1
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
2
|
Yan K, Feng J, Liu X, Wang H, Li Q, Li J, Xu T, Sajid M, Ullah H, Zhou L, Zhou L, Chen Y. Inhibition of Hepatitis B Virus by AAV8-Derived CRISPR/SaCas9 Expressed From Liver-Specific Promoters. Front Microbiol 2021; 12:665184. [PMID: 34254007 PMCID: PMC8271097 DOI: 10.3389/fmicb.2021.665184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Curative therapies for chronic hepatitis B virus (HBV) infection remain a distant goal, and the persistence of stable covalently closed circular DNA (cccDNA) during HBV replication is a key barrier that is hard to break through using the drugs currently approved for HBV treatment. Due to the accuracy, efficiency, and cost-effectiveness of genome editing, CRISPR/Cas technologies are being widely used for gene therapy and in antiviral strategies. Although CRISPR/Cas could possibly clear cccDNA, ensuring its safety is requirement for application. In our study, we analyzed the liver specificity of several promoters and constructed candidate promoters in the CRISPR/Staphylococcus aureus Cas9 (SaCas9) system combined with hepatotropic AAV8 (whereby AAV refers to adeno-associated virus) to verify the efficacy against HBV. The results revealed that the reconstructed CRISPR/SaCas9 system in which the original promoter replaced with a liver-specific promoter could still inhibit HBV replication both in vitro and in vivo. Three functional guide RNAs (gRNAs), T2, T3, and T6, which target the conserved regions of different HBV genotypes, demonstrated consistently better anti-HBV effects with different liver-specific promoters. Moreover, the three gRNAs inhibited the replication of HBV genotypes A, B, and C to varying degrees. Under the action of the EnhII-Pa1AT promoter and AAV8, the expression of SaCas9 was further decreased in other organs or tissues in comparison to liver. These results are helpful for clinical applications in liver by ensuring the effects of the CRISPR/Cas9 system remain restricted to liver and, thereby, reducing the probability of undesired and harmful effects through nonspecific targeting in other organs.
Collapse
Affiliation(s)
- Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiaohong Li
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hafiz Ullah
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
The Dihydroquinolizinone Compound RG7834 Inhibits the Polyadenylase Function of PAPD5 and PAPD7 and Accelerates the Degradation of Matured Hepatitis B Virus Surface Protein mRNA. Antimicrob Agents Chemother 2020; 65:AAC.00640-20. [PMID: 33046485 DOI: 10.1128/aac.00640-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) mRNA metabolism is dependent upon host proteins PAPD5 and PAPD7 (PAPD5/7). PAPD5/7 are cellular, noncanonical, poly(A) polymerases (PAPs) whose main function is to oligoadenylate the 3' end of noncoding RNA (ncRNA) for exosome degradation. HBV seems to exploit these two ncRNA quality-control factors for viral mRNA stabilization, rather than degradation. RG7834 is a small-molecule compound that binds PAPD5/7 and inhibits HBV gene production in both tissue culture and animal study. We reported that RG7834 was able to destabilize multiple HBV mRNA species, ranging from the 3.5-kb pregenomic/precore mRNAs to the 2.4/2.1-kb hepatitis B virus surface protein (HBs) mRNAs, except for the smallest 0.7-kb X protein (HBx) mRNA. Compound-induced HBV mRNA destabilization was initiated by a shortening of the poly(A) tail, followed by an accelerated degradation process in both the nucleus and cytoplasm. In cells expressing HBV mRNA, both PAPD5/7 were found to be physically associated with the viral RNA, and the polyadenylating activities of PAPD5/7 were susceptible to RG7834 repression in a biochemical assay. Moreover, in PAPD5/7 double-knockout cells, viral transcripts with a regular length of the poly(A) sequence could be initially synthesized but became shortened in hours, suggesting that participation of PAPD5/7 in RNA 3' end processing, either during adenosine oligomerization or afterward, is crucial for RNA stabilization.
Collapse
|
4
|
Block TM, Young JAT, Javanbakht H, Sofia MJ, Zhou T. Host RNA quality control as a hepatitis B antiviral target. Antiviral Res 2020; 186:104972. [PMID: 33242518 DOI: 10.1016/j.antiviral.2020.104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibition of the host RNA polyadenylating polymerases, PAPD5 and PAPD7 (PAPD5/7), with dihydroquinolizinone, a small orally available, molecule, results in a rapid and selective degradation of hepatitis B virus (HBV) RNA, and hence reduction in the amounts of viral gene products. DHQ, is a first in class investigational agent and could represent an entirely new category of HBV antivirals. PAPD5 and PAPD7 are non-canonical, cell specified, polyadenylating polymerases, also called terminal nucleotidyl transferases 4B and 4A (TENT4B/A), respectively. They are involved in the degradation of poor-quality cell transcripts, mostly non-coding RNAs and in the maturation of a sub-set of transcripts. They also appear to play a role in shielding some mRNA from degradation. The results of studies with DHQ, along with other recent findings, provide evidence that repression of the PAPD5/7 arm of the cell "RNA quality control" pathway, causes a profound (multi-fold) reduction rather than increase, in the amount of HBV pre-genomic, pre-core and HBsAg mRNA levels in tissue culture and animal models, as well. In this review we will briefly discuss the need for new HBV therapeutics and provide background about HBV transcription. We also discuss cellular degradation of host transcripts, as it relates to a new family of anti-HBV drugs that interfere with these processes. Finally, since HBV mRNA maturation appears to be selectively sensitive to PAPD5/7 inhibition in hepatocytes, we discuss the possibility of targeting host RNA "quality control" as an antiviral strategy.
Collapse
Affiliation(s)
| | - John A T Young
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Hassan Javanbakht
- SQZ Biotechnologies, 200 Arsenal Yards Blvd, Suite 210, Watertown, MA, 02472, USA.
| | - Michael J Sofia
- Arbutus Biopharma, Inc, 701 Veterans Circle, Warminster, PA, 18974, USA.
