1
|
Kiriya M, Kawashima A, Fujiwara Y, Tanimura Y, Yoshihara A, Nakamura Y, Tanigawa K, Kondo T, Suzuki K. Thyroglobulin regulates the expression and localization of the novel iodide transporter solute carrier family 26 member 7 (SLC26A7) in thyrocytes. Endocr J 2022; 69:1217-1225. [PMID: 35644541 DOI: 10.1507/endocrj.ej22-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Solute carrier family 26 member 7 (SLC26A7), identified as a causative gene for congenital hypothyroidism, was found to be a novel iodide transporter expressed on the apical side of the follicular epithelium of the thyroid. We recently showed that TSH suppressed the expression of SLC26A7 and induces its localization to the plasma membrane, where it functions. We also showed that the ability of TSH to induce thyroid hormone synthesis is completely reversed by an autocrine negative-feedback action of thyroglobulin (Tg) stored in the follicular lumen. In the present study, we investigated the potential effect of follicular Tg on SLC26A7 expression and found that follicular Tg significantly suppressed the promoter activity, mRNA level, and protein level of SLC26A7 in rat thyroid FRTL-5 cells. In addition, follicular Tg inhibited the ability of TSH to induce the membrane localization of SLC26A7. In rat thyroid sections, the expression of SLC26A7 was weaker in follicles with a higher concentration of Tg, as evidenced by immunofluorescence staining. These results indicate that Tg stored in the follicular lumen is a feedback suppressor of the expression and membrane localization of SLC26A7, thereby downregulating the transport of iodide into the follicular lumen.
Collapse
Affiliation(s)
- Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Yuta Tanimura
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
- Center for Medical Education, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Yasuhiro Nakamura
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
2
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Maharaj A, Kwong R, Williams J, Smith C, Storr H, Krone R, Braslavsky D, Clemente M, Ram N, Banerjee I, Çetinkaya S, Buonocore F, Güran T, Achermann JC, Metherell L, Prasad R. A retrospective analysis of endocrine disease in sphingosine-1-phosphate lyase insufficiency: case series and literature review. Endocr Connect 2022; 11:e220250. [PMID: 35904228 PMCID: PMC9346324 DOI: 10.1530/ec-22-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022]
Abstract
Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Kwong
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jack Williams
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Christopher Smith
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Helen Storr
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, UK
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas ‘Dr. Cesar Bergadá’ (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños ‘Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Maria Clemente
- Paediatric Endocrinology, Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Endocrinology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Semra Çetinkaya
- Health Sciences University, Dr. Sami Ulus Obstetrics and Gynaecology, Children’s Health and Disease Education and Research Hospital, Ankara, Turkey
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tülay Güran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Louise Metherell
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Tanimura Y, Kiriya M, Kawashima A, Mori H, Luo Y, Kondo T, Suzuki K. Regulation of solute carrier family 26 member 7 (Slc26a7) by thyroid stimulating hormone in thyrocytes. Endocr J 2021; 68:691-699. [PMID: 33583874 DOI: 10.1507/endocrj.ej20-0502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iodine transportation is an important step in thyroid hormone biosynthesis. Uptake of iodine into the thyroid follicle is mediated mainly by the basolateral sodium-iodide symporter (NIS or solute carrier family 5 member 5: SLC5A5), and iodine efflux across the apical membrane into the follicular lumen is mediated by pendrin (SLC26A4). In addition to these transporters, SLC26A7, which has recently been identified as a causative gene for congenital hypothyroidism, was found to encode a novel apical iodine transporter in the thyroid. Although SLC5A5 and SLC26A4 have been well-characterized, little is known about SLC26A7, including its regulation by TSH, the central hormone regulator of thyroid function. Using rat thyroid FRTL-5 cells, we showed that the mRNA levels of Slc26a7 and Slc26a4, two apical iodine transporters responsible for iodine efflux, were suppressed by TSH, whereas the mRNA level of Slc5a5 was induced. Forskolin and dibutyryl cAMP (dbcAMP) had the same effect as that of TSH on the mRNA levels of these transporters. TSH, forskolin and dbcAMP also had suppressive effects on SLC26A7 promoter activity, as assessed by luciferase reporter gene assays, and protein levels, as determined by Western blot analysis. TSH, forskolin and dbcAMP also induced strong localization of Slc26a7 to the cell membrane according to immunofluorescence staining and confocal laser scanning microscopy. Together, these results suggest that TSH suppresses the expression level of Slc26a7 but induces its accumulation at the cell membrane, where it functions as an iodine transporter.
Collapse
Affiliation(s)
- Yuta Tanimura
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Hitomi Mori
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
5
|
Prasad R, Nicholas AK, Schoenmakers N, Barton J. Haploinsufficiency of NKX2-1 in Brain-Lung-Thyroid Syndrome with Additional Multiple Pituitary Dysfunction. Horm Res Paediatr 2020; 92:340-344. [PMID: 31707387 DOI: 10.1159/000503683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Heterozygous mutations or haploinsufficiency of NKX2-1 are associated with the brain-lung-thyroid syndrome incorporating primary hypothyroidism, respiratory distress, and neurological disturbances. CASE PRESENTATION We report a patient presenting in the neonatal period with multiple pituitary hormone deficiency including central hypothyroidism and hypoadrenalism, growth hormone deficiency, undetectable gonadotrophins, and a small anterior pituitary on MRI. CGH microarray revealed haploinsufficiency for NKX2.1 and during subsequent follow-up, she has exhibited the classic triad of brain-lung-thyroid syndrome with undetectable tissue on thyroid ultrasonography. Whilst the role of NKX2-1 is well described in murine pituitary development, this report constitutes the first description of multiple pituitary dysfunction in humans associated with the syndrome and haploinsufficiency NKX2-1. CONCLUSION The report highlights a potential need for pituitary screening in patients with established brain-lung-thyroid syndrome and implicates NKX2.1 in human pituitary disease.
