1
|
Qin C, Gong S, Liang T, Zhang Z, Thomas J, Deng J, Liu Y, Hu P, Zhu B, Song S, Ortiz MF, Ikeno Y, Wang E, Lechleiter J, Weintraub ST, Bai Y. HADHA Regulates Respiratory Complex Assembly and Couples FAO and OXPHOS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405147. [PMID: 39488787 DOI: 10.1002/advs.202405147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) are key bioenergetics pathways. The machineries for both processes are localized in mitochondria. Secondary OXPHOS defects have been documented in patients with primary FAO deficiencies, and vice versa. However, the underlying mechanisms remain unclear. Intrigued by the observations that regulation of supercomplexes (SCs) assembly in a mouse OXPHOS deficient cell line and its derivatives is associated with the changes in lipid metabolism, a proteomics analysis is carried out and identified mitochondrial trifunctional protein (MTP) subunit alpha (hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha, HADHA) as a potential regulatory factor for SCs assembly. HADHA-Knockdown cells and mouse embryonic fibroblasts (MEFs) derived from HADHA-Knockout mice displayed both reduced SCs assembly and defective OXPHOS. Stimulation of OXPHOS induced in cell culture by replacing glucose with galactose and of lipid metabolism in mice with a high-fat diet (HFD) both exhibited increased HADHA expression. HADHA Heterozygous mice fed with HFD showed enhanced steatosis associated with a reduction of SCs assembly and OXPHOS function. The results indicate that HADHA participates in SCs assembly and couples FAO and OXPHOS.
Collapse
Affiliation(s)
- Chaoying Qin
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shasha Gong
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Taizhou Central Hospital (Taizhou University Hospital), Medical School, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Ting Liang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenbo Zhang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessie Thomas
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Janice Deng
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yaguang Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Peiqing Hu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bi Zhu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shujie Song
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Marisol Fernández Ortiz
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yuji Ikeno
- Barshop Institute of Aging Research and Longevity and Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Exing Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - James Lechleiter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Population Science and Prevention Program, Mays Cancer Center, The University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
2
|
Gu S, Fu L, Wang J, Sun X, Wang X, Lou J, Zhao M, Wang C, Zhang Q. MtDNA Copy Number in Oral Epithelial Cells Serves as a Potential Biomarker of Mitochondrial Damage by Neonicotinoid Exposure: A Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15816-15824. [PMID: 37819077 DOI: 10.1021/acs.est.3c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As the mitochondrial DNA copy number (mtDNAcn) has been reported to be a biomarker for mtDNA damage in honeybees when exposed to sublethal neonicotinoids, the feasibility of using human mitochondria as a predictor upon neonicotinoid exposure remains elusive. This study investigated the association between the urinary neonicotinoid and the relative mtDNAcn (RmtDNAcn) of oral epithelial cells collected in a cross-sectional study with repeated measurements over 6 weeks. The molecular mechanism underlying neonicotinoid-caused mitochondrial damage was also examined by in vitro assay. Herein, the average integrated urinary neonicotinoid (IMIRPF) concentration ranged from 8.01 to 13.70 μg/L (specific gravity-adjusted) during the sampling period. Concomitantly, with an increase in the urinary IMIRPF, the RmtDNAcn significantly increased from 1.20 (low group) to 1.93 (high group), indicating potential dose-dependent mitochondrial damage. Furthermore, the linear regression analysis confirmed the significant correlation between the IMIRPF and RmtDNAcn. Results from in vitro assays demonstrated that neonicotinoid exposure led to the inhibition of the genes encoding mitochondrial oxidative phosphorylation (OXPHOS) complexes I and III (e.g., ND2, ND6, CytB, and CYC1), accompanied by increased reactive oxygen species production in SH-SY5Y cells. Conjointly, neonicotinoid exposure led to mitochondrial dysfunction and a resulting increase in the RmtDNAcn, which may serve as a plausible biomarker in humans.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Xiaohui Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ximing Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jianlin Lou
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
3
|
Bao J, Zhang Y, Wen R, Zhang L, Wang X. Low level of mancozeb exposure affects ovary in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113670. [PMID: 35617905 DOI: 10.1016/j.ecoenv.2022.113670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Mancozeb (MCZ) is widely used as a protective fungicide. This study aimed to explore the effects of low level MCZ exposure on ovary in mice. Twenty Kunming mice were randomly divided into control and MCZ groups (10 mice each). The mice in the MCZ group were given 100 mg/kg MCZ daily via gavage. The mice were sacrificed to collect serum and ovaries on day 31. The experimental indicators were then assessed. The weight of MCZ-exposed mice significantly reduced while ovarian index significantly increased compared with the control group. The FSH, LH, E2, P, CAT, SOD and MDA contents in the serum were significantly decreased and the content of estradiol significantly increased after MCZ exposure. Histological observation showed that the ovarian structure of mice exposed to MCZ was damaged, and the apoptosis was increased. Immunohistochemistry and RT-qPCR showed that the expression of Bax, caspase-3 and caspase-9 significantly increased in the MCZ- group. Conversely, Bcl-2 expression significantly decreased. Transcriptome sequencing showed that the expression of NADH dehydrogenase ND3, ND4L, ND6 subunits, Cyt b, and SDHC genes in mitochondria were down-regulated after MCZ exposure, similar to real-time PCR analysis. These results collectively indicate that the MCZ can affect the abnormal function of mitochondrial respiratory chain, lead to oxidative phosphorylation decoupling, produce oxidative stress, and finally cause ovarian injury and apoptosis in mice.
