
|
Hakami NY, Dusting GJ, Peshavariya HM. Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-Derived Redox Signalling and Angiogenesis. J Cell Mol Med 2016; 20:1932-44. [PMID: 27297729 PMCID: PMC5020625 DOI: 10.1111/jcmm.12885] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)-dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2 O2 ) was measured by amplex(®) red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4-deficient mice. Trichostatin A reduced Nox4 expression in a time- and concentration-dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2 O2 . Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300- histone acetyltransferase (p300-HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin-activating enzyme E1 (PYR-41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4-deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4-deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1-induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300-HAT-dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia. .,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Chen J, Li Q. Implication of retinoic acid receptor selective signaling in myogenic differentiation. Sci Rep 2016; 6:18856. [PMID: 26830006 PMCID: PMC4735650 DOI: 10.1038/srep18856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
Signaling molecules are important for committing individual cells into tissue-specific lineages during early vertebrate development. Retinoic acid (RA) is an important vertebrate morphogen, in that its concentration gradient is essential for correct patterning of the vertebrate embryo. RA signaling is mediated through the activation of retinoic acid receptors (RARs), which function as ligand-dependent transcription factors. In this study, we examined the molecular mechanisms of RAR-selective signaling in myogenic differentiation. We found that just like natural ligand RA, a RAR-selective ligand is an effective enhancer in the commitment of skeletal muscle lineage at the early stage of myogenic differentiation. Interestingly, the kinetics and molecular basis of the RAR-selective ligand in myogenic differentiation are similar to that of natural ligand RA. Also similar to natural ligand RA, the RAR-selective ligand enhances myogenic differentiation through β-catenin signaling pathway while inhibiting cardiac differentiation. Furthermore, while low concentrations of natural ligand RA or RAR-selective ligand regulate myogenic differentiation through RAR function and coactivator recruitment, high concentrations are critical to the expression of a model RA-responsive gene. Thus our data suggests that RAR-mediated gene regulation may be highly context-dependent, affected by locus-specific interaction or local chromatin environment.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
AlSudais H, Aabed K, Nicola W, Dixon K, Chen J, Li Q. Retinoid X Receptor-selective Signaling in the Regulation of Akt/Protein Kinase B Isoform-specific Expression. J Biol Chem 2015; 291:3090-9. [PMID: 26668312 DOI: 10.1074/jbc.m115.692707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/22/2023] Open
Abstract
The differentiation and fusion of myoblasts into mature myotubes are complex processes responding to multiple signaling pathways. The function of Akt/PKB is critical for myogenesis, but less is clear as to the regulation of its isoform-specific expression. Bexarotene is a drug already used clinically to treat cancer, and it has the ability to enhance the commitment of embryonic stem cells into skeletal muscle lineage. Whereas bexarotene regulates fundamental biological processes through retinoid X receptor (RXR)-mediated gene expression, molecular pathways underlying its positive effects on myogenesis remain unclear. In this study, we have examined the signaling pathways that transmit bexarotene action in the context of myoblast differentiation. We show that bexarotene promotes myoblast differentiation and fusion through the activation of RXR and the regulation of Akt/PKB isoform-specific expression. Interestingly, bexarotene signaling appears to correlate with residue-specific histone acetylation and is able to counteract the detrimental effects of cachectic factors on myogenic differentiation. We also signify an isoform-specific role for Akt/PKB in RXR-selective signaling to promote and to retain myoblast differentiation. Taken together, our findings establish the viability of applying bexarotene in the prevention and treatment of muscle-wasting disorders, particularly given the lack of drugs that promote myogenic differentiation available for potential clinical applications. Furthermore, the model of bexarotene-enhanced myogenic differentiation will provide an important avenue to identify additional genetic targets and specific molecular interactions that we can study and apply for the development of potential therapeutics in muscle regeneration and repair.