Collapse
Affiliation(s)
- Rathi Prasad
- Department of Paediatric Endocrinology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom,
| | - Adeline K Nicholas
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nadia Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John Barton
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| |
Collapse
|
6
|
Makhlouf AM, Chitikova Z, Pusztaszeri M, Berczy M, Delucinge-Vivier C, Triponez F, Meyer P, Philippe J, Dibner C. Identification of CHEK1, SLC26A4, c-KIT, TPO and TG as new biomarkers for human follicular thyroid carcinoma. Oncotarget 2018; 7:45776-45788. [PMID: 27329729 PMCID: PMC5216760 DOI: 10.18632/oncotarget.10166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
The search for preoperative biomarkers for thyroid malignancies, in particular for follicular thyroid carcinoma (FTC) diagnostics, is of utmost clinical importance. We thus aimed at screening for potential biomarker candidates for FTC. To evaluate dynamic alterations in molecular patterns as a function of thyroid malignancy progression, a comparative analysis was conducted in clinically distinct subgroups of FTC and poorly differentiated thyroid carcinoma (PDTC) nodules. NanoString analysis of FFPE samples was performed in 22 follicular adenomas, 56 FTC and 25 PDTC nodules, including oncocytic and non-oncocytic subgroups. The expression levels of CHEK1, c-KIT, SLC26A4, TG and TPO were significantly altered in all types of thyroid carcinomas. Based on collective changes of these biomarkers which correlating among each other, a predictive score has been established, allowing for discrimination between benign and FTC samples with high sensitivity and specificity. Additional transcripts related to thyroid function, cell cycle, circadian clock, and apoptosis regulation were altered in the more aggressive oncocytic subgroups only, with expression levels correlating with disease progression. Distinct molecular patterns were observed for oncocytic and non-oncocytic FTCs and PDTCs. A predictive score correlation coefficient based on collective alterations of identified here biomarkers might help to improve the preoperative diagnosis of FTC nodules.
Collapse
Affiliation(s)
- Anne-Marie Makhlouf
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Zhanna Chitikova
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Margaret Berczy
- Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Frederic Triponez
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Patrick Meyer
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Kang HS, Kumar D, Liao G, Lichti-Kaiser K, Gerrish K, Liao XH, Refetoff S, Jothi R, Jetten AM. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest 2017; 127:4326-4337. [PMID: 29083325 DOI: 10.1172/jci94417] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division-related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development.
Collapse
Affiliation(s)
| | | | - Grace Liao
- 1, Immunity, Inflammation and Disease Laboratory
| | | | - Kevin Gerrish
- 3, Molecular Genomics Core, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | | | - Samuel Refetoff
- 4, Department of Medicine, and.,5, Department of Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Raja Jothi
- 2, Epigenetics and Stem Cell Biology Laboratory, and
| | | |
Collapse
|
8
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
10
|
Kühnen P, Turan S, Fröhler S, Güran T, Abali S, Biebermann H, Bereket A, Grüters A, Chen W, Krude H. Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and "apparent" thyroid dysgenesis. J Clin Endocrinol Metab 2014; 99:E169-76. [PMID: 24248179 DOI: 10.1210/jc.2013-2619] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Congenital hypothyroidism, the most frequent endocrine congenital disease, can occur either based on a thyroid hormone biosynthesis defect or can predominantly be due to thyroid dysgenesis. However, a genetic cause could so far only be identified in less than 10% of patients with a thyroid dysgenesis. OBJECTIVES Exome sequencing was used for the first time to find additional genetic defects in thyroid dysgenesis. PATIENTS AND METHODS In a consanguineous family with thyroid dysgenesis, exome sequencing was applied, and findings were further validated by Sanger sequencing in a cohort of 94 patients with thyroid dysgenesis. RESULTS By exome sequencing we identified a homozygous missense mutation (p.Leu597Ser) in the SLC26A4 gene of a patient with hypoplastic thyroid tissue, who was otherwise healthy. In the cohort of patients with thyroid dysgenesis, we observed a second case with a homozygous missense mutation (p.Gln413Arg) in the SLC26A4 gene, who was additionally affected by severe hearing problems. Both mutations were previously described as loss-of-function mutations in patients with Pendred syndrome and nonsyndromic enlarged vestibular aqueduct. CONCLUSION We unexpectedly identified SLC26A4 mutations that were hitherto diagnosed in thyroid dyshormonogenesis patients, now for the first time in patients with structural thyroid defects. This result resembles the historic description of thyroid atrophy in patients with the so-called myxedematous form of cretinism after severe iodine deficiency. Most likely the thyroid defect of the two homozygous SLC26A4 gene mutation carriers represents a kind of secondary thyroid atrophy, rather than a primary defect of thyroid development in the sense of thyroid agenesis. Our study extends the variable clinical spectrum of patients with SLC26A4 mutations and points out the necessity to analyze the SLC26A4 gene in patients with apparent thyroid dysgenesis in addition to the known candidate genes TSHR, PAX8, NKX2.1, NKX2.5, and FOXE1.