1
|
Abstract
Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
Collapse
|
2
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
3
|
Marques WL, Mans R, Marella ER, Cordeiro RL, van den Broek M, Daran JMG, Pronk JT, Gombert AK, van Maris AJA. Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. FEMS Yeast Res 2017; 17:fox006. [PMID: 28087672 PMCID: PMC5424818 DOI: 10.1093/femsyr/fox006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated by suppressor mutations in sucrose-negative strains. A strain in which all known sucrose-transporter genes (MAL11, MAL21, MAL31, MPH2, MPH3) were deleted did not grow on sucrose after 2 months of incubation. In contrast, a strain with deletions in genes encoding sucrose-hydrolysing enzymes (SUC2, MAL12, MAL22, MAL32) still grew on sucrose. Its specific growth rate increased from 0.08 to 0.25 h−1 after sequential batch cultivation. This increase was accompanied by a 3-fold increase of in vitro sucrose-hydrolysis and isomaltase activities, as well as by a 3- to 5-fold upregulation of the isomaltase-encoding genes IMA1 and IMA5. One-step Cas9-mediated deletion of all isomaltase-encoding genes (IMA1-5) completely abolished sucrose hydrolysis. Even after 2 months of incubation, the resulting strain did not grow on sucrose. This sucrose-negative strain can be used as a platform to test metabolic engineering strategies and for fundamental studies into sucrose hydrolysis or transport.
Collapse
Affiliation(s)
- Wesley Leoricy Marques
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.,School of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Eko Roy Marella
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
4
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
5
|
Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research. G3-GENES GENOMES GENETICS 2016; 6:1757-66. [PMID: 27172212 PMCID: PMC4889671 DOI: 10.1534/g3.116.029389] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. The Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics.
Collapse
|
6
|
Drozdova PB, Tarasov OV, Matveenko AG, Radchenko EA, Sopova JV, Polev DE, Inge-Vechtomov SG, Dobrynin PV. Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection. PLoS One 2016; 11:e0154722. [PMID: 27152522 PMCID: PMC4859572 DOI: 10.1371/journal.pone.0154722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles.
Collapse
Affiliation(s)
- Polina B. Drozdova
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
| | - Oleg V. Tarasov
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Scientific Center of RAS, St. Petersburg, Russia
| | - Andrew G. Matveenko
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, St. Petersburg, Russia
| | - Elina A. Radchenko
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
| | - Julia V. Sopova
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, Russia
| | - Dmitrii E. Polev
- Research Resource Center for Molecular and Cell Technologies, Research Park, Saint-Petersburg State University, St. Petersburg, Russia
| | - Sergey G. Inge-Vechtomov
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Pavel V. Dobrynin
- Bioinformatics Institute, St. Petersburg, Russia
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
7
|
Bozdag GO, Greig D. The genetics of a putative social trait in natural populations of yeast. Mol Ecol 2014; 23:5061-71. [PMID: 25169714 PMCID: PMC4285311 DOI: 10.1111/mec.12904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Abstract
The sharing of secreted invertase by yeast cells is a well-established laboratory model for cooperation, but the only evidence that such cooperation occurs in nature is that the SUC loci, which encode invertase, vary in number and functionality. Genotypes that do not produce invertase can act as ‘cheats’ in laboratory experiments, growing on the glucose that is released when invertase producers, or ‘cooperators’, digest sucrose. However, genetic variation for invertase production might instead be explained by adaptation of different populations to different local availabilities of sucrose, the substrate for invertase. Here we find that 110 wild yeast strains isolated from natural habitats, and all contained a single SUC locus and produced invertase; none were ‘cheats’. The only genetic variants we found were three strains isolated instead from sucrose-rich nectar, which produced higher levels of invertase from three additional SUC loci at their subtelomeres. We argue that the pattern of SUC gene variation is better explained by local adaptation than by social conflict.
Collapse
Affiliation(s)
- G O Bozdag
- Max Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, Plön, 24306, Germany
| | | |
Collapse
|
8
|
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (BETHESDA, MD.) 2014; 4:389-98. [PMID: 24374639 PMCID: PMC3962479 DOI: 10.1534/g3.113.008995] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.