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| |
Collapse
|
5
|
Magnius L, Mason WS, Taylor J, Kann M, Glebe D, Dény P, Sureau C, Norder H, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Hepadnaviridae. J Gen Virol 2020; 101:571-572. [PMID: 32416744 PMCID: PMC7414443 DOI: 10.1099/jgv.0.001415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family Hepadnaviridae comprises small enveloped viruses with a partially double-stranded DNA genome of 3.0–3.4 kb. All family members express three sets of proteins (preC/C, polymerase and preS/S) and replication involves reverse transcription within nucleocapsids in the cytoplasm of hepatocytes. Hepadnaviruses are hepatotropic and infections may be transient or persistent. There are five genera: Parahepadnavirus, Metahepadnavirus, Herpetohepadnavirus, Avihepadnavirus and Orthohepadnavirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hepadnaviridae, which is available at ictv.global/report/hepadnaviridae.
Collapse
Affiliation(s)
- Lars Magnius
- Ulf Lundahl´s Foundation, 10061 Stockholm, Sweden
| | | | - John Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig-University Giessen, German Centre for Infection Research (DZIF), Giessen, Germany
| | - Paul Dény
- Centre de Recherches en Cancérologie de Lyon, INSERM U1052, UMR CNRS 5286, Team Hepatocarcinogenesis and Viral Infection, Lyon, France
| | - Camille Sureau
- Institut National de la Transfusion Sanguine (INTS), CNRS-INSERM U1134, Paris, France
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | | |
Collapse
|
6
|
Abstract
Hepatitis B virus (HBV), which was discovered in 1965, is a threat to global public health. HBV infects human hepatocytes and leads to acute and chronic liver diseases, and there is no cure. In cells infected by HBV, viral DNA can be integrated into the cellular genome. HBV DNA integration is a complicated process during the HBV life cycle. Although HBV integration normally results in replication-incompetent transcripts, it can still act as a template for viral protein expression. Of note, it is a primary driver of hepatocellular carcinoma (HCC). Recently, with the development of detection methods and research models, the molecular biology and the pathogenicity of HBV DNA integration have been better revealed. Here, we review the advances in the research of HBV DNA integration, including molecular mechanisms, detection methods, research models, the effects on host and viral gene expression, the role of HBV integrations in the pathogenesis of HCC, and potential treatment strategies. Finally, we discuss possible future research prospects of HBV DNA integration.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Andrew Liu
- Laboratory of Molecular Cardiology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Xia Y, Guo H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antiviral Res 2020; 180:104824. [PMID: 32450266 PMCID: PMC7387223 DOI: 10.1016/j.antiviral.2020.104824] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 257 million individuals chronically infected. Current therapies can effectively control HBV replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and discuss the possible strategies that may contribute to the eradication of HBV through targeting cccDNA.
Collapse
Affiliation(s)
- Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Haitao Guo
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Godoy C, Tabernero D, Sopena S, Gregori J, Cortese MF, González C, Casillas R, Yll M, Rando A, López-Martínez R, Quer J, González-Aseguinolaza G, Esteban R, Riveiro-Barciela M, Buti M, Rodríguez-Frías F. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J Gastroenterol 2019; 25:1566-1579. [PMID: 30983817 PMCID: PMC6452231 DOI: 10.3748/wjg.v25.i13.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) seems to strongly suppress hepatitis B virus (HBV) replication, although little is known about the mechanism of this interaction. Both these viruses show a dynamic distribution of mutants, resulting in viral quasispecies. Next-generation sequencing is a viable approach for analyzing the composition of these mutant spectra. As the regulatory hepatitis B X protein (HBx) is essential for HBV replication, determination of HBV X gene (HBX) quasispecies complexity in HBV/HDV infection compared to HBV mono-infection may provide information on the interactions between these two viruses.
AIM To compare HBV quasispecies complexity in the HBX 5’ region between chronic hepatitis delta (CHD) and chronic HBV mono-infected patients.
METHODS Twenty-four untreated patients were included: 7/24 (29.2%) with HBeAg-negative chronic HBV infection (CI, previously termed inactive carriers), 8/24 (33.3%) with HBeAg-negative chronic hepatitis B (CHB) and 9/24 (37.5%) with CHD. A serum sample from each patient was first tested for HBV DNA levels. The HBX 5’ region [nucleotides (nt) 1255-1611] was then PCR-amplified for subsequent next-generation sequencing (MiSeq, Illumina, United States). HBV quasispecies complexity in the region analyzed was evaluated using incidence-based indices (number of haplotypes and number of mutations), abundance-based indices (Hill numbers of order 1 and 2), and functional indices (mutation frequency and nucleotide diversity). We also evaluated the pattern of nucleotide changes to investigate which of them could be the cause of the quasispecies complexity.
RESULTS CHB patients showed higher median HBV-DNA levels [5.4 logIU/mL, interquartile range (IQR) 3.5-7.9] than CHD (3.4 logIU/mL, IQR 3-7.6) (P = n.s.) or CI (3.2 logIU/mL, IQR 2.3-3.5) (P < 0.01) patients. The incidence and abundance indices indicated that HBV quasispecies complexity was significantly greater in CI than CHB. A similar trend was observed in CHD patients, although only Hill numbers of order 2 showed statistically significant differences (CHB 2.81, IQR 1.11-4.57 vs CHD 8.87, 6.56-11.18, P = 0.038). There were no significant differences in the functional indices, but CI and CHD patients also showed a trend towards greater complexity than CHB. No differences were found for any HBV quasispecies complexity indices between CHD and CI patients. G-to-A and C-to-T nucleotide changes, characteristic of APOBEC3G, were higher in CHD and CI than in CHB in genotype A haplotypes, but not in genotype D. The proportion of nt G-to-A vs A-to-G changes and C-to-T vs T-to-C changes in genotype A and D haplotypes in CHD patients showed no significant differences. In CHB and CI the results of these comparisons were dependent on HBV genotype.
CONCLUSION The lower-replication CHD and CI groups show a trend to higher quasispecies complexity than the higher-replication CHB group. The mechanisms associated with this greater complexity require elucidation.