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute of Experimental Pediatric Endocrinology (P.K., H.B., A.G., H.K.), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Pediatric Endocrinology and Diabetes (S.T., T.G., S.A., A.B.), Marmara University Hospital, 34722 Istanbul, Turkey; and Max-Delbrück Center for Molecular Medicine (S.F., W.C.), 13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ambrosio R, Damiano V, Sibilio A, De Stefano MA, Avvedimento VE, Salvatore D, Dentice M. Epigenetic control of type 2 and 3 deiodinases in myogenesis: role of Lysine-specific Demethylase enzyme and FoxO3. Nucleic Acids Res 2013; 41:3551-62. [PMID: 23396445 PMCID: PMC3616708 DOI: 10.1093/nar/gkt065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 01/04/2023] Open
Abstract
The proliferation and differentiation of muscle precursor cells require myogenic regulatory factors and chromatin modifiers whose concerted action dynamically regulates access to DNA and allows reprogramming of cells towards terminal differentiation. Type 2 deiodinase (D2), the thyroid hormone (TH)-activating enzyme, is sharply upregulated during myoblast differentiation, whereas type 3 deiodinase (D3), the TH-inactivating enzyme, is downregulated. The molecular determinants controlling synchronized D2 and D3 expression in muscle differentiation are completely unknown. Here, we report that the histone H3 demethylating enzyme (LSD-1) is essential for transcriptional induction of D2 and repression of D3. LSD-1 relieves the repressive marks (H3-K9me2-3) on the Dio2 promoter and the activation marks (H3-K4me2-3) on the Dio3 promoter. LSD-1 silencing impairs the D2 surge in skeletal muscle differentiation while inducing D3 expression thereby leading to a global decrease in intracellular TH production. Furthermore, endogenous LSD-1 interacts with FoxO3a, and abrogation of FoxO3-DNA binding compromises the ability of LSD-1 to induce D2. Our data reveal a novel epigenetic control of reciprocal deiodinases expression and provide a molecular mechanism by which LSD-1, through the opposite regulation of D2 and D3 expression, acts as a molecular switch that dynamically finely tunes the cellular needs of active TH during myogenesis.
Collapse
Affiliation(s)
- Raffaele Ambrosio
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Valentina Damiano
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Annarita Sibilio
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Maria Angela De Stefano
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Vittorio Enrico Avvedimento
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Domenico Salvatore
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| | - Monica Dentice
- IRCCS Fondazione SDN, 80143 Naples, Italy, Department of Molecular and Clinical Endocrinology and Oncology, University of Naples “Federico II”, 80131 Naples, Italy, Department of Biology and Cellular and Molecular Pathology, School of Medicine, University Federico II of Naples, 80131 Naples, Italy and CEINGE Biotecnologie Avanzate Scarl, 80145 Naples, Italy
| |
Collapse
|
12
|
Barnett CP, Mencel JJ, Gecz J, Waters W, Kirwin SM, Vinette KMB, Uppill M, Nicholl J. Choreoathetosis, congenital hypothyroidism and neonatal respiratory distress syndrome with intact NKX2-1. Am J Med Genet A 2012; 158A:3168-73. [PMID: 23169673 DOI: 10.1002/ajmg.a.35456] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 04/12/2012] [Indexed: 11/10/2022]
Abstract
Mutations in the NK2 homeobox 1 gene (NKX2-1) cause a rare syndrome known as choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome (OMIM 610978). Here we present the first reported patient with this condition caused by a 14q13.3 deletion which is adjacent to but does not interrupt NKX2-1, and review the literature on this condition. The infant presented at 23 months with a history of developmental delay, hyperkinesia, recurrent respiratory infections, neonatal respiratory distress, and hypothyroidism. Choreiform movements and delayed motor milestones were first noted at 6-8 months of age. TSH levels had been consistently elevated from 8 months of age. The clinical presentation was suggestive of an NKX2-1 mutation. Sequencing of all exons and splice site junctions of NKX2-1 was performed but was normal. Array CGH was then performed and a 3.29 Mb interstitial deletion at 14q13.1-q13.3 was detected. The distal region of loss of the deletion disrupted the surfactant associated 3 (SFTA3) gene but did disrupt NKX2-1. Findings were confirmed on high resolution SNP array and multiplex semiquanitative PCR. NKX2-1 encodes transcriptional factors involved in the developmental pathways for thyroid, lung, and brain. We hypothesize that the region centromeric to NKX2-1 is important for the normal functioning of this gene and when interrupted produces a phenotype that is typical of the choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome, as seen in our patient. We conclude that deletions at 14q13.3 adjacent to but not involving NKX2-1 can cause choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome.