Collapse
Affiliation(s)
- Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ran Wen
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
4
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
5
|
Muresanu C, Somasundaram SG, Neganova ME, Bovina EV, Vissarionov SV, Ofodile ON, Fisenko VP, Bragin V, Minyaeva NN, Chubarev VN, Klochkov SG, Tarasov VV, Mikhaleva LM, Kirkland CE, Aliev G. Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis. Curr Genomics 2020; 21:464-477. [PMID: 33093808 PMCID: PMC7536794 DOI: 10.2174/1389202921999200407082315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process. OBJECTIVE We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases. METHOD PROPOSAL We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1. PRELIMINARY STUDIES A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed. CONCLUSION Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to this author at the GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229 USA; Tel: +440-263-7461; E-mails: and
| |
Collapse
|
6
|
Dobler R, Dowling DK, Morrow EH, Reinhardt K. A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health. Hum Reprod Update 2019; 24:519-534. [PMID: 29757366 DOI: 10.1093/humupd/dmy018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/03/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mitochondrial replacement, a form of nuclear transfer, has been proposed as a germline therapy to prevent the transmission of mitochondrial diseases. Mitochondrial replacement therapy has been licensed for clinical application in the UK, and already carried out in other countries, but little is known about negative or unintended effects on the health of offspring born using this technique. OBJECTIVE AND RATIONALE Studies in invertebrate models have used techniques that achieve mitochondrial replacement to create offspring with novel combinations of mitochondrial and nuclear genotype. These have demonstrated that the creation of novel mitochondrial-nuclear interactions can lead to alterations in offspring characteristics, such as development rates, fertility and longevity. However, it is currently unclear whether such interactions could similarly affect the outcomes of vertebrate biomedical studies, which have sought to assess the efficacy of the replacement therapy. SEARCH METHODS This systematic review addresses whether the effects of mitochondrial replacement on offspring characteristics differ in magnitude between biological (conducted on invertebrate models, with an ecological or evolutionary focus) and biomedical studies (conducted on vertebrate models, with a clinical focus). Studies were selected based on a key-word search in 'Web of Science', complemented by backward searches of reviews on the topic of mitochondrial-nuclear (mito-nuclear) interactions. In total, 43 of the resulting 116 publications identified in the search contained reliable data to estimate effect sizes of mitochondrial replacement. We found no evidence of publication bias when examining effect-size estimates across sample sizes. OUTCOMES Mitochondrial replacement consistently altered the phenotype, with significant effects at several levels of organismal performance and health, including gene expression, anatomy, metabolism and life-history. Biomedical and biological studies, while differing in the methods used to achieve mitochondrial replacement, showed only marginally significant differences in effect-size estimates (-0.233 [CI: -0.495 to -0.011]), with larger effect-size estimates in biomedical studies (0.697 [CI: 0.450-0.956]) than biological studies (0.462 [CI: 0.287-0.688]). Humans showed stronger effects than other species. Effects of mitochondrial replacement were also stronger in species with a higher basal metabolic rate. Based on our results, we conducted the first formal risk analysis of mitochondrial replacement, and conservatively estimate negative effects in at least one in every 130 resulting offspring born to the therapy. WIDER IMPLICATIONS Our findings suggest that mitochondrial replacement may routinely affect offspring characteristics across a wide array of animal species, and that such effects are likely to extend to humans. Studies in invertebrate models have confirmed mito-nuclear interactions as the underpinning cause of organismal effects following mitochondrial replacement. This therefore suggests that mito-nuclear interactions are also likely to be contributing to effects seen in biomedical studies, on vertebrate models, whose effect sizes exceeded those of biological studies. Our results advocate the use of safeguards that could offset any negative effects (defining any unintended effect as being negative) mediated by mito-nuclear interactions following mitochondrial replacement in humans, such as mitochondrial genetic matching between donor and recipient. Our results also suggest that further research into the molecular nature of mito-nuclear interactions would be beneficial in refining the clinical application of mitochondrial replacement, and in establishing what degree of variation between donor and patient mitochondrial DNA haplotypes is acceptable to ensure 'haplotype matching'.