Collapse
Affiliation(s)
- Cristina Godoy
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sara Sopena
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Roche Diagnostics SL, Sant Cugat del Vallès 08174, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Carolina González
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Marçal Yll
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Ariadna Rando
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosa López-Martínez
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | - Rafael Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Xia Y, Liang TJ. Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology 2019; 156:311-324. [PMID: 30243618 PMCID: PMC6340783 DOI: 10.1053/j.gastro.2018.07.057] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection affects approximately 300 million people worldwide. Although antiviral therapies have improved the long-term outcomes, patients often require life-long treatment and there is no cure for HBV infection. New technologies can help us learn more about the pathogenesis of HBV infection and develop therapeutic agents to reduce its burden. We review recent advances in development of direct-acting antiviral and host-targeting agents, some of which have entered clinical trials. We also discuss strategies for unbiased high-throughput screens to identify compounds that inhibit HBV and for repurposing existing drugs.
Collapse
Affiliation(s)
- Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|
10
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
11
|
Mouse models for hepatitis B virus research. Lab Anim Res 2018; 34:85-91. [PMID: 30310404 PMCID: PMC6170223 DOI: 10.5625/lar.2018.34.3.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem; indeed, there are 250 million carriers worldwide. The host range of HBV is narrow; therefore, few primates are susceptible to HBV infection. However, ethical constraints, high cost, and large size limit the use of primates as suitable animal models. Thus, in vivo testing of therapies that target HBV has been hampered by the lack of an appropriate in vivo research model. To address this, mouse model systems of HBV are being developed and several are used for studying HBV in vivo. In this review, we summarize the currently available mouse models, including HBV transgenic mice, hydrodynamic injection-mediated HBV replicon delivery systems, adeno-associated virus-mediated HBV replicon delivery systems, and human liver chimeric mouse models. These developed (or being developed) mouse model systems are promising and should be useful tools for studying HBV.
Collapse
|
12
|
Xu L, Wu Z, Tan S, Wang Z, Lin Q, Li X, Song X, Liu Y, Song Y, Zhang J, Peng J, Gao L, Gong Y, Liang X, Zuo X, Ma C. Tumor suppressor ZHX2 restricts hepatitis B virus replication via epigenetic and non-epigenetic manners. Antiviral Res 2018; 153:114-123. [DOI: 10.1016/j.antiviral.2018.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/10/2023]
|
13
|
TIP60 Complex Inhibits Hepatitis B Virus Transcription. J Virol 2018; 92:JVI.01788-17. [PMID: 29321313 DOI: 10.1128/jvi.01788-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a global major health problem, with over one million deaths annually caused by chronic liver damage. Understanding host factors that modulate HBV replication may aid the development of anti-HBV therapies. Our recent genome-wide small interfering RNA screen using recombinant HBV demonstrated that TIP60 inhibited HBV infection. Here, we show that TIP60 complex contributes to anti-HBV defense. The TIP60 complex bound to the HBV promoter and suppressed HBV transcription driven by the precore/core promoter. The silencing of EP400, TRRAP, BAF53a, RUVBL1, and RUVBL2, which form the TIP60 complex, also resulted in increased HBV transcription. These results contribute to our enhanced understanding of the molecular mechanism of HBV transcription associated with the chromatin structure of HBV covalently closed circular DNA (cccDNA). Exploiting these intrinsic cellular defenses might help develop new anti-HBV agents.IMPORTANCE Investigating the molecular mechanism of HBV replication is important to understand the persistent nature of HBV infection and to aid the development of new HBV agents, which are currently limited to HBV polymerase inhibitors. Previously, we developed a new reporter HBV. By screening host factors using this recombinant virus, we identified several gene products that regulate HBV infection, including TIP60. Here, we showed that TIP60, a catalytic subunit of the NuA4 complex, inhibited HBV replication. Depletion of TIP60 increased the level of HBV mRNA. Moreover, TIP60 localized in the HBV cccDNA chromatin complex catalyzed the acetylation of histone H4 to recruit Brd4. These results suggest that TIP60, in concert with other cellular factors, plays an important role in the regulation of the HBV chromatin structure by acting as a critical component of the intrinsic antiviral defense, which sheds new light on the regulation of HBV replication.
Collapse
|
14
|
Zhang W, Chen J, Wu M, Zhang X, Zhang M, Yue L, Li Y, Liu J, Li B, Shen F, Wang Y, Bai L, Protzer U, Levrero M, Yuan Z. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 2017; 66:398-415. [PMID: 28236308 DOI: 10.1002/hep.29133] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. CONCLUSION PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host-HBV interaction, thus providing new insights into targeted therapeutic intervention. (Hepatology 2017;66:398-415).
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Yue
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baocun Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Shen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | | | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Clark DN, Jones SA, Hu J. In Vitro Assays for RNA Binding and Protein Priming of Hepatitis B Virus Polymerase. Methods Mol Biol 2017; 1540:157-177. [PMID: 27975315 DOI: 10.1007/978-1-4939-6700-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hepatitis B virus (HBV) polymerase synthesizes the viral DNA genome from the pre-genomic RNA (pgRNA) template through reverse transcription. Initiation of viral DNA synthesis is accomplished via a novel protein priming mechanism, so named because the polymerase itself acts as a primer, whereby the initiating nucleotide becomes covalently linked to a tyrosine residue on the viral polymerase. Protein priming, in turn, depends on specific recognition of the packaging signal on pgRNA called epsilon. These early events in viral DNA synthesis can now be dissected in vitro as described here.The polymerase is expressed in mammalian cells and purified by immunoprecipitation. The purified protein is associated with host cell factors, is enzymatically active, and its priming activity is epsilon dependent. A minimal epsilon RNA construct from pgRNA is co-expressed with the polymerase in cells. This RNA binds to and co-immunoprecipitates with the polymerase. Modifications can be made to either the epsilon RNA or the polymerase protein by manipulating the expression plasmids. Also, the priming reaction itself can be modified to assay for the initiation or subsequent DNA synthesis during protein priming, the susceptibility of the polymerase to chemical inhibitors, and the precise identification of the DNA products upon their release from the polymerase. The identity of associated host factors can also be evaluated. This protocol closely mirrors our current understanding of the RNA binding and protein priming steps of the HBV replication cycle, and it is amenable to modification. It should therefore facilitate both basic research and drug discovery.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology and Immunology-H107, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA, 17033, USA.