Collapse
Affiliation(s)
- Christopher P Barnett
- South Australian Clinical Genetics Service, Women's and Children's Hospital/SA Pathology, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dentice M, Luongo C, Ambrosio R, Sibilio A, Casillo A, Iaccarino A, Troncone G, Fenzi G, Larsen PR, Salvatore D. β-Catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterology 2012; 143:1037-47. [PMID: 22771508 DOI: 10.1053/j.gastro.2012.06.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/18/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Activation of the β-catenin/T-cell factor (TCF) complex occurs in most colon tumors, and its actions correlate with the neoplastic phenotype of intestinal epithelial cells. Type 3 deiodinase (D3), the selenoenzyme that inactivates thyroid hormone (3,5,3' triiodothyronine [T3]), is frequently expressed by tumor cells, but little is known about its role in the regulation of T3 signaling in cancer cells. METHODS We measured D3 expression in 6 colon cancer cell lines and human tumors and correlated it with the activity of the β-catenin/TCF complex. We also determined the effects of D3 loss on local thyroid hormone signaling and colon tumorigenesis. RESULTS We show that D3 is a direct transcriptional target of the β-catenin/TCF complex; its expression was higher in human intestinal adenomas and carcinomas than in healthy intestinal tissue. Experimental attenuation of β-catenin reduced D3 levels and induced type 2 deiodinase (the D3 antagonist that converts 3,5,3',5' tetraiodothyronine into active T3) thereby increasing T3-dependent transcription. In the absence of D3, excess T3 reduced cell proliferation and promoted differentiation in cultured cells and in xenograft mouse models. This occurred via induction of E-cadherin, which sequestered β-catenin at the plasma membrane and promoted cell differentiation. CONCLUSIONS Deiodinases are at the interface between the β-catenin and the thyroid hormone pathways. Their synchronized regulation of intracellular T3 concentration is a hitherto unrecognized route by which the multiple effects of β-catenin are generated and may be targeted to reduce the oncogenic effects of β-catenin in intestinal cells.
Collapse
Affiliation(s)
- Monica Dentice
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang LP, Ma BY, Han FX, Wan HL, Wu JP, Yu LH, Wang XR, Zhu JY. Molecular characterization and functional analysis of sheep thyroid transcription factor-1. GENETICS AND MOLECULAR RESEARCH 2012; 11:2585-97. [PMID: 22782632 DOI: 10.4238/2012.june.18.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thyroid transcription factor-1 (TTF-1), a member of the Nkx2 family of homeodomain-containing proteins, is involved in binding to and in activating the promoters of several important genes in the thyroid, lungs, and brain, and in regulating expression of these tissue-specific genes. We investigated potential roles of sheep (Ovis aries) TTF-1 in regulating cell fate and organ morphogenesis and in controlling puberty and reproductive capability of females. We amplified and cloned the sheep TTF-1 full-length DNA for the first time, analyzed its functional domains and regions, predicted molecular structure of its homeodomain and DNA-binding sites, and examined its expression in pituitary, brain, thyroid gland, ovary, and hypothalamus. We found that sheep TTF-1 has a high degree of homologous identity with that of other mammals, and it has several important domains including domain N, DNA-binding domain, domain C, TN-domain, domain I, and NK2-SD. The DNA-binding domain of sheep TTF-1 has 10 potential DNA-binding sites and is a novel mammalian homeodomain that shows considerable sequence homology with the corresponding rat homeodomain. Several functional regions in sheep TTF-1 share high sequence identity with rat TTF-1, indicating that these regions may have the same activity as in the rat. Expression of TTF-1 in several specific tissues implies that sheep TTF-1 in involved in sheep sexual development and reproductive capability. These results suggest a role of sheep TTF-1 in enhancing sheep reproduction performance and we propose it as a candidate gene for selection.
Collapse
Affiliation(s)
- L P Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Calil-Silveira J, Serrano-Nascimento C, Nunes MT. Iodide treatment acutely increases pendrin (SLC26A4) mRNA expression in the rat thyroid and the PCCl3 thyroid cell line by transcriptional mechanisms. Mol Cell Endocrinol 2012; 350:118-24. [PMID: 22178794 DOI: 10.1016/j.mce.2011.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Iodine is a critical element involved in thyroid hormone synthesis. Its efflux into the follicular lumen is thought to occur, in part, through pendrin at the apical membrane of thyrocytes. This study attempted to investigate whether iodide administration affects SLC26A4 mRNA expression in rat thyroid and in PCCl3 cells. Rats and cells were treated or not with NaI from 30 min up to 48 h. One group was concomitantly treated with sodium perchlorate. SLC26A4 mRNA expression was also investigated in PCCl3 cells treated with actinomycin D prior to NaI treatment. Iodide administration significantly increased SLC26A4 mRNA content in both models. The simultaneous administration of NaI and perchlorate, as well as the treatment of PCCl3 cells with actinomycin D prevented this effect, indicating that intracellular iodide is essential for this event, which appears to be triggered by transcriptional mechanisms. These data show that intracellular iodide rapidly upregulates SLC26A4 mRNA expression.