Collapse
Affiliation(s)
- Ralph Dobler
- Applied Zoology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, Brighton, UK
| | - Klaus Reinhardt
- Applied Zoology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, Germany
| |
Collapse
|
7
|
Etzler JC, Bollo M, Holstein D, Deng JJ, Perez V, Lin DT, Richardson A, Bai Y, Lechleiter JD. Cyclophilin D over-expression increases mitochondrial complex III activity and accelerates supercomplex formation. Arch Biochem Biophys 2016; 613:61-68. [PMID: 27916505 DOI: 10.1016/j.abb.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/27/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Cyclophilin D (CyPD), a mitochondrial matrix protein, has been widely studied for its role in mitochondrial-mediated cell death. Unexpectedly, we previously discovered that overexpression of CyPD in a stable cell line, increased mitochondrial membrane potentials and enhanced cell survival under conditions of oxidative stress. Here, we investigated the underlying mechanisms responsible for these findings. Spectrophotometric measurements in isolated mitochondria revealed that overexpression of CyPD in HEK293 cells increased respiratory chain activity, but only for Complex III (CIII). Acute treatment of mitochondria with the immumosupressant cyclosporine A did not affect CIII activity. Expression levels of the CIII subunits cytochrome b and Rieske-FeS were elevated in HEK293 cells overexpressing CyPD. However, CIII activity was still significantly higher compared to control mitochondria, even when normalized by protein expression. Blue native gel electrophoresis and Western blot assays revealed a molecular interaction of CyPD with CIII and increased levels of supercomplexes in mitochondrial protein extracts. Radiolabeled protein synthesis in mitochondria showed that CIII assembly and formation of supercomplexes containing CIII were significantly faster when CyPD was overexpressed. Taken together, these data indicate that CyPD regulates mitochondrial metabolism, and likely cell survival, by promoting more efficient electrons flow through the respiratory chain via increased supercomplex formation.
Collapse
Affiliation(s)
- Julie C Etzler
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 5016, Argentina
| | - Deborah Holstein
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Janice Jianhong Deng
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Viviana Perez
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 73104, USA
| | - Da-Ting Lin
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Arlan Richardson
- Department of Geriatrics, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, Swaminathan R, Jaganathan BG. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS One 2015; 10:e0145068. [PMID: 26661657 PMCID: PMC4678765 DOI: 10.1371/journal.pone.0145068] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.
Collapse
Affiliation(s)
- Chinnapaka Somaiah
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atul Kumar
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Darilang Mawrie
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suraj Dasharath Patil
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College Hospital, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cell Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- * E-mail:
| |
Collapse
|
9
|
Fayzulin RZ, Perez M, Kozhukhar N, Spadafora D, Wilson GL, Alexeyev MF. A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Res 2015; 43:e62. [PMID: 25820427 PMCID: PMC4482060 DOI: 10.1093/nar/gkv140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.