| | - Scott A Jones
- Department of Microbiology and Immunology-H107, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
- Nevada Division of Public and Behavioral Health, Primary Care Office, 4150 Technology Way, Suite 104, Carson City, NV, 89706, USA
| | - Jianming Hu
- Department of Microbiology and Immunology-H107, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
| |
Collapse
|
16
|
Yoneda M, Hyun J, Jakubski S, Saito S, Nakajima A, Schiff ER, Thomas E. Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 197:630-43. [PMID: 27288535 DOI: 10.4049/jimmunol.1502677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Cell-intrinsic innate immunity provides a rapid first line of defense to thwart invading viral pathogens through the production of antiviral and inflammatory genes. However, the presence of many of these signaling pathways in the liver and their role in hepatitis B virus (HBV) pathogenesis is unknown. Recent identification of intracellular DNA-sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and carcinogenesis suggest a role for these processes in HBV infection. To characterize HBV-intrinsic innate immune responses and the role of DNA- and RNA-sensing pathways in the liver, we used in vivo and in vitro models including analysis of gene expression in liver biopsies from HBV-infected patients. In addition, mRNA and protein expression were measured in HBV-stimulated and DNA-treated hepatoma cell lines and primary human hepatocytes. In this article, we report that HBV and foreign DNA stimulation results in innate immune responses characterized by the production of inflammatory chemokines in hepatocytes. Analysis of liver biopsies from HBV-infected patients supported a correlation among hepatic expression of specific chemokines. In addition, HBV elicits a much broader range of gene expression alterations. The induction of chemokines, including CXCL10, is mediated by melanoma differentiation-associated gene 5 and NF-κB-dependent pathways after HBV stimulation. In conclusion, HBV-stimulated pathways predominantly activate an inflammatory response that would promote the development of hepatitis. Understanding the mechanism underlying these virus-host interactions may provide new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with HBV infection.
Collapse
Affiliation(s)
- Masato Yoneda
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL 33136; Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jinhee Hyun
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Silvia Jakubski
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 226-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 226-0004, Japan
| | - Eugene R Schiff
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL 33136; Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Emmanuel Thomas
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL 33136; Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136;
| |
Collapse
|
17
|
Liu Q, Huang J, Jia R, Wang M, Zhu D, Chen S, Liu M, Yin Z, Wang Y, Cheng A. The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Res 2015; 196:13-9. [PMID: 25449362 DOI: 10.1016/j.virusres.2014.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Over the course of duck hepatitis B virus (DHBV) replication, one type of RNA (pregenome/C RNA, 3.5 kb) that corresponds to the whole genome of DHBV is generated from the transcription of viral cccDNA. Previous work has proposed three functions for the pregenome/C RNA: it can serve as the pregenome and be packaged into the core protein during the process of replication, and it encodes the mRNA for both the capsid protein and the viral polymerase. However, little is known about the timing of these functions during the different stages of viral infection. In this study, a reverse transcription quantitative real-time PCR assay was developed to analyze the dynamic transcription process of the pregenome/C RNA. The dynamic expression of the core protein was investigated using an indirect immunofluorescence assay (IFA) and by western blot analysis. The generation of pregenome/C RNA began at 12 h post infection and peaked at 20 h post infection; however, the core protein was not detectable until 24h post infection. These results demonstrate that the core protein appeared approximately 12h later than the pregenome/C RNA. These results suggest that the DHBV pregenome/C RNA is not used for the translation of the viral core protein during the early stages of infection.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Dekang Zhu
- Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| |
Collapse
|
18
|
van Hemert FJ, Zaaijer HL, Berkhout B, Lukashov VV. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus. Virology 2007; 370:362-72. [PMID: 17935747 DOI: 10.1016/j.virol.2007.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/31/2007] [Accepted: 08/25/2007] [Indexed: 12/17/2022]
Abstract
Surface protein and polymerase of hepatitis B virus provide a striking example of gene overlap. Inclusion of more coding constraints in the phylogenetic analysis forces the tree toward accepted topology. Three-dimensional protein modeling demonstrates that participation in local protein function underlies the observed mosaic patterns of amino acid conservation and variability. Conserved amino acid residues of polymerase were typically clustered at the catalytic core marked by the YMDD motif. The proposed tertiary structure of surface protein displayed the expected transmembrane helices in a 2-domain constellation. Conserved amino acids like, for instance, cysteine residues are involved in the spatial orientation of the two domains, the exposed location of the a-determinant and the dimer formation of surface protein. By means of computational alanine replacement scanning, we demonstrated that the interfaces between domains in monomeric surface protein, between the monomers in dimeric surface protein and in a capsid-surface protein complex mainly consist of relatively well-conserved amino acid residues.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Abstract
Because many viruses replicate in the nucleus of their host cells, they must have ways of transporting their genome and other components into and out of this compartment. For the incoming virus particle, nuclear entry is often one of the final steps in a complex transport and uncoating program. Typically, it involves recognition by importins (karyopherins), transport to the nucleus, and binding to nuclear pore complexes. Although all viruses take advantage of cellular signals and factors, viruses and viral capsids vary considerably in size, structure, and in how they interact with the nuclear import machinery. Influenza and adenoviruses undergo extensive disassembly prior to genome import; herpesviruses release their genome into the nucleus without immediate capsid disassembly. Polyoma viruses, parvoviruses, and lentivirus preintegration complexes are thought to enter in intact form, whereas the corresponding complexes of onco-retroviruses have to wait for mitosis because they cannot infect interphase nuclei.