Collapse
Affiliation(s)
- Jamile Calil-Silveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | |
Collapse
|
16
|
Pesce L, Bizhanova A, Caraballo JC, Westphal W, Butti ML, Comellas A, Kopp P. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 2012; 153:512-21. [PMID: 22109890 PMCID: PMC3249672 DOI: 10.1210/en.2011-1548] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid hormones are essential for normal development and metabolism. Their synthesis requires transport of iodide into thyroid follicles. The mechanisms involving the apical efflux of iodide into the follicular lumen are poorly elucidated. The discovery of mutations in the SLC26A4 gene in patients with Pendred syndrome (congenital deafness, goiter, and defective iodide organification) suggested a possible role for the encoded protein, pendrin, as an apical iodide transporter. We determined whether TSH regulates pendrin abundance at the plasma membrane and whether this influences iodide efflux. Results of immunoblot and immunofluorescence experiments reveal that TSH and forskolin rapidly increase pendrin abundance at the plasma membrane through the protein kinase A pathway in PCCL-3 rat thyroid cells. The increase in pendrin membrane abundance correlates with a decrease in intracellular iodide as determined by measuring intracellular (125)iodide and can be inhibited by specific blocking of pendrin. Elimination of the putative protein kinase A phosphorylation site T717A results in a diminished translocation to the membrane in response to forskolin. These results demonstrate that pendrin translocates to the membrane in response to TSH and suggest that it may have a physiological role in apical iodide transport and thyroid hormone synthesis.
Collapse
Affiliation(s)
- Liuska Pesce
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I. Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 2011; 28:385-96. [PMID: 22116353 DOI: 10.1159/000335100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Pendrin (SLC26A4), a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid and inner ear epithelia and is essential for bicarbonate secretion/chloride reabsorption, iodide accumulation and endolymph ion balance, respectively. The molecular mechanisms controlling pendrin activity in renal, thyroid and inner ear epithelia have been the subject of recent studies. The effects of ambient pH, the hormone aldosterone and the peptide uroguanylin (UGN; the "intestinal natriuretic hormone"), known modulators of electrolyte balance, on transcription of the pendrin gene, have been investigated. Luciferase reporter plasmids containing different length fragments of the human PDS (hPDS) promoter were transfected into renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cells. Acidic pH decreased and alkaline pH increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. Exposure of transfected HEK293 to UGN decreased hPDS promoter activity. The findings provided evidence for the presence of a UGN response element within the 96-bp region overlapping with the pH response element on the hPDS promoter. Pendrin is also expressed in airway epithelium. The cytokins interleukin 4 (IL-4) and interleukin-13 (IL-13), known regulators of airway surface function, have been shown to increase hPDS promoter activity by a STAT6-dependent mechanism. In conclusion, systemic pH, the hormone aldosterone, and the peptide UGN influence renal tubular pendrin gene expression and, perhaps, pendrin-mediated Cl(-)/HCO(3)(-) exchange at the transcriptional level. Pendrin-driven anion transport in the endolymph and at the airway surface may be regulated transcriptionally by systemic pH and IL-3/IL-4, respectively. The distinct response elements and the corresponding transcription factors mediating the effect of these modulators on the PDS promoter remain to be identified and characterized.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee A, Nofziger C, Dossena S, Vanoni S, Diasio R, Paulmichl M. Methylation of the human pendrin promoter. Cell Physiol Biochem 2011; 28:397-406. [PMID: 22116354 DOI: 10.1159/000335102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 01/14/2023] Open
Abstract
Inspection of the nucleotide sequence of the human pendrin promoter revealed the presence of a CpG island. We investigated the ability of IL-4 to stimulate pendrin message expression in two separate cell lines: the NCI-H292 lung epithelial cell line and the human embryonic kidney (HEK)-Blue cell line. The expression of pendrin mRNA was significantly increased in both cells types after 4, 24, 48 and 72 hours treatment with IL-4, and interestingly, the increase in pendrin mRNA was greater in the NCI-H292 cells. Methylation of CpG sites within the promoter regions of genes can affect activities of gene promoters and have either positive or negative implications on the transcription and mRNA expression of the particular gene. We quantitatively analyzed the methylation status of 35 CpG sites within the human pendrin promoter in both cell lines. The basal methylation pattern was statistically different at multiple CpG sites between the NCI-H292 and HEK-Blue cells. We propose that the difference in basal methylation between the two cell types may determine a cell-specific response to IL-4 in terms of pendrin mRNA expression.
Collapse
Affiliation(s)
- Adam Lee
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55408, USA
| | | | | | | | | | | |
Collapse
|
19
|
SLC26A4 expression among autoimmune thyroid tissues. Immunobiology 2011; 216:571-8. [DOI: 10.1016/j.imbio.2010.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
|
20
|
Bizhanova A, Kopp P. Controversies Concerning the Role of Pendrin as an Apical Iodide Transporter in Thyroid Follicular Cells. Cell Physiol Biochem 2011; 28:485-90. [DOI: 10.1159/000335103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
|
21
|
Nitsch R, Di Dato V, di Gennaro A, de Cristofaro T, Abbondante S, De Felice M, Zannini M, Di Lauro R. Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene. BMC Genomics 2010; 11:306. [PMID: 20470391 PMCID: PMC2996967 DOI: 10.1186/1471-2164-11-306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/14/2010] [Indexed: 12/01/2022] Open
Abstract
Background The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. Results We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. Conclusions Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The identification of this regulatory element represents the first step in the investigation of upstream regulatory mechanisms that control Pax8 transcription during thyroid differentiation and are relevant to further studies on Pax8 as a candidate gene for thyroid dysgenesis.