Collapse
Affiliation(s)
- Rafik Z Fayzulin
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Michael Perez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
10
|
Morrow EH, Reinhardt K, Wolff JN, Dowling DK. Risks inherent to mitochondrial replacement. EMBO Rep 2015; 16:541-4. [PMID: 25807984 DOI: 10.15252/embr.201439110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, Brighton, UK
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technische Universitaet Dresden, Dresden, Germany
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
11
|
A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Rep 2015; 10:1110-21. [PMID: 25704814 DOI: 10.1016/j.celrep.2015.01.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/10/2014] [Accepted: 01/29/2015] [Indexed: 11/21/2022] Open
Abstract
The mitochondrial genome relies heavily on post-transcriptional events for its proper expression, and misregulation of this process can cause mitochondrial genetic diseases in humans. Here, we report that a novel translational variant of Fas-activated serine/threonine kinase (FASTK) co-localizes with mitochondrial RNA granules and is required for the biogenesis of ND6 mRNA, a mitochondrial-encoded subunit of the NADH dehydrogenase complex (complex I). We show that ablating FASTK expression in cultured cells and mice results specifically in loss of ND6 mRNA and reduced complex I activity in vivo. FASTK binds at multiple sites along the ND6 mRNA and its precursors and cooperates with the mitochondrial degradosome to ensure regulated ND6 mRNA biogenesis. These data provide insights into the mechanism and control of mitochondrial RNA processing within mitochondrial RNA granules.
Collapse
|
12
|
A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci Rep 2014; 4:5285. [PMID: 24923838 PMCID: PMC4055904 DOI: 10.1038/srep05285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are semi-autonomous organelles regulated by a complex network of proteins that are vital for many cellular functions. Because mitochondrial modulators can impact many aspects of cellular homeostasis, their identification and validation has proven challenging. It requires the measurement of multiple parameters in parallel to understand the exact nature of the changes induced by such compounds. We developed a platform of assays scoring for mitochondrial function in two complementary models systems, mammalian cells and C. elegans. We first optimized cell culture conditions and established the mitochondrial signature of 1,200 FDA-approved drugs in liver cells. Using cell-based and C. elegans assays, we further defined the metabolic effects of two pharmacological classes that emerged from our hit list, i.e. imidazoles and statins. We found that these two drug classes affect respiration through different and cholesterol-independent mechanisms in both models. Our screening strategy enabled us to unequivocally identify compounds that have toxic or beneficial effects on mitochondrial activity. Furthermore, the cross-species approach provided novel mechanistic insight and allowed early validation of hits that act on mitochondrial function.
Collapse
|
13
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
14
|
Ballard JWO, Melvin RG. Early life benefits and later life costs of a two amino acid deletion in Drosophila simulans. Evolution 2010; 65:1400-12. [PMID: 21143473 DOI: 10.1111/j.1558-5646.2010.01209.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linking naturally occurring genotypic variation to the organismal phenotype is critical to our understanding of, and ability to, model biological processes such as adaptation to novel environments, disease, and aging. Rarely, however, does a simple mutation cause a single simple observable trait. Rather it is more common for a mutation to elicit an entangled web of responses. Here, we employ biochemistry as the thread to link a naturally occurring two amino acid deletion in a nuclear encoded mitochondrial protein with physiological benefits and costs in the fly Drosophila simulans. This nuclear encoded gene produces a protein that is imported into the mitochondrion and forms a subunit of complex IV (cytochrome c oxidase, or cox) of the electron transport chain. We observe that flies homozygous for the deletion have an advantage when young but pay a cost later in life. These data show that the organism responds to the deletion in a complex manner that gives insight into the mechanisms that influence mitochondrial bioenergetics and aspects of organismal physiology.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
15
|
Fang H, Shen L, Chen T, He J, Ding Z, Wei J, Qu J, Chen G, Lu J, Bai Y. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 2010; 10:421. [PMID: 20704735 PMCID: PMC2933623 DOI: 10.1186/1471-2407-10-421] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/12/2010] [Indexed: 01/26/2023] Open
Abstract