Collapse
Affiliation(s)
- G R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA.
| | | | | |
Collapse
|
20
|
Lee H, Kim HT, Yun Y. Liver-specific enhancer II is the target for the p53-mediated inhibition of hepatitis B viral gene expression. J Biol Chem 1998; 273:19786-91. [PMID: 9677410 DOI: 10.1074/jbc.273.31.19786] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here, we established the inhibitory mechanism of p53 on hepatitis B viral gene expression using HepG2 cells. Our results are as follows. First, p53 down-regulated the activities of all four promoters of hepatitis B virus (HBV), suggestive of the presence of a common element mediating the p53-dependent transcriptional repression. Second, employing the 5'-deletion constructs of the pregenomic/core promoter, the liver-specific enhancer II region was localized as a target for the p53-mediated transcriptional repression. Third, in a detailed analysis of the enhancer II region, the 5'-proximal 31-base pair region was defined as a p53-repressible element. Throughout the study, p53-mediated repression was rescued upon coexpression of the X-gene product, HBx. Finally, in an electrophoretic mobility shift assay, the defined p53-repressible element did not bind purified p53 directly, but shifted three bands in HepG2 nuclear extract, two of which was supershifted upon addition of p53 monoclonal antibody. These results display a novel mechanism of p53-dependent transcriptional repression in which p53 negatively regulates the viral-specific DNA enhancer through protein to protein interaction with an enhancer-binding protein. At the same time, the results indicate that p53 plays a defensive role against HBV by transcriptionally repressing the HBV core promoter through liver-specific enhancer II and HBx is required to counteract this inhibitory function of p53.
Collapse
Affiliation(s)
- H Lee
- Signal Transduction Laboratory, Mogam Biotechnology Research Institute, 341 Pojungri, Koosungmyon, Yongingoon, Kyunggido 449-910, Korea
| | | | | |
Collapse
|
21
|
Chen ML, Hsu NC, Liu ST, Chang YS. Identification of an internal promoter of the latent membrane protein 1 gene of Epstein-Barr virus. DNA Cell Biol 1995; 14:205-11. [PMID: 7880441 DOI: 10.1089/dna.1995.14.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The latent membrane protein 1 (LMP 1) gene of an Epstein-Barr virus (EBV) variant derived from an nasopharyngeal carcinoma (NPC) biopsy in Taiwan was isolated and characterized (Chen et al., 1992). Transient expression of the genomic sequence containing this gene showed two proteins with molecular masses of 62 kD and 50 kD, respectively, recognized by LMP-specific antibody S12. To determine if these two proteins were derived from independent promoters, we generated a series of mutant plasmids from plasmid pT7(E) that contained the upstream and the coding regions of the LMP 1 gene. These mutants were introduced into a human epithelial cell line, C33A, and LMP 1 proteins were examined by Western blotting analysis with the S12 antibody. Data showed that plasmid with a fragment containing approximately 3 kb of upstream sequence of LMP 1 gene produced the 62-kD protein. Removal of 2.7 kb of the upstream sequence (plasmid delta 2710, deleted to nucleotide 169,571) resulted in the production of both 62-kD and 50-kD proteins. This suggested that the upstream sequence interfered with the production of the 50-kD protein. Plasmid DNA deleted to Acc I site (nucleotide 169,223) generated only the 50-kD protein, designated as tr-LMP. Further deletion to nucleotide 169,038 resulted in the expression of another smaller LMP1 (49 kD, named as str-LMP1). The region between nucleotides 168,789 and 169,038 was tested to see if it possessed a promoter activity by using the luciferase gene as a reporter. Data showed that this region contained promoter activity with a level compatible to the previously reported ED-L1A promoter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M L Chen
- Department of Microbiology & Immunology, Chang-Gung College of Medicine and Technology, Kwei-shan, Taoyuan, Taiwan, ROC
| | | | | | | |
Collapse
|
22
|
Abstract
Chronic infections with hepatitis B virus (HBV) of humans and animal hepadnavirus infections in their natural hosts are strongly associated with primary hepatocellular carcinoma (HCC). Although viral integrations are found in cells of many HCC, no general viral-specific hepatocarcinogenic mechanism for hepadnaviruses has been identified. In approximately one half of HCC in woodchuck hepatitis virus (WHV) infected woodchucks, viral integrations near the c-myc or N-myc genes have been reported which result in enhanced expression of the respective gene. Such host gene-specific insertional mutagenesis has not been found in HCC of other hepadnavirus infected hosts. Thus in humans, ground squirrels and ducks hepadnaviral integrations appear to be at different host chromosomal DNA sites in each HCC and few integrations have been found within or near any cellular gene. Other possible hepadnavirus-specific carcinogenic mechanisms that are being investigated include transactivation of cellular gene expression by an hepadnavirus gene product (e.g. the X-gene), and mutation of host genes by unknown hepadnavirus-specific mechanisms. It should be noted, however, that chronic hepadnavirus infection is associated with chronic necroinflammatory liver disease with hepatocellular necrosis and regeneration (sometimes leading to cirrhosis in humans), a pathological process that is common to numerous other risk factors for HCC. This suggests the possibility that this pathological process is hepatocarcinogenic irrespective of the inciting agent and the role of hepadnavirus infection is no different from that of other risk factors in causing chronic necroinflammatory liver disease.
Collapse
Affiliation(s)
- W S Robinson
- Stanford University School of Medicine, California
| |
Collapse
|
23
|
Abstract
The regulation of the core promoter of Hepatitis B virus (HBV) was investigated using the chloramphenicol acetyltransferase (CAT) reporter system. Deletional analysis of sequences 5' to the HBV core promoter indicated the presence of a negative regulatory element (NRE) located within a 282-bp BamHI-HincII DNA fragment. The NRE was functional in hepatic as well as nonhepatic cells. Results of in vivo competition experiments suggest a role for cellular transacting repressor protein(s) in the functioning of the NRE. The HBV NRE, positioned 5' to the SV40 early promoter, inhibited the activity of the heterologous promoter in an orientation-independent, but position-dependent manner. These data indicate that the HBV NRE is a silencer element, which functions to downregulate the activity of the core promoter.