Collapse
Affiliation(s)
| | - Kawther Aabed
- Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - William Nicola
- From the Departments of Cellular and Molecular Medicine and
| | | | - Jihong Chen
- Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiao Li
- From the Departments of Cellular and Molecular Medicine and Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
13
|
Molecular Basis for the Regulation of Transcriptional Coactivator p300 in Myogenic Differentiation. Sci Rep 2015; 5:13727. [PMID: 26354606 PMCID: PMC4564756 DOI: 10.1038/srep13727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Skeletal myogenesis is a highly ordered process which specifically depends on the function of transcriptional coactivator p300. Previous studies have established that Akt/protein kinase B (PKB), a positive regulator of p300 in proliferating cells, is also important for proper skeletal muscle development. Nevertheless, it is not clear as to how the p300 is regulated by myogenic signaling events given that both p300 and Akt are involved in many cellular processes. Our studies revealed that the levels of p300 protein are temporally maintained in ligand-enhanced skeletal myocyte development. Interestingly, this maintenance of p300 protein is observed at the stage of myoblast differentiation, which coincides with an increase in Akt phosphorylation. Moreover, regulation of p300 during myoblast differentiation appears to be mediated by Akt signaling. Blunting of p300 impairs myogenic expression and myoblast differentiation. Thus, our data suggests a particular role for Akt in myoblast differentiation through interaction with p300. Our studies also establish the potential of exploiting p300 regulation and Akt activation to decipher the complex signaling cascades involved in skeletal muscle development.
Collapse
|
14
|
Yilbas AE, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, Chen J, Li Q. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem 2014; 2:12. [PMID: 24790981 PMCID: PMC3982529 DOI: 10.3389/fchem.2014.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Currently, there are no effective treatments to directly repair damaged heart tissue after cardiac injury since existing therapies focus on rescuing or preserving reversibly damaged tissue. Cell-based therapies using cardiomyocytes generated from stem cells present a promising therapeutic approach to directly replace damaged myocardium with new healthy tissue. However, the molecular mechanisms underlying the commitment of stem cells into cardiomyocytes are not fully understood and will be critical to guide this new technology into the clinic. Since GATA4 is a critical regulator of cardiac differentiation, we examined the molecular basis underlying the early activation of GATA4 gene expression during cardiac differentiation of pluripotent stem cells. Our studies demonstrate the direct involvement of histone acetylation and transcriptional coactivator p300 in the regulation of GATA4 gene expression. More importantly, we show that histone acetyltransferase (HAT) activity is important for GATA4 gene expression with the use of curcumin, a HAT inhibitor. In addition, the widely used histone deacetylase inhibitor valproic acid enhances both histone acetylation and cardiac specification.
Collapse
Affiliation(s)
- Ayse E Yilbas
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Alison Hamilton
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Yingjian Wang
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Hymn Mach
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Natascha Lacroix
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Darryl R Davis
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
15
|
Hamed M, Khilji S, Chen J, Li Q. Stepwise acetyltransferase association and histone acetylation at the Myod1 locus during myogenic differentiation. Sci Rep 2014; 3:2390. [PMID: 23928680 PMCID: PMC3738969 DOI: 10.1038/srep02390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023] Open
Abstract
While chromatin modifications can offer a useful readout for enhancer activities, it is less clear whether these modification marks are a cause or consequence of transcription factor occupancy and enhancer activation. We have examined in details the temporal events of acetyltransferase associations and histone acetylations at different regulatory regions of the Myod1 locus. Our studies demonstrate that the histone acetyltransferase (HAT) p300 is stepwise enriched at distinct Myod1 regulatory regions during myogenic differentiation. This enrichment of p300 is associated with increased histone acetylation in a discrete pattern. Inhibition of p300 HAT activity impedes myogenic differentiation, which is coupled with decreased histone acetylation at specific Myod1 regulatory regions. We show for the first time that p300 is directly involved in the early regulation of Myod1 enhancer, and provide molecular insights into how p300 HAT activity and histone acetylation are related to enhancer activation and, consequently, gene transcription.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Li Q, Le May M, Lacroix N, Chen J. Induction of Pax3 gene expression impedes cardiac differentiation. Sci Rep 2014; 3:2498. [PMID: 23970178 PMCID: PMC3750538 DOI: 10.1038/srep02498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cell-based therapies using pluripotent stem cells hold great promise as regenerative approaches to treat many types of diseases. Nevertheless many challenges remain and, perhaps foremost, is the issue of how to direct and enhance the specification and differentiation of a desired cell type for potential therapeutics. We have examined the molecular basis for the inverse correlation of cardiac and skeletal myogenesis in small molecule-enhanced stem cell differentiation. Our study shows that activation of premyogenic factor Pax3 coincides with inhibiting gene expression of early cardiac factor GATA4. Interestingly, the inhibitory effect of small molecules on cardiac differentiation depends on the function of Pax3, but not the mesoderm factor Meox1. Thus Pax3 is an inhibitor of cardiac differentiation in lineage specification. Our studies reveal the dual roles of Pax3 in stem cell fate determinations and provide new molecular insights into small molecule-enhanced lineage specification.