Background Mitochondrial DNA (mtDNA) haplogroups and single nucleotide polymorphisms (mtSNP) have been shown to play a role in various human conditions including aging and some neurodegenerative diseases, metabolic diseases and cancer. Methods To investigate whether mtDNA haplogroups contribute to the occurrence of cancer in a specific Chinese population, we have carried out a comprehensive case-control study of mtDNA from large cohorts of patients with three common cancer types, namely, colorectal cancer (n = 108), thyroid cancer (n = 100) and breast cancer (n = 104), in Wenzhou, a southern Chinese city in the Zhejiang Province. Results We found that patients with mtDNA haplogroup M exhibited an increased risk of breast cancer occurrence [OR = 1.77; 95% CI (1.03-3.07); P = 0.040], and that this risk was even more pronounced in a sub-haplogroup of M, D5 [OR = 3.11; 95%CI (1.07-9.06); p = 0.030]. In spite of this, in patients with breast cancer, haplogroup M was decreased in the metastatic group. On the other hand, our results also showed that haplogroup D4a was associated with an increased risk of thyroid cancer [OR = 3.00; 95%CI (1.09-8.29); p = 0.028]. However, no significant correlation has been detected between any mtDNA haplogroups and colorectal cancer occurrence. Conclusion Our investigation indicates that mitochondrial haplogroups could have a tissue-specific, population-specific and stage-specific role in modulating cancer development.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147-54. [PMID: 20194621 DOI: 10.1128/mcb.01614-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
Collapse
|
17
|
Sharma LK, Lu J, Bai Y. Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 2009; 16:1266-77. [PMID: 19355884 DOI: 10.2174/092986709787846578] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells whose primary function is to generate energy supplies in the form of ATP through oxidative phosphorylation. As the entry point for most electrons into the respiratory chain, NADH:ubiquinone oxidoreductase, or complex I, is the largest and least understood component of the mitochondrial oxidative phosphorylation system. Substantial progress has been made in recent years in understanding its subunit composition, its assembly, the interaction among complex I and other respiratory components, and its role in oxidative stress and apoptosis. This review provides an updated overview of the structure of complex I, as well as its cellular functions, and discusses the implication of complex I dysfunction in various human diseases.
Collapse
Affiliation(s)
- Lokendra K Sharma
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
18
|
Analysis of mitochondrial DNA mutations in D-loop region in thyroid lesions. Biochim Biophys Acta Gen Subj 2009; 1800:271-4. [PMID: 19463899 DOI: 10.1016/j.bbagen.2009.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mitochondrial defects have been associated with various human conditions including cancers. METHODS We analyzed the mutations at the mitochondrial DNA (mtDNA) in patients with different thyroid lesions. In particular, in order to investigate if the accumulation of mtDNA mutations play a role in tumor progression, we studied the highly variable main control region of mtDNA, the displacement-loop (D-loop) in patients with non-tumor nodular goiters, with benign thyroid adenomas, and with malignant thyroid carcinomas. Total thyroid tumor or goiter samples were obtained from 101 patients, matched with nearby normal tissue and blood from the same subject. RESULTS Noticeably, mitochondrial microsatellite instability (mtMSI) was detected in 2 of 19 nodular goiters (10.53%), and 8 of 77 (10.39%) malignant thyroid carcinomas. In addition, 6 patients, including 5 (6.49%) with malignant thyroid carcinomas and 1 (5.26%) with nodular goiter, were found to harbor point mutations. The majority of the mutations detected were heteroplasmic. GENERAL SIGNIFICANCE Our results indicate that mtDNA alterations in the D-loop region could happen before tumorigenesis in thyroid, and they might also accumulate during tumorigenesis.
Collapse
|
19
|
Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 2009; 18:1578-89. [PMID: 19208652 DOI: 10.1093/hmg/ddp069] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2008; 85:3416-28. [PMID: 17243174 DOI: 10.1002/jnr.21167] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cytoplasmic hybrid (cybrid) technique allows investigators to express selected mitochondrial DNA (mtDNA) sequences against fixed nuclear DNA (nDNA) backgrounds. Cybrids have been used to study the effects of known mtDNA mutations on mitochondrial biochemistry, mtDNA-nDNA inter-species compatibility, and mtDNA integrity in persons without mtDNA mutations defined previously. This review discusses events leading up to creation of the cybrid technique, as well as data obtained via application of the cybrid strategies listed above. Although interpreting cybrid data requires awareness of technique limitations, valuable insights into mtDNA genotype-functional phenotype relationships are suggested.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
21
|
Battersby BJ, Shoubridge EA. Reactive oxygen species and the segregation of mtDNA sequence variants. Nat Genet 2008; 39:571-2; author reply 572. [PMID: 17460678 DOI: 10.1038/ng0507-571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Antarctic Fish Mitochondrial Genomes Lack ND6 Gene. J Mol Evol 2007; 65:519-28. [DOI: 10.1007/s00239-007-9030-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/02/2007] [Indexed: 01/16/2023]
|
23
|
Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An Assembled Complex IV Maintains the Stability and Activity of Complex I in Mammalian Mitochondria. J Biol Chem 2007; 282:17557-62. [PMID: 17452320 DOI: 10.1074/jbc.m701056200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.