Collapse
Affiliation(s)
- K K Gerlach
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202
| | | |
Collapse
|
24
|
Affiliation(s)
- F V Chisari
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
25
|
López-Cabrera M, Letovsky J, Hu KQ, Siddiqui A. Transcriptional factor C/EBP binds to and transactivates the enhancer element II of the hepatitis B virus. Virology 1991; 183:825-9. [PMID: 1853580 DOI: 10.1016/0042-6822(91)91019-d] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human hepatitis B Virus genome (HBV) contains a liver-specific enhancer upstream of the X ORF which has been studied in detail by several investigators. A second liver-specific enhancer element, designated here as enhancer II, has been relatively recently described in the HBV genome, which is located within the core/pregenomic promoter. We have studied the interactions of transcriptional factors with this element and show here that the nuclear factor CCAAT/enhancer binding protein (C/EBP) binds at a unique site within these sequences. Further, using the transient cotransfection scheme of expression with C/EBP encoding vectors and an enhancer II-reporter gene construct, we demonstrate that the enhancer element II responds to increasing amounts of C/EBP by displaying transactivation. Evidence for the functional role of the enhancer element II in transcriptional regulation of the HBV gene expression is presented. A major influence of the enhancer II appears to be on the surface antigen expression.
Collapse
Affiliation(s)
- M López-Cabrera
- Department of Microbiology and Immunology, Biochemistry, Biophysics and Genetics, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
26
|
Nishizono A, Maeno M, Hiraga M, Hirai H, Esumi M, Shikata T. In vitro transcription of the hepatitis B virus gene by nuclear extracts of human hepatoma cells. Virology 1991; 182:545-52. [PMID: 1850918 DOI: 10.1016/0042-6822(91)90595-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In vitro transcription of hepatitis B virus DNA (HBV DNA) was studied using nuclear extracts of human hepatoma cell lines. RNA polymerase II-dependent run-off transcription of pre-S mRNA under the control of pre-S1 promoter was observed in nuclear extracts obtained from HepG2 and PLC/PRF/5 cells, and the efficiencies in these extracts were significantly higher than those in nuclear extracts of non-liver cells such as HeLa, Molt-4, and Ehrlich. Analysis of run-off transcripts by the pre-S1 promoter, using deletion mutants of HBV DNA as templates and synthetic oligonucleotides as competitors, showed that hepatocyte nuclear factor 1 was necessary for initiation of in vitro transcription of pre-S mRNA. The run-off transcript of pregenome RNA was also detected and its initiation site was determined. Nuclear extracts of not only hepatoma cells but non-liver cells were active in transcription of pregenome RNA in vitro. However, run-off transcripts of S mRNA and X mRNA were not observed in this system. These results suggest that there were some differences between the mechanisms of HBV DNA transcription in vitro and in vivo. This in vitro transcription system will be useful for clarifying the mechanism regulating transcription of HBV DNA since the biochemical and functional characteristics of the nuclear factors can readily be analyzed.
Collapse
Affiliation(s)
- A Nishizono
- First Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Chisari FV. Analysis of hepadnavirus gene expression, biology, and pathogenesis in the transgenic mouse. Curr Top Microbiol Immunol 1991; 168:85-101. [PMID: 1893780 DOI: 10.1007/978-3-642-76015-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F V Chisari
- Research Institute of Scripps Clinic, La Jolla, CA 92037
| |
Collapse
|
28
|
Valenzuela P. Hepatitis A, B, C, D and E viruses: structure of their genomes and general properties. GASTROENTEROLOGIA JAPONICA 1990; 25 Suppl 2:62-71. [PMID: 2227269 DOI: 10.1007/bf02779931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis A virus is an enteric picornavirus. Its genome is a single stranded RNA molecule of positive-strand polarity of 7478 bases. This sequence codes for a polyprotein which is processed to give rise to viral proteins VP-1, VP-2, VP-3 and others. Hepatitis B virus, a major worldwide infectious and cancer promoting agent contains a DNA genome of 3226 base pairs that replicates by a reverse transcriptase via an RNA intermediate. Extensive sequencing and expression experiments have revealed four major genes named surface, core, polymerase and X which are coded in more than one reading frame. Furthermore, within a frame, proteins are expressed from multiple initiation codons resulting in several related products. The viral genome of hepatitis C virus (nonA-nonB), an elusive major infectious agent, has recently been cloned. This genome is a single positive-stranded RNA of at least 10,000 bases which codes for several antigens, some of them associated specifically with nonA-nonB hepatitis infections. The hepatitis D (delta) viral agent, an infectious agent requiring a hepadnarious for propagation, contains a covalently closed circular single-stranded RNA genome of 1167 nucleotides. This genome encodes the protein p24 and p27 that bind specifically to antisera from patients with chronic hepatitis D infections.
Collapse
Affiliation(s)
- P Valenzuela
- Chiron Research Laboratories, Chiron Corporation, Everyville, Ca 94608
| |
Collapse
|
29
|
Masuda M, Yuasa T, Yoshikura H. Effect of the preS1 RNA sequence on the efficiency of the hepatitis B virus preS2 and S protein translation. Virology 1990; 174:320-4. [PMID: 2294645 DOI: 10.1016/0042-6822(90)90083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gene coding for hepatitis B virus surface antigen consists of preS1, preS2, and S regions. Two species of mRNAs of this gene are transcribed. The larger species covers all three regions and is translated solely into preS1 protein, whereas the smaller one covers the preS2 and S regions and is translated into preS2 and S proteins. This study examines the influence of the 5' upstream sequence lying in the preS1 region on the synthesis of preS2 and S proteins. For this purpose, several expression plasmids were constructed by inserting various portions of the preS1 region between the retroviral LTR promoter and the preS2/S coding region, and preS2/S protein production was examined in the transfected CHL cells. All the transcripts were initiated in the LTR. A sequence located in the region between 102 and 38 nucleotides upstream from the preS2 initiation codon was found to reduce the production of preS2/S proteins probably at the level of translation. Expression of the heterologous chloramphenicol acetyltransferase gene was similarly inhibited when it was placed downstream of the preS1-102/-38 sequence.