Collapse
Affiliation(s)
- Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
17
|
Zou C, Mallampalli RK. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:694-702. [PMID: 24389248 DOI: 10.1016/j.bbamcr.2013.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
Histone post-translational modification is a key step that may result in an epigenetic mark that regulates chromatin structure and gene transcriptional activity thereby impacting many fundamental aspects of human biology. Subtypes of post-translational modification such as acetylation and methylation are executed by a variety of distinct modification enzymes. The cytoplasmic and nuclear concentrations of these enzymes are dynamically and tightly controlled at the protein level to precisely fine-tune transcriptional activity in response to environmental clues and during pathophysiological states. Recent data have emerged demonstrating that the life span of these critical nuclear enzymes involved in histone modification that impact chromatin structure and gene expression are controlled at the level of protein turnover by ubiquitin-proteasomal processing. This review focuses on the recent progress on mechanisms for ubiquitin-proteasomal degradation of histone modification enzymes and the potential pathophysiological significance of this process.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
18
|
Nobumori Y, Shouse GP, Wu Y, Lee KJ, Shen B, Liu X. B56γ tumor-associated mutations provide new mechanisms for B56γ-PP2A tumor suppressor activity. Mol Cancer Res 2013; 11:995-1003. [PMID: 23723076 DOI: 10.1158/1541-7786.mcr-12-0633] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED The hetero-trimeric PP2A serine/threonine phosphatases containing the regulatory subunit B56, and in particular B56γ, can function as tumor suppressors. In response to DNA damage, the B56γ subunit complexes with the PP2A AC core (B56γ-PP2A) and binds p53. This event promotes PP2A-mediated dephosphorylation of p53 at Thr55, which induces expression of p21, and the subsequent inhibition of cell proliferation and transformation. In addition to dephosphorylation of p53, B56γ-PP2A also inhibits cell proliferation and transformation by a second, as yet unknown, p53-independent mechanism. Here, we interrogated a panel of B56γ mutations found in human cancer samples and cell lines and showed that these mutations lost B56γ tumor-suppressive activity by two distinct mechanisms: one is by disrupting interactions with the PP2A AC core and the other with B56γ-PP2A substrates (p53 and unknown proteins). For the first mechanism, due to the absence of the C catalytic subunit in the complex, the mutants are unable to mediate dephosphorylation of any substrate and thus failed to promote both the p53-dependent and -independent tumor-suppressive functions of B56γ-PP2A. For the second mechanism, the mutants lacked specific substrate interactions and thus partially lost tumor-suppressive function, i.e., either the p53-dependent or p53-independent contingent upon which substrate binding was affected. Overall, these data provide new insight into the mechanisms of tumor suppression by B56γ. IMPLICATIONS This study further indicates the importance of B56γ-PP2A in tumorigenesis.
Collapse
Affiliation(s)
- Yumiko Nobumori
- Department of Biochemistry, University of California, Riverside, CA 92521.
| | | | | | | | | | | |
Collapse
|
19
|
Chen J, Li Q. Use of histone deacetylase inhibitors to examine the roles of bromodomain and histone acetylation in p300-dependent gene expression. Methods Mol Biol 2013; 977:353-7. [PMID: 23436376 DOI: 10.1007/978-1-62703-284-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The bromodomain is an evolutionarily conserved motif harbored by many transcription regulators and nearly all nuclear histone acetyltransferases including the transcriptional coactivator p300. The function of p300 is required for the expression of an array of genes, in part through histone acetylation. Here, we describe an experimental approach to examine the role of either the wild-type or a bromo-deficient p300 in the expression of p300-dependant genes. The role of histone acetylation in the expression of p300-dependent genes can also be assessed by targeting histone deacetylase activities using an inhibitor approach.