Collapse
Affiliation(s)
- Stacia R. Engel
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Dianna G. Fisk
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Gail Binkley
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Rama Balakrishnan
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Maria C. Costanzo
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Selina S. Dwight
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Benjamin C. Hitz
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Kalpana Karra
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Robert S. Nash
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Shuai Weng
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Edith D. Wong
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Paul Lloyd
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Marek S. Skrzypek
- Department of Genetics, Stanford University, Stanford, California 94305
| | | | - Matt Simison
- Department of Genetics, Stanford University, Stanford, California 94305
| | - J. Michael Cherry
- Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
9
|
Harrington KI, Sanchez A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun Integr Biol 2014; 7:e28230. [PMID: 24778764 PMCID: PMC3995729 DOI: 10.4161/cib.28230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022] Open
Abstract
Microbial communities abound with examples of complex social interactions that shape microbial ecosystems. One particularly striking example is microbial cooperation via the secretion of public goods. It has been suggested by theory, and recently demonstrated experimentally, that microbial population dynamics and the evolutionary dynamics of cooperative social genes take place with similar timescales, and are linked to each other via an eco-evolutionary feedback loop. We overview this recent evidence, and discuss the possibility that a third process may be also part of this loop: phenotypic dynamics. Complex social strategies may be implemented at the single-cell level by means of gene regulatory networks. Thus gene expression plasticity or stochastic gene expression, both of which may occur with a timescale of one to a few generations, can potentially lead to a three-way coupling between behavioral dynamics, population dynamics, and evolutionary dynamics
Collapse
Affiliation(s)
- Kyle I Harrington
- DEMO Lab; Department of Computer Science; Brandeis University; Waltham MA USA; The Rowland Institute; Harvard University; Cambridge, MA USA
| | - Alvaro Sanchez
- The Rowland Institute; Harvard University; Cambridge, MA USA
| |
Collapse
|
10
|
Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 2011; 40:D700-5. [PMID: 22110037 PMCID: PMC3245034 DOI: 10.1093/nar/gkr1029] [Citation(s) in RCA: 1288] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.
Collapse
Affiliation(s)
- J Michael Cherry
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Teste MA, François JM, Parrou JL. Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family. J Biol Chem 2010; 285:26815-26824. [PMID: 20562106 DOI: 10.1074/jbc.m110.145946] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It has been known for a long time that the yeast Saccharomyces cerevisiae can assimilate alpha-methylglucopyranoside and isomaltose. We here report the identification of 5 genes (YGR287c, YIL172c, YJL216c, YJL221c and YOL157c), which, similar to the SUCx, MALx, or HXTx multigene families, are located in the subtelomeric regions of different chromosomes. They share high nucleotide sequence identities between themselves (66-100%) and with the MALx2 genes (63-74%). Comparison of their amino acid sequences underlined a substitution of threonine by valine in region II, one of the four highly conserved regions of the alpha-glucosidase family. This change was previously shown to be sufficient to discriminate alpha-1,4- to alpha-1,6-glucosidase activity in YGR287c (Yamamoto, K., Nakayama, A., Yamamoto, Y., and Tabata, S. (2004) Eur. J. Biochem. 271, 3414-3420). We showed that each of these five genes encodes a protein with alpha-glucosidase activity on isomaltose, and we therefore renamed these genes IMA1 to IMA5 for IsoMAltase. Our results also illustrated that sequence polymorphisms among this family led to interesting variability of gene expression patterns and of catalytic efficiencies on different substrates, which altogether should account for the absence of functional redundancy for growth on isomaltose. Indeed, deletion studies revealed that IMA1/YGR287c encodes the major isomaltase and that growth on isomaltose required the presence of AGT1, which encodes an alpha-glucoside transporter. Expressions of IMA1 and IMA5/YJL216c were strongly induced by maltose, isomaltose, and alpha-methylglucopyranoside, in accordance with their regulation by the Malx3p-transcription system. The physiological relevance of this IMAx multigene family in S. cerevisiae is discussed.