Collapse
Affiliation(s)
- Roberto Nitsch
- Institute of Experimental Endocrinology and Oncology G. Salvatore, National Research Council, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramos HE, Nesi-França S, Maciel RMB. [New aspects of genetics and molecular mechanisms on thyroid morphogenesis for the understanding of thyroid dysgenesia]. ACTA ACUST UNITED AC 2009; 52:1403-15. [PMID: 19197448 DOI: 10.1590/s0004-27302008000900003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/09/2008] [Indexed: 11/21/2022]
Abstract
The elucidation of the molecular mechanisms underlying the very early steps of thyroid organogenesis and the etiology of most cases of thyroid dysgenesis are poorly understood. Many genes have been identified as important contributors to survival, proliferation and migration of thyroid cells precursors, acting as an integrated and complex regulatory network. Moreover, by generation of mouse mutants, the studies have provided better knowledge of the role of these genes in the thyroid morphogenesis. In addition, it is likely that a subset of patients has thyroid dysgenesis as a result of mutations in regulatory genes expressed during embryogenesis. This review summarizes molecular aspects of thyroid development, describes the animal models and phenotypes known to date and provides information about novel insights into the ontogeny and pathogenesis of human thyroid dysgenesis.
Collapse
Affiliation(s)
- Helton E Ramos
- Laboratório de Endocrinologia Molecular, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
23
|
Carré A, Szinnai G, Castanet M, Sura-Trueba S, Tron E, Broutin-L'Hermite I, Barat P, Goizet C, Lacombe D, Moutard ML, Raybaud C, Raynaud-Ravni C, Romana S, Ythier H, Léger J, Polak M. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum Mol Genet 2009; 18:2266-76. [PMID: 19336474 DOI: 10.1093/hmg/ddp162] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thyroid transcription factor 1 (NKX2-1/TITF1) mutations cause brain-lung-thyroid syndrome, characterized by congenital hypothyroidism (CH), infant respiratory distress syndrome (IRDS) and benign hereditary chorea (BHC). The objectives of the present study were (i) detection of NKX2-1 mutations in patients with CH associated with pneumopathy and/or BHC, (ii) functional analysis of new mutations in vitro and (iii) description of the phenotypic spectrum of brain-lung-thyroid syndrome. We identified three new heterozygous missense mutations (L176V, P202L, Q210P), a splice site mutation (376-2A-->G), and one deletion of NKX2-1 at 14q13. Functional analysis of the three missense mutations revealed loss of transactivation capacity on the human thyroglobulin enhancer/promoter. Interestingly, we showed that deficient transcriptional activity of NKX2-1-P202L was completely rescued by cotransfected PAX8-WT, whereas the synergistic effect was abolished by L176V and Q210P. The clinical spectrum of 6 own and 40 published patients with NKX2-1 mutations ranged from the complete triad of brain-lung-thyroid syndrome (50%), brain and thyroid disease (30%), to isolated BHC (13%). Thyroid morphology was normal (55%) and compensated hypothyroidism occurred in 61%. Lung disease occurred in 54% of patients (IRDS at term 76%; recurrent pulmonary infections 24%). On follow-up, 20% developed severe chronic interstitial lung disease, and 16% died. In conclusion, we describe five new NKX2.1 mutations with, for the first time, complete rescue by PAX8 of the deficient transactivating capacity in one case. Additionally, our review shows that the majority of affected patients display neurological and/or thyroidal problems and that, although less frequent, lung disease is responsible for a considerable mortality.
Collapse
Affiliation(s)
- Aurore Carré
- University Paris-Descartes, INSERM U845, 75270 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rubio IGS, Galrao AL, Pardo V, Knobel M, Possato RF, Camargo RRY, Ferreira MA, Kanamura CT, Gomes SA, Medeiros-Neto G. A molecular analysis and long-term follow-up of two siblings with severe congenital hypothyroidism carrying the IVS30+1G>T intronic thyroglobulin mutation. ACTA ACUST UNITED AC 2008; 52:1337-44. [DOI: 10.1590/s0004-27302008000800022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 09/09/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: To extend the molecular analysis of the IVS30+1G>T intronic thyroglobulin (TG) mutation, and to report the eleven year follow-up of the affected patients. METHOSD: Two siblings with severe congenital hypothyroidism with fetal and neonatal goiter, harboring the IVS30+1G>T mutation were included. Nodular and non-nodular thyroid tissue specimens were collected. Specific thyroid genes expression was evaluated by real-timePCR and by immunohistochemistry. RESULTS: In non-nodular tissue specific thyroid genes mRNA were reduced when compared to normal thyroid sample. In the nodule, TPO and NIS expression was very low. Microscopic examinations showed very large follicular-lumina and swollen vesicles of endoplasmatic-reticulum. Strong cytoplasmatic and low follicular-lumen TG immunostaining were detected. Intracellular NIS, membrane TPO and TSHR immunostaining had higher positivity in non-nodular sample. Both patients had a long-term adequate developmental outcome, besides one patient have been lately-treated. CONCLUSIONS: IVS30+1G>T mutation not only lead to very enlarge endoplasmatic-reticulum, but also to alterations of specific thyroid genes expression. The clinical evolution of patients harboring these mutations strengthen the concept of the influence of environment, like iodine nutrition, to determine the final phenotypic appearance.