Collapse
Affiliation(s)
- Jihong Chen
- Departments of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
20
|
Francetic T, Le May M, Hamed M, Mach H, Meyers D, Cole PA, Chen J, Li Q. Regulation of Myf5 Early Enhancer by Histone Acetyltransferase p300 during Stem Cell Differentiation. Mol Biol 2012; 1. [PMID: 25382872 PMCID: PMC4222083 DOI: 10.4172/2168-9547.1000103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal myogenesis is an intricate process coordinated temporally by multiple myogenic regulatory factors (MRF) including Myf5, which is the first MRF expressed and marks the commitment of skeletal muscle lineage. The expression of Myf5 gene during early embryogenesis is controlled by a set of enhancer elements, and requires the histone acetyltransferase (HAT) activity of transcriptional coactivator p300. However, it is unclear as to how different regulatory signals converge at enhancer elements to regulate early Myf5 gene expression, and if p300 is directly involved. We show here that p300 associates with the Myf5 early enhancer at the early stage of stem cell differentiation, and its HAT activity is important for the recruitment of β-catenin to this early enhancer. In addition, histone H3-K27 acetylation, but not H3-K9/14, is intimately connected to the p300 HAT activity. Thus, p300 is directly involved in the regulation of the Myf5 early enhancer, and is important for specific histone acetylation and transcription factor recruitment. This connection of p300 HAT activity with H3-K27 acetylation and β-catenin signalling during myogenic differentiation in vitro offers a molecular insight into the enhancer-elements participation observed in embryonic development. In addition, pluripotent stem cell differentiation is a valuable system to dissect the signal-dependent regulation of specific enhancer element during cell fate determinations.
Collapse
Affiliation(s)
- Tanja Francetic
- Cellular and Molecular, Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Melanie Le May
- Cellular and Molecular, Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Munerah Hamed
- Cellular and Molecular, Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Hymn Mach
- Departments of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON Canada
| | - David Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jihong Chen
- Departments of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON Canada
| | - Qiao Li
- Departments of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON Canada ; Cellular and Molecular, Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
21
|
Le May M, Mach H, Lacroix N, Hou C, Chen J, Li Q. Contribution of retinoid X receptor signaling to the specification of skeletal muscle lineage. J Biol Chem 2011; 286:26806-12. [PMID: 21653693 PMCID: PMC3143641 DOI: 10.1074/jbc.m111.227058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pluripotent stem cells possess a tremendous potential for the treatment of many diseases because of their capacity to differentiate into a variety of cell lineages. However, they provide little promise for muscle-related diseases, mainly because of the lack of small molecule inducers to efficiently direct myogenic conversion. Retinoic acid, acting through the retinoic acid receptor (RAR) and retinoid X receptor (RXR), affects stem cell fate determination in a concentration-dependent manner, but it only has a modest efficacy on the commitment of ES cells into skeletal muscle lineage. The RXR is very important for embryonic development but is generally considered to act as a silent partner of RAR in a non-permissive mode. In this study, we have examined whether activation of the RXR by rexinoid or RXR-specific signaling play a role in the specification of stem cells into muscle lineage. Our findings demonstrate that mouse ES cells generate skeletal myocytes effectively upon treatment with rexinoid at the early stage of differentiation and that on a molecular level, rexinoid-enhanced myogenesis simulates the sequential events observed in vivo. Moreover, RXR-mediated myogenic conversion requires the function of β-catenin but not RAR. Our studies establish the feasibility of applying the RXR agonist in cell-based therapies to treat muscle-related diseases. The aptitude of mouse ES cells to generate skeletal myocytes following rexinoid induction also provides a model system to study the convergence of different signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Melanie Le May
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Higazi A, Abed M, Chen J, Li Q. Promoter context determines the role of proteasome in ligand-dependent occupancy of retinoic acid responsive elements. Epigenetics 2011; 6:202-11. [PMID: 20948287 DOI: 10.4161/epi.6.2.13658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinoid acid receptors are DNA-binding proteins mediating the biological effects of ligands through transcriptional activation. It is known that the activity of the 26S proteasome is important for nuclear receptor-activated gene transcription. However, the molecular mechanism by which the 26S proteasome participates in this process is not well understood. Here we report that the proteasome activity is essential for ligand-dependent interaction of RAR with its co-regulators such as SRC, p300 and RXR. We also determined that the proteasome activity is required for the association of liganded RAR to the genomic DNA and, consequently, for the recruitment of the coactivator complex to the retinoic acid responsive elements. Moreover, the requirement of proteasome activity for the activator activity of RAR is determined by the promoter context. Our study suggests that the 26S proteasome regulates directly the activity of RAR as an activator.