Collapse
Affiliation(s)
- Marie-Ange Teste
- CNRS, UMR5504, F-31400 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Jean Marie François
- CNRS, UMR5504, F-31400 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Jean-Luc Parrou
- CNRS, UMR5504, F-31400 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.
| |
Collapse
|
12
|
Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 2009; 19:2258-70. [PMID: 19812109 DOI: 10.1101/gr.091777.109] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Use of game-theoretical methods in biochemistry and biophysics. J Biol Phys 2008; 34:1-17. [PMID: 19669489 DOI: 10.1007/s10867-008-9101-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 06/24/2008] [Indexed: 12/24/2022] Open
Abstract
Evolutionary game theory can be considered as an extension of the theory of evolutionary optimisation in that two or more organisms (or more generally, units of replication) tend to optimise their properties in an interdependent way. Thus, the outcome of the strategy adopted by one species (e.g., as a result of mutation and selection) depends on the strategy adopted by the other species. In this review, the use of evolutionary game theory for analysing biochemical and biophysical systems is discussed. The presentation is illustrated by a number of instructive examples such as the competition between microorganisms using different metabolic pathways for adenosine triphosphate production, the secretion of extracellular enzymes, the growth of trees and photosynthesis. These examples show that, due to conflicts of interest, the global optimum (in the sense of being the best solution for the whole system) is not always obtained. For example, some yeast species use metabolic pathways that waste nutrients, and in a dense tree canopy, trees grow taller than would be optimal for biomass productivity. From the viewpoint of game theory, the examples considered can be described by the Prisoner's Dilemma, snowdrift game, Tragedy of the Commons and rock-scissors-paper game.
Collapse
|
14
|
Fleming AB, Pennings S. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene. Nucleic Acids Res 2007; 35:5520-31. [PMID: 17704134 PMCID: PMC2018639 DOI: 10.1093/nar/gkm573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The traditional model for chromatin remodelling during transcription has focused upon the remodelling of nucleosomes at gene promoters. However, in this study, we have determined that Tup1-Ssn6 and Swi-Snf chromatin remodelling activities extend far upstream of the SUC2 gene promoter into the intergenic region of the Saccharomyces cerevisiae chromosome. We mapped the nucleosomal array over a 7.5 kb region that encompassed the SUC2 gene promoter and upstream region but was devoid of other transcriptionally active genes. Nucleosome positioning over this region was determined under conditions of glucose repression and derepression, and in snf2, ssn6 and snf2 ssn6 mutant strains. A map detailing remodelling events extending as much as 5 kb upstream of the SUC2 gene promoter underlines the roles of the Tup1-Ssn6 and Swi-Snf complexes in respectively organizing and disrupting nucleosome arrays. The gene specificity of these events suggests a role in gene regulation. We propose that long-range chromatin remodelling activities of Swi-Snf and Tup1-Ssn6 may ultimately influence whether the chromosomal state of the SUC2 gene is proficient for transcription. These data raise the possibility that remodelling of extensive chromatin domains may be a general property of the Swi-Snf and Tup1-Ssn6 complexes.
Collapse
Affiliation(s)
- Alastair B. Fleming
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sari Pennings
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK, Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, New Mexico 87131, USA and Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- *To whom correspondence should be addressed. +44 131 242 6145+44 131 242 6782
| |
Collapse
|
15
|
See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B, Gill BS. Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci U S A 2006; 103:4162-7. [PMID: 16537502 PMCID: PMC1449664 DOI: 10.1073/pnas.0508942102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat ESTs mapped to deletion bins in the distal 42% of the long arm of chromosome 4B (4BL) were ordered in silico based on blastn homology against rice pseudochromosome 3. The ESTs spanned 29 cM on the short arm of rice chromosome 3, which is known to be syntenic to long arms of group-4 chromosomes of wheat. Fine-scale deletion-bin and genetic mapping revealed that 83% of ESTs were syntenic between wheat and rice, a far higher level of synteny than previously reported, and 6% were nonsyntenic (not located on rice chromosome 3). One inversion spanning a 5-cM region in rice and three deletion bins in wheat was identified. The remaining 11% of wheat ESTs showed no sequence homology in rice and mapped to the terminal 5% of the wheat chromosome 4BL. In this region, 27% of ESTs were duplicated, and it accounted for 70% of the recombination in the 4BL arm. Globally in wheat, no sequence homology ESTs mapped to the terminal bins, and ESTs rarely mapped to interstitial chromosomal regions known to be recombination hot spots. The wheat-rice comparative genomics analysis indicated that gene evolution occurs preferentially at the ends of chromosomes, driven by duplication and divergence associated with high rates of recombination.