Collapse
|
25
|
François M, Delemer B. Quoi de neuf dans le couple thyroïde et cœur en 2008 ? ANNALES D'ENDOCRINOLOGIE 2008; 69 Suppl 1:S37-43. [DOI: 10.1016/s0003-4266(08)73967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Kopp P, Pesce L, Solis-S JC. Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol Metab 2008; 19:260-8. [PMID: 18692402 DOI: 10.1016/j.tem.2008.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 01/05/2023]
Abstract
Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing impairment, presence of goiter, and a partial defect in iodide organification, which may be associated with insufficient thyroid hormone synthesis. Goiter development and development of hypothyroidism are variable and depend on nutritional iodide intake. Pendred syndrome is caused by biallelic mutations in the SLC26A4 gene, which encodes pendrin, a transporter of chloride, bicarbonate and iodide. This review discusses the controversies surrounding the potential role of pendrin in mediating apical iodide efflux into the lumen of thyroid follicles, and discusses its functional role in the kidney and the inner ear.
Collapse
Affiliation(s)
- Peter Kopp
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA.
| | | | | |
Collapse
|
27
|
Lado Abeal J. Pendred syndrome. Expert Rev Endocrinol Metab 2008; 3:635-643. [PMID: 30290408 DOI: 10.1586/17446651.3.5.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pendred syndrome (PDS) is an autosomal recessive disorder clinically characterized by sensorineural hearing loss and goiter. PDS is mainly caused by mutations in the SLC26A4 gene, although a few cases are due to mutations in the FOXI1 gene. SLC26A4 encodes pendrin, a sodium-independent transporter of iodide/chloride, chloride/formate and bicarbonate, that is expressed in the inner ear, thyroid gland, syncytiotrophoblast cells, endometrium and kidney. FOXI1 encodes a transcription factor necessary for pendrin expression. Patients with PDS show a bilateral and severe-to-profound hearing loss, although some cases present with a slowly progressive and fluctuating course. Temporal bone abnormalities with enlargement of the vestibular aqueduct, alone or with Mondini dysplasia, are common. Goiter appears most frequently in the second decade of life with a range of variations in size, depending on the amount of iodide intake and the effect that the mutation causes in pendrin function in any individual patient. A standard thyroid hormone-replacement regimen should be given to PDS patients with hypothyroidism to re-establish euthyroidism and prevent or decrease goiter growth. Total or partial thyroidectomy is occasionally the treatment of choice. Hearing aids and proper educational programs should also be offered to patients.
Collapse
Affiliation(s)
- Joaquin Lado Abeal
- a UETeM Department of Medicine, School of Medicine, University of Santiago de Compostela, C/ San Francisco sn. 15705, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Muscella A, Marsigliante S, Verri T, Urso L, Dimitri C, Bottà G, Paulmichl M, Beck-Peccoz P, Fugazzola L, Storelli C. PKC-epsilon-dependent cytosol-to-membrane translocation of pendrin in rat thyroid PC Cl3 cells. J Cell Physiol 2008; 217:103-12. [PMID: 18459119 DOI: 10.1002/jcp.21478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied the expression and the hormonal regulation of the PDS gene product, pendrin, which is, in thyrocytes, responsible for the iodide transport out of the cell. We show that PC Cl3 cells, a fully differentiated thyroid cell line, grown without TSH and insulin, express very low level of PDS mRNA; such expression is greatly increased after stimulation with insulin or TSH. (125)I pre-loaded cells showed an (125)I efflux accelerated in chloride-containing buffer with respect to chloride-free buffer, suggesting that this efflux is chloride dependent. By immunoblotting, pendrin was found in agonists-stimulated cells, whereas it was barely detectable in un-stimulated cells. An increase in both PDS mRNA and protein was also obtained using phorbol ester PMA, or using 8-Br-cAMP and forskolin. Stimulation with insulin (1 microg/ml; 0-40 min) provoked the cytosol-to-membrane translocation of pendrin and a decrease of intracellular I(-) content in (125)I pre-loaded cells. Insulin- or PMA-treated cells also showed a cytosol-to-membrane translocation of PKC-delta and -epsilon. Inhibition of both PKC-delta and -epsilon activities by GF109203X blocked pendrin translocation, whilst the inhibition of PKA did not. The selective inhibition of PKC-delta by rottlerin did not affect the insulin-provoked translocation of pendrin whilst it was inhibited by a PKC-epsilon translocation inhibitor peptide and also by PKC-epsilon downregulation using the small interfering RNA, thus indicating that such translocation was due to PKC-epsilon activity. In conclusion, our study demonstrates that, in PC Cl3 cells, pendrin expression and localisation are regulated by insulin and influenced by a PKC-epsilon-dependent intracellular pathway.