Collapse
Affiliation(s)
- Aliaa Higazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Chen J, Ghazawi FM, Li Q. Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics 2010; 5:509-15. [PMID: 20505343 DOI: 10.4161/epi.5.6.12224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The bromodomain is an evolutionarily conserved motif found in many transcriptional activators including p300 which contains an intrinsic histone acetyltransferase activity and is a general coactivator for many transcription factors. One mode of bromodomain action is to serve as a binding module to recognize specific acetyl-lysine residue of histones during chromatin remodeling and transcriptional activation. The function of p300 is required for diverse sets of gene expression. However, it is not known whether the p300 bromodomain is involved in the expression of all or only subset of p300-dependent genes. In this study, we examined the impact of either wild type or a bromo-deficient p300 on the expression of several p300-dependant genes. The effects of histone acetylation on the expression of these genes were also assessed by targeting histone deacetylase activities with an inhibitor approach. We show that the impact of these inhibitors on the transcriptional activation of p300-dependent genes are impaired in cells containing the bromo-deficient p300, indicating that the interplay of p300 and histone acetylation in p300-dependent gene transcription requires the bromodomain. We also observed an increase in the expression of bromo-deficient p300 at the level of transcription possibly to compensate for the loss of p300 function. However, the high level of bromo-deficient p300 is not able to maintain the basal level of histone acetylation. Thus, the bromodomain is important for p300 to maintain the basal level of histone acetylation and to induce the transcriptional activation of p300-dependent genes. Nevertheless, the requirement of bromodomain and histone acetylation in p300-dependent gene transcription is determined by a gene specific manner.
Collapse
Affiliation(s)
- Jihong Chen
- Department of 1Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
24
|
Intracellular distribution of p300 and its differential recruitment to aggresomes in breast cancer. Exp Mol Pathol 2010; 88:256-64. [PMID: 20097195 DOI: 10.1016/j.yexmp.2010.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/21/2022]
Abstract
It has been recently suggested that p300 cytoplasmic redistribution and degradation are important for controlling the availability and activity of the protein as a transcriptional coactivator. As a step towards determining the functional relevance of p300 intracellular redistribution in mammary cancer, we aimed at studying p300 localization in two different animal models of mammary carcinoma as well as in human primary breast carcinoma samples. Analysis of p300 protein levels showed stronger expression in tumor epithelia than in normal mammary gland. Cytoplasmic localization of p300 was observed in malignant cells. Furthermore, cytoplasmic p300 was found in tumor epithelia whereas nuclear localization was observed in normal mammary glands in both animal models and in non-malignant adjacent areas of human breast cancer specimens. Interestingly, proteasomal inhibition induced p300 redistribution to perinuclear inclusion bodies in tumor but not in normal mammary gland-derived cells. These inclusions were confirmed to be aggresomes by doing immunofluorescence for ubiquitin, vimentin and 20S proteasomal subunit. Taken together, these findings show that both the localization of p300 and the recruitment to aggresomes differ between mammary tumors and normal mammary glands, and suggest that the formation of these inclusions could be a potential target for therapeutic intervention.
Collapse
|
25
|
PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol Cell Biol 2008; 28:7126-38. [PMID: 18809579 DOI: 10.1128/mcb.00897-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PML, a nuclear protein, interacts with several transcription factors and their coactivators, such as HIPK2 and p300, resulting in the activation of transcription. Although PML is thought to achieve transcription activation by stabilizing the transcription factor complex, little is known about the underlying molecular mechanism. To clarify the role of PML in transcription regulation, we purified the PML complex and identified Fbxo3 (Fbx3), Skp1, and Cullin1 as novel components of this complex. Fbx3 formed SCF(Fbx3) ubiquitin ligase and promoted the degradation of HIPK2 and p300 by the ubiquitin-proteasome pathway. PML inhibited this degradation through a mechanism that unexpectedly did not involve inhibition of the ubiquitination of HIPK2. PML, Fbx3, and HIPK2 synergistically activated p53-induced transcription. Our findings suggest that PML stabilizes the transcription factor complex by protecting HIPK2 and p300 from SCF(Fbx3)-induced degradation until transcription is completed. In contrast, the leukemia-associated fusion PML-RARalpha induced the degradation of HIPK2. We discuss the roles of PML and PML-retinoic acid receptor alpha, as well as those of HIPK2 and p300 ubiquitination, in transcriptional regulation and leukemogenesis.