Collapse
Affiliation(s)
- M Masuda
- Department of Bacteriology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
30
|
Affiliation(s)
- F V Chisari
- Research Institute of Scripps Clinic, Department of Basic and Clinical Research, La Jolla, CA 92037
| | | | | |
Collapse
|
31
|
Bulla GA, Siddiqui A. Negative regulation of the hepatitis B virus pre-S1 promoter by internal DNA sequences. Virology 1989; 170:251-60. [PMID: 2718384 DOI: 10.1016/0042-6822(89)90373-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the surface antigen gene (S gene) of hepatitis B virus is directed by two distinct promoter elements with markedly different activities. The upstream (pre-S1) promoter produces a 2.4-kb transcript at very low levels while the downstream (pre-S2) promoter produces an approximately 2.1-kb transcript in relative abundance. We have constructed a series of internal deletion mutants to analyze differential regulation of the two S gene promoters. We show here that expression directed by the pre-S1 promoter is negatively regulated by DNA sequences containing the downstream pre-S2 promoter region. Nuclear run-on analysis indicates this down-regulation to be at the level of transcription. Furthermore, promoter repression does not appear to be due to products of the S gene region. Deletion mutagenesis studies have permitted the localization of a 61-bp region that may be involved in the apparent down-regulation of the pre-S1 promoter. These results suggest the use of an unusual regulatory mechanism by a dipromoter gene in which an active internal promoter may preclude efficient use of an upstream promoter.
Collapse
Affiliation(s)
- G A Bulla
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
32
|
Affiliation(s)
- R H Miller
- Hepatitis Viruses Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
33
|
Abstract
The 465-nucleotide sequence of the X gene from our cloned hepatitis B virus (HBV) DNA (subtype adw) was determined and compared to the same gene of 10 other published HBV sequences (3 of adw, 4 of adr, 2 of ayw, and 1 of ayr). We found (i) a total of 56 base differences among the 11 sequences (without counting the 27-base deletion in one adr) which resulted in 88% nucleotide homology, and (ii) 5 pairs of repeated sequence (3 direct repeats and 2 inverted repeats) that were highly conserved. Comparison of the protein amino acid sequences indicated that (i) there is 80% amino acid homology in total, and (ii) there are four highly conserved cysteine residues. In addition, the X gene of the adw subtype is more conserved than that of adr.
Collapse
Affiliation(s)
- S J Lo
- Graduate Institute of Microbiology and Immunology, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
34
|
Masuda M, Lee G, Yuasa T, Yoshikura H. Upstream region of hepatitis B virus S gene responsible for transcriptional stimulation by dexamethasone. Microbiol Immunol 1988; 32:741-7. [PMID: 2848182 DOI: 10.1111/j.1348-0421.1988.tb01435.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcriptional regulation of hepatitis B virus (HBV) surface antigen (HBs Ag) gene was studied in human hepatoma-derived cell lines. Treatment with dexamethasone (Dex; 1 microM) induced an increase in the smaller HBs-mRNA initiated within Pre-S region encoding S and Pre-S2 proteins, but not the larger HBs-mRNA initiated in the further upstream encoding Pre-S1 protein. The Bg1II-MstII fragment (map position 2425-3201) in the upstream of the S gene was used as a transcriptional promoter of chloramphenicol acetyltransferase (CAT) gene. The CAT activity brought about by this construct in the transient assay was elevated by 5-fold in the presence of Dex. Deletion analysis localized the sequence required for the full response to Dex within a 590-base pair fragment in the upstream of the transcriptional initiation site of the smaller HBs-mRNA. And this fragment contained the binding site for the nuclear factor I (NF-I), which might have some role in Dex-dependent transcriptional stimulation.
Collapse
Affiliation(s)
- M Masuda
- Department of Bacteriology, Faculty of Medicine, University of Tokyo
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- A R Neurath
- Biochemical Virology Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021
| | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- D R Milich
- Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, CA 92037
| |
Collapse
|
38
|
Dejean A, Bougueleret L, Grzeschik KH, Tiollais P. Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature 1986; 322:70-2. [PMID: 3014347 DOI: 10.1038/322070a0] [Citation(s) in RCA: 326] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) is clearly involved in the aetiology of human hepatocellular carcinoma (HCC) and the finding of HBV DNA integration into human liver DNA in almost all HCCs studied suggested that these integrated viral sequences may be involved in liver oncogenesis. Several HBV integrations in different HCCs and HCC-derived cell lines have been analysed after molecular cloning without revealing any obvious role for HBV. From a comparison of a HBV integration site present in a particular HCC with the corresponding unoccupied site in the non-tumorous tissue of the same liver, we now report that HBV integration places the viral sequence next to a liver cell sequence which bears a striking resemblance to both an oncogene (v-erb-A) and the supposed DNA-binding domain of the human glucocorticoid receptor and human oestrogen receptor genes. We suggest that this gene, usually silent or transcribed at a very low level in normal hepatocytes, becomes inappropriately expressed as a consequence of HBV integration, thus contributing to the cell transformation.
Collapse
|
39
|
Saito I, Oya Y, Shimojo H. Novel RNA family structure of hepatitis B virus expressed in human cells, using a helper-free adenovirus vector. J Virol 1986; 58:554-60. [PMID: 3009868 PMCID: PMC252944 DOI: 10.1128/jvi.58.2.554-560.1986] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ad5-HBL is a type 5 adenovirus bearing the large BglII fragment (2.8 kilobases; 87% of the total genome) of hepatitis B virus (HBV), subtype adr. Eight HBV RNAs expressed in HeLa cells infected with Ad5-HBL were mapped by the nuclease S1 technique. Three major RNAs spanning 2.4, 2.0, and 0.7 kilobases of the HBV sequences cover the coding regions of "presurface" plus surface antigen, surface antigen alone, and "X" protein, respectively. The 5' segment of an RNA which could code for core antigen (HBcAg) was also detected. All major HBV RNAs initiate from mutually exclusive 5' ends, terminate at the unique 3' end within the HBcAg coding region (except readthrough species), and have no spliced deletion, forming a novel RNA family structure. No TATA box-like sequences were found near the 5' end of these RNAs, except in the case of the 2.4-kilobase RNA. About two thirds of total HBV RNA does not terminate at the mapped 3'-end position, suggesting the termination signal is functionally inefficient. Since the potential 5' end of HBcAg mRNA was mapped at the same position as the minus-strand nick of HBV DNA previously reported, we propose a model that requires inefficient poly(A) addition to produce an RNA which serves both as HBcAg mRNA and as the putative RNA template of minus-strand DNA synthesis in the HBV life cycle.