Collapse
Affiliation(s)
- Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liang H, Bai Y, Li Y, Richardson A, Ward WF. PGC-1alpha-induced mitochondrial alterations in 3T3 fibroblast cells. Ann N Y Acad Sci 2007; 1100:264-79. [PMID: 17460188 DOI: 10.1196/annals.1395.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome proliferation activator receptor (PPAR) gamma-coactivator 1alpha (PGC-1alpha), a transcription coactivator, functions as a master regulator of a wide array of metabolic and physiological processes and is an essential factor in the process of mitochondrial biogenesis. Transfection of NIH 3T3 fibroblasts with a mouse cDNA for PGC-1alpha led to the induction of markers of mitochondrial biogenesis, that is, mitochondrial transcription factor A (mtTFA), cytochrome c, and mitochondrial DNA (mtDNA). Mitochondrial biogenesis-associated net protein synthesis appears to be accomplished by a reduction in the rate of mitochondrial protein degradation with little or no change in the rate of protein synthesis. Overexpression of PGC-1alpha did not adversely affect cellular proliferation. Cellular ATP levels were increased in the transfected cells and they were more resistant to oxidative stress than the control nontransfected 3T3 cells. This resistance to oxidative stress was manifested by both an improved viability and the maintenance of mitochondrial membrane potential in the transfected cells when exposed to t-butyl hydroperoxide (t-BOOH). It therefore appears that PGC-1alpha overexpression stimulates mitochondrial biogenesis in 3T3 cells making them more resistant to oxidative stressors.
Collapse
Affiliation(s)
- Huiyun Liang
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
25
|
Reply to “Reactive oxygen species and the segregation of mtDNA sequence variants”. Nat Genet 2007. [DOI: 10.1038/ng0507-572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Srivastava S, Barrett JN, Moraes CT. PGC-1alpha/beta upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 2007; 16:993-1005. [PMID: 17341490 PMCID: PMC2652746 DOI: 10.1093/hmg/ddm045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have studied the functional effects of nonsense mitochondrial DNA (mtDNA) mutations in the COXI and ND5 genes in a colorectal tumor cell line. Surprisingly, these cells had an efficient oxidative phosphorylation (OXPHOS); however, when mitochondria from these cells were transferred to an osteosarcoma nuclear background (osteosarcoma cybrids), the rate of respiration markedly declined suggesting that the phenotypic expression of the mtDNA mutations was prevented by the colorectal tumor nuclear background. We found that there was a significant increase in the steady-state levels of PGC-1alpha and PGC-1beta transcriptional coactivators in these cells and a parallel increase in the steady-state levels of several mitochondrial proteins. Accordingly, adenoviral-mediated overexpression of PGC-1alpha and PGC-1beta in the osteosarcoma cybrids stimulated mitochondrial respiration suggesting that an upregulation of PGC-1alpha/beta coactivators can partially rescue an OXPHOS defect. In conclusion, upregulation of PGC-1alpha and PGC-1beta in the colorectal tumor cells can be part of an adaptation mechanism to help overcome the severe consequences of mtDNA mutations on OXPHOS.
Collapse
Affiliation(s)
- Sarika Srivastava
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - John N. Barrett
- Department of Physiology & Biophysics, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology & Anatomy, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- To whom correspondence should be addressed at: Tel: +1 3052435858; Fax: +1 3052433914;
| |
Collapse
|
27
|
Park JS, Li YF, Bai Y. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation. Biochim Biophys Acta Mol Basis Dis 2007; 1772:533-42. [PMID: 17320357 PMCID: PMC1905846 DOI: 10.1016/j.bbadis.2007.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/21/2006] [Accepted: 01/16/2007] [Indexed: 12/26/2022]
Abstract
G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
28
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|
29
|
D'Aurelio M, Gajewski CD, Lenaz G, Manfredi G. Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 2006; 15:2157-69. [PMID: 16740593 DOI: 10.1093/hmg/ddl141] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.
Collapse
Affiliation(s)
- Marilena D'Aurelio
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|