Collapse
|
26
|
Arnold HK, Sears RC. A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev 2008; 27:147-58. [PMID: 18246411 DOI: 10.1007/s10555-008-9128-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor. This is most likely due to the fact that PP2A represents a large number of different holoenzymes. Further understanding of PP2A function(s), and especially its tumor suppressor activity, will depend largely on our ability to determine specific targets for these different PP2A holoenzymes and to gain an understanding of how these targets confer tumor suppressor activity or contribute to cell cycle progression and cell survival. Recent work has identified c-Myc as a target of the PP2A holoenzyme, PP2A-B56alpha. This holoenzyme also negatively regulates beta-catenin expression and modulates the anti-apoptotic activity of Bcl2, thus characterizing PP2A-B56alpha as a tumor suppressor PP2A holoenzyme. This review will focus on the role of PP2A-B56alpha in regulating c-Myc and will place this tumor suppressor activity of PP2A within the context of its other tumor suppressor functions. Finally, the mechanism(s) through which PP2A-B56alpha tumor suppressor activity may be lost in cancer will be discussed.
Collapse
Affiliation(s)
- Hugh K Arnold
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
27
|
Chen WY, Weng JH, Huang CC, Chung BC. Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol Cell Biol 2007; 27:7284-90. [PMID: 17709382 PMCID: PMC2168912 DOI: 10.1128/mcb.00476-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors such as trichostatin A and valproic acid modulate transcription of many genes by inhibiting the activities of HDACs, resulting in the remodeling of chromatin. Yet this effect is not universal for all genes. Here we show that HDAC inhibitors suppressed the expression of steroidogenic gene CYP11A1 and decreased steroid secretion by increasing the ubiquitination and degradation of SF-1, a factor important for the transcription of all steroidogenic genes. This was accompanied by increased expression of Ube2D1 and SKP1A, an E2 ubiquitin conjugase and a subunit of the E3 ubiquitin ligase in the Skp1/Cul1/F-box protein (SCF) family, respectively. Reducing SKP1A expression with small interfering RNA resulted in recovery of SF-1 levels, demonstrating that the activity of SCF E3 ubiquitin ligase is required for the SF-1 degradation induced by HDAC inhibitors. Overexpression of exogenous SF-1 restored steroidogenic activities even in the presence of HDAC inhibitors. Thus, increased SF-1 degradation is the cause of the reduction in steroidogenesis caused by HDAC inhibitors. The increased SKP1A expression and SCF-mediated protein degradation could be the mechanism underlying the mode of action of HDAC inhibitors.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
28
|
Rocher G, Letourneux C, Lenormand P, Porteu F. Inhibition of B56-containing Protein Phosphatase 2As by the Early Response Gene IEX-1 Leads to Control of Akt Activity. J Biol Chem 2007; 282:5468-77. [PMID: 17200115 DOI: 10.1074/jbc.m609712200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of PP2A in the regulation of Akt/PKB activity has long been recognized but the nature of the holoenzyme involved and the mechanisms controlling dephosphorylation are not yet known. We identified IEX-1, an early gene product with proliferative and survival activities, as a specific inhibitor of B56 regulatory subunit-containing PP2A. IEX-1 inhibits B56-PP2A activity by allowing the phosphorylation of B56 by ERK. This leads to sustained ERK activation. IEX-1 has no effect on PP2A containing other B family subunits. Thus, studying IEX-1 contribution to signaling should help the discovery of new pathways controlled by B56-PP2A. By using overexpression and RNA interference, we show here that IEX-1 increases Akt/PKB activity in response to various growth factors by preventing Akt dephosphorylation on both Thr(308) and Ser(473) residues. PP2A-B56beta and gamma subunits have the opposite effect and reverse IEX-1-mediated Akt activation. The effect of IEX-1 on Akt is ERK-dependent. Indeed: (i) a IEX-1 mutant deficient in ERK binding had no effect on Akt; (ii) ERK dominant-negative mutants reduced IEX-1-mediated increase in pAkt; (iii) a B56beta mutant that cannot be phosphorylated in the ERK.IEX-1 complex showed an enhanced ability to compete with IEX-1. These results identify B56-containing PP2A holoenzymes as Akt phosphatases. They suggest that IEX-1 behaves as a general inhibitor of B56 activity, enabling the control of both ERK and Akt signaling downstream of ERK.