Collapse
|
40
|
Abstract
The X region in hepatitis B virus DNA potentially encodes a polypeptide 154 amino acids in length. Two synthetic peptides spanning residues 100 to 115 (peptide 99) and 115 to 131 (peptide 100) in a hydrophilic domain within the carboxy terminal third of the proposed gene product were made and used to raise peptide antisera in rabbits. Such antisera specifically bound to X reactive determinants in liver-derived core antigen particles from humans (HBcAg), ducks (DHBcAg), ground squirrels (GSHcAg) and woodchucks (WHcAg) at each step of core antigen purification. This reactivity was blocked by addition of excess synthetic peptide, and neither sera were reactive with other purified antigens such as HBsAg. Individual polypeptides associated with these core particles were also reactive by Western blotting. These findings suggest that X reactive determinants are present in the core particles of hepatitis B virus and related viruses, and that one or more core-associated polypeptides may have both X and core antigenic determinants. The possible significance of these observations upon the genetic organization and expression of the X gene is discussed.
Collapse
|
41
|
|
42
|
Pfaff E, Klinkert MQ, Theilmann L, Schaller H. Characterization of large surface proteins of hepatitis B virus by antibodies to preS-S encoded amino acids. Virology 1986; 148:15-22. [PMID: 3510505 DOI: 10.1016/0042-6822(86)90399-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The major surface protein of HBV, the 226-amino-acid HBsAg, is encoded in the 3' proximal segment of the preS-S gene of 389 codons. To identify gene products from the 5' proximal preS sequence, DNA fragments from the preS region were expressed in Escherichia coli as fusion proteins. Antisera prepared against these fusions were used to screen serum proteins of HBV-infected individuals, and found to react specifically with the two large HBV surface proteins of 39 and 42 kDa. The presence of these proteins could be correlated with acute HBV infection. Analysis by Western blotting using the preS sequence-specific antisera and HBV particles separated into spheres, filaments, and Dane particles confirmed that these proteins were associated with the native virus. Dane particles containing active DNA polymerase could be immune precipitated by the preS-specific antibodies, showing that the preS-coded part of these surface proteins is located on the surface of the virion.
Collapse
|
43
|
Bazett-Jones DP, Yeckel M, Gottesfeld JM. Nuclear extracts from globin-synthesizing cells enhance globin transcription in vitro. Nature 1985; 317:824-8. [PMID: 2414668 DOI: 10.1038/317824a0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vitro transcription studies of cloned messenger RNA-coding genes have yielded considerable information regarding the sequence elements and protein factors involved in transcription initiation and RNA processing. Fractionation of whole-cell, S-100 protein and nuclear extracts reveals the existence of both general class II and gene-specific transcription initiation factors. Because the soluble in vitro transcription systems prepared from cells in culture are largely nonspecific for the origin of the template DNA, they are highly suited to searching for tissue-specific and gene-specific transcription regulatory factors. In the experiments reported here, we have added a nuclear extract prepared from human erythroleukaemia-like cells (K562, which can be induced to synthesize epsilon- and gamma-globin mRNA and protein) to several deproteinized DNA templates, and monitored transcription levels in a HeLa cell-free transcription system. The K562 nuclear extract enhanced transcription of beta-, epsilon- and gamma-globin genes by as much as 30-fold compared with control non-globin templates. These results suggest the presence of a globin gene regulatory factor in erythroleukaemia cell nuclei.
Collapse
|
44
|
Abstract
DNA recombinant technology has radically changed hepatitis B virus (HBV) virology. The genetic organization, transcription and replication of the virus are basically understood, structures of integrated HBV sequences in hepatocellular carcinoma have been characterized, and new vaccines produced by recombinant DNA technique are being developed.
Collapse
|
45
|
Bichko V, Pushko P, Dreilina D, Pumpen P, Gren E. Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Lett 1985; 185:208-12. [PMID: 3996597 DOI: 10.1016/0014-5793(85)80771-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The entire genome of human hepatitis B virus (HBV) occurring in Latvia was sequenced. This sequence, which is 3182 nucleotides long, was compared with the other previously published HBV genomes and was shown to share maximum homology with HBV subtype ayw DNA. The coordinates of 4 main open reading frames as well as hairpin structures are very well conserved in the two genomes. The distribution of nucleotide substitutions among different HBV genomes suggest that the open reading frames P and X can fulfil a coding function. On the basis of primary structure comparison for hepadnaviral DNAs several evolutionary conclusions can be drawn.
Collapse
|
46
|
Abstract
This review will attempt to cover the present information on the multiple forms of eukaryotic DNA-dependent RNA polymerases, both at the structural and functional level. Nuclear RNA polymerases constitute a group of three large multimeric enzymes, each with a different and complex subunit structure and distinct specificity. The review will include a detailed description of their molecular structure. The current approaches to elucidate subunit function via chemical modification, phosphorylation, enzyme reconstitution, immunological studies, and mutant analysis will be described. In vitro reconstituted systems are available for the accurate transcription of cloned genes coding for rRNA, tRNA, 5 SRNA, and mRNA. These systems will be described with special attention to the cellular factors required for specific transcription. A section on future prospects will address questions concerning the significance of the complex subunit structure of the nuclear enzymes; the organization and regulation of the gene coding for RNA polymerase subunits; the obtention of mutants affected at the level of factors, or RNA polymerases; the mechanism of template recognition by factors and RNA polymerase.
Collapse
|