Collapse
Affiliation(s)
- A Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Adler L, Efrati E, Zelikovic I. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 2008; 294:C1261-76. [PMID: 18322141 DOI: 10.1152/ajpcell.00486.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pendrin, a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid, and inner ear epithelia and is essential for bicarbonate secretion, iodide accumulation, and endolymph ion balance, respectively. This study aimed to define promoter regulatory elements essential for renal, thyroid, and inner ear epithelial cell-specific expression of human PDS (hPDS) and to explore the effect of ambient pH and aldosterone on hPDS promoter activity. Endogenous pendrin mRNA and protein were detected in renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cell lines, but not in the fibroblast cell line, NIH3T3. A 4.2-kb hPDS 5'-flanking DNA sequence and consecutive 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the above cell lines. Distinct differences in expression/activity of deduced positive/negative regulatory elements within the hPDS promoter between HEK293, LA2, and VOT36 cells were demonstrated, with only basal activity in NIH3T3 cells. Acidic pH (7.0-7.1) decreased and alkaline pH (7.6-7.7) increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone (10(-8) M) reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Acidic pH and aldosterone decreased, and alkaline pH increased, endogenous pendrin mRNA level in HEK293 cells. In conclusion, pendrin-mediated HCO3(-) secretion in the renal tubule and anion transport in the endolymph may be regulated transcriptionally by systemic pH and aldosterone.
Collapse
Affiliation(s)
- Lior Adler
- Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
30
|
Current World Literature. Curr Opin Oncol 2007; 19:65-9. [PMID: 17133115 DOI: 10.1097/cco.0b013e328012d5fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Iwasaki S, Tsukamoto K, Usami S, Misawa K, Mizuta K, Mineta H. Association of SLC26A4 mutations with clinical features and thyroid function in deaf infants with enlarged vestibular aqueduct. J Hum Genet 2006; 51:805-810. [PMID: 16924389 DOI: 10.1007/s10038-006-0027-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Pendred syndrome and non-syndromic recessive deafness associated with enlarged vestibular aqueduct (NSRD with EVA) are caused by mutations in the SLC26A4 (PDS) gene. Unlike NSRD with EVA, Pendred syndrome is characterized by goiter, which may be present after early adulthood. However, the clinical diagnosis of these two disorders is difficult in deaf children. Expression of the SLC26A4 gene may be responsible for iodide transport in the thyroid as well as for formation and function of the inner ear. Here, we analyzed the SLC26A4 gene and performed thyroid function tests (FT3, FT4, TSH, and Thyroglobulin) on six congenitally deaf infants (mean age 2.7 years) with EVA. Mutation of the SLC26A4 gene was identified in five patients: four were compound heterozygous (H723R/919-2A>G, H723R/IVS15+5G>A, H723R/R581S, IVS7-2A>G/IVS8+1G>A), the fifth had a frameshift mutation (322delC). All the patients demonstrated an elevation of serum thyroglobulin level. FT3 level was elevated in four of the five patients. The patient who did not have a detectable gene mutation showed normal thyroid function. We conclude that the mutations in the SLC26A4 gene identified here are highly associated with high serum thyroglobulin levels in congenital and deafness infants. These mutations may be of value for the diagnosis of Pendred syndrome and NSRD with EVA.
Collapse
Affiliation(s)
- Satoshi Iwasaki
- Department of Otolaryngology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu city, 431-3192, Japan.
| | - Koji Tsukamoto
- Department of Otolaryngology, Shinshu University School of Medicine, Shinshu, Japan
| | - Shinichi Usami
- Department of Otolaryngology, Shinshu University School of Medicine, Shinshu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu city, 431-3192, Japan
| | - Kunihiro Mizuta
- Department of Otolaryngology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu city, 431-3192, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu city, 431-3192, Japan
| |
Collapse
|
32
|
Dentice M, Cordeddu V, Rosica A, Ferrara AM, Santarpia L, Salvatore D, Chiovato L, Perri A, Moschini L, Fazzini C, Olivieri A, Costa P, Stoppioni V, Baserga M, De Felice M, Sorcini M, Fenzi G, Di Lauro R, Tartaglia M, Macchia PE. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 2006; 91:1428-33. [PMID: 16418214 DOI: 10.1210/jc.2005-1350] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital hypothyroidism (CH) is a common endocrine disorder with an incidence of 1:3000-4000 at birth. In 80-85% of cases, CH is caused by defects in thyroid organogenesis, resulting in absent, ectopically located, and/or severely reduced gland [thyroid dysgenesis (TD)]. Mutations in genes controlling thyroid development have demonstrated that in a few cases, TD is a Mendelian trait. However, accumulating evidence supports the view that the genetics of TD are complex, possibly with a polygenic/multifactorial basis. A higher prevalence of congenital heart disease has been documented in children with CH than in the general population. Such an association suggests a possible pathogenic role of genes involved in both heart and thyroid development. NKX2-5 encodes a homeodomain-containing transcription factor with a major role in heart development, and mutations affecting this gene have been reported in individuals with congenital heart disease. OBJECTIVE In the present work we investigated the possible involvement of NKX2-5 mutations in TD. RESULTS Our results indicate that Nkx2-5(-/-) embryos exhibit thyroid bud hypoplasia, providing evidence that NKX2-5 plays a role in thyroid organogenesis and that NKX2-5 mutations contribute to TD. NKX2-5 mutational screening in 241 patients with TD allowed the identification of three heterozygous missense changes (R25C, A119S, and R161P) in four patients with TD. Functional characterization of the three mutations demonstrated reduced DNA binding and/or transactivation properties, with a dominant-negative effect on wild-type NKX2-5. CONCLUSION Our results suggest a previously unknown role of NKX2-5 in the pathogenesis of TD.
Collapse
Affiliation(s)
- Monica Dentice
- Dipartimento di Endocrinologia ed Oncologia Molecolare e Clinica, Università di Napoli Federico II, Via S. Pansin 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|