Collapse
Affiliation(s)
- Géraldine Rocher
- Institut Cochin, Department of Hematology, Paris F-75014, France
| | | | | | | |
Collapse
|
29
|
Chen J, Ghazawi FM, Bakkar W, Li Q. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Mol Cancer 2006; 5:71. [PMID: 17156483 PMCID: PMC1762018 DOI: 10.1186/1476-4598-5-71] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 12/11/2006] [Indexed: 12/31/2022] Open
Abstract
Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4155, Ottawa, Ontario, K1H 8M5, Canada
| | - Feras M Ghazawi
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4155, Ottawa, Ontario, K1H 8M5, Canada
| | - Wafae Bakkar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4155, Ottawa, Ontario, K1H 8M5, Canada
| | - Qiao Li
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4155, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
30
|
Arnold HK, Sears RC. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 2006; 26:2832-44. [PMID: 16537924 PMCID: PMC1430332 DOI: 10.1128/mcb.26.7.2832-2844.2006] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/07/2005] [Accepted: 01/10/2006] [Indexed: 01/05/2023] Open
Abstract
Protein phosphatase 2A (PP2A) plays a prominent role in controlling accumulation of the proto-oncoprotein c-Myc. PP2A mediates its effects on c-Myc by dephosphorylating a conserved residue that normally stabilizes c-Myc, and in this way, PP2A enhances c-Myc ubiquitin-mediated degradation. Stringent regulation of c-Myc levels is essential for normal cell function, as c-Myc overexpression can lead to cell transformation. Conversely, PP2A has tumor suppressor activity. Uncovering relevant PP2A holoenzymes for a particular target has been limited by the fact that cellular PP2A represents a large heterogeneous population of trimeric holoenzymes, composed of a conserved catalytic subunit and a structural subunit along with a variable regulatory subunit which directs the holoenzyme to a specific target. We now report the identification of a specific PP2A regulatory subunit, B56alpha, that selectively associates with the N terminus of c-Myc. B56alpha directs intact PP2A holoenzymes to c-Myc, resulting in a dramatic reduction in c-Myc levels. Inhibition of PP2A-B56alpha holoenzymes, using small hairpin RNA to knock down B56alpha, results in c-Myc overexpression, elevated levels of c-Myc serine 62 phosphorylation, and increased c-Myc function. These results uncover a new protein involved in regulating c-Myc expression and reveal a critical interconnection between a potent oncoprotein, c-Myc, and a well-documented tumor suppressor, PP2A.
Collapse
Affiliation(s)
- Hugh K Arnold
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, 3181 S.W. Sam Jackson Park Rd., L103A, Portland, Oregon 97239, USA
| | | |
Collapse
|
31
|
Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 2006; 26:789-809. [PMID: 16428436 PMCID: PMC1347027 DOI: 10.1128/mcb.26.3.789-809.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300flox) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300flox and a CBP conditional knockout allele (CBPflox) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4- CD8- double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 2006; 25:727-38. [PMID: 16456541 PMCID: PMC1383561 DOI: 10.1038/sj.emboj.7600980] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/10/2006] [Indexed: 11/09/2022] Open
Abstract
The protein phosphatase 2A (PP2A) acts on several kinases in the extracellular signal-regulated kinase (ERK) signaling pathway but whether a specific holoenzyme dephosphorylates ERK and whether this activity is controlled during mitogenic stimulation is unknown. By using both RNA interference and overexpression of PP2A B regulatory subunits, we show that B56, but not B, family members of PP2A increase ERK dephosphorylation, without affecting its activation by MEK. Induction of the early gene product and ERK substrate IEX-1 (ier3) by growth factors leads to opposite effects and reverses B56-PP2A-mediated ERK dephosphorylation. IEX-1 binds to B56 subunits and pERK independently, enhances B56 phosphorylation by ERK at a conserved Ser/Pro site in this complex and triggers dissociation from the catalytic subunit. This is the first demonstration of the involvement of B56-containing PP2A in ERK dephosphorylation and of a B56-specific cellular protein inhibitor regulating its activity in an ERK-dependent fashion. In addition, our results raise a new paradigm in ERK signaling in which ERK associated to a substrate can transphosphorylate nearby proteins.
Collapse
Affiliation(s)
- Claire Letourneux
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| | - Géraldine Rocher
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| | - Françoise Porteu
- Department of Hematology, Institut Cochin, INSERM U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France
| |
Collapse
|