Collapse
Affiliation(s)
| | - Steven Brooks
- Agricultural Research Services Department of Agronomy, United States Department of Agriculture, Kansas State University, Manhattan, KS 66506
| | | | - Gina Brown-Guedira
- Agricultural Research Services Department of Agronomy, United States Department of Agriculture, Kansas State University, Manhattan, KS 66506
| | | | - Bikram S. Gill
- *Department of Plant Pathology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Abstract
The SUC multigene family of the single-celled yeast Saccharomyces cerevisiae is polymorphic, with genes varying both in number and activity. All of the genes encode invertase, an enzyme that is secreted to digest sucrose outside of the cell. This communal endeavour creates the potential for individual cells to defect (cheat) by stealing the sugar digested by their neighbours without contributing the enzyme themselves. We measured the fitness of a defector, with a deleted suc2 gene, relative to an otherwise isogenic cooperator, with a functional SUC2 gene. We manipulated the level of social interaction within the community by varying the population density and found that the defector is less fit than the cooperator at low levels of sociality but more fit in dense communities. We propose that selection for antisocial cheating causes SUC polymorphism in nature. The infamous Prisoner's Dilemma game shows that social behaviour is generally unstable, and the success of both cooperation and defection can vary continuously in time and space. The variation in SUC genes reflects constant adaptation to an ever-changing biotic environment that is a consequence of the instability of cooperation. It is interesting that social interactions can have a direct effect on molecular evolution, even in an organism as simple as yeast.
Collapse
Affiliation(s)
- Duncan Greig
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | |
Collapse
|
17
|
Padilla PA, Fuge EK, Crawford ME, Errett A, Werner-Washburne M. The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation. J Bacteriol 1998; 180:5718-26. [PMID: 9791124 PMCID: PMC107633 DOI: 10.1128/jb.180.21.5718-5726.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SNZ1, a member of a highly conserved gene family, was first identified through studies of proteins synthesized in stationary-phase yeast cells. There are three SNZ genes in Saccharomyces cerevisiae, each of which has another highly conserved gene, named SNO (SNZ proximal open reading frame), upstream. The DNA sequences and relative positions of SNZ and SNO genes have been phylogenetically conserved. This report details studies of the expression of the SNZ-SNO gene pairs under various conditions and phenotypic analysis of snz-sno mutants. An analysis of total RNA was used to determine that adjacent SNZ-SNO gene pairs are coregulated. SNZ2/3 and SNO2/3 mRNAs are induced prior to the diauxic shift and decrease in abundance during the postdiauxic phase, when SNZ1 and SNO1 are induced. In snz2 snz3 mutants, SNZ1 mRNA is induced prior to the diauxic shift, when SNZ2/3 mRNAs are normally induced. Under nitrogen-limiting conditions, SNZ1 mRNAs accumulate in tryptophan, adenine, and uracil auxotrophs but not in prototrophic strains, indicating that induction occurs in response to the limitation of specific nutrients. Strains carrying deletions in all SNZ-SNO gene pairs are viable, but snz1 and sno1 mutants are sensitive to 6-azauracil (6-AU), an inhibitor of purine and pyrimidine biosynthetic enzymes, and methylene blue, a producer of singlet oxygen. The conservation of sequence and chromosomal position, the coregulation and pattern of expression of SNZ1 and SNO1 genes, and the sensitivity of snz1 and sno1 mutants to 6-AU support the hypothesis that the associated proteins are part of an ancient response to nutrient limitation.
Collapse
Affiliation(s)
- P A Padilla
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Mammalian telomeres are thought to be composed of a tandem array of TTAGGG repeats. To further define the type and arrangement of sequences at the ends of human chromosomes, we developed a direct cloning strategy for telomere-associated DNA. The method involves a telomere enrichment procedure based on the relative lack of restriction endonuclease cutting sites near the ends of human chromosomes. Nineteen (TTAGGG)n-bearing plasmids were isolated, two of which contain additional human sequences proximal to the telomeric repeats. These telomere-flanking sequences detect BAL 31-sensitive loci and thus are located close to chromosome ends. One of the flanking regions is part of a subtelomeric repeat that is present at 10 to 25% of the chromosome ends in the human genome. This sequence is not conserved in rodent DNA and therefore should be a helpful tool for physical characterization of human chromosomes in human-rodent hybrid cell lines; some of the chromosomes that may be analyzed in this manner have been identified, i.e., 7, 16, 17, and 21. The minimal size of the subtelomeric repeat is 4 kilobases (kb); it shows a high frequency of restriction fragment length polymorphisms and undergoes extensive de novo methylation in somatic cells. Distal to the subtelomeric repeat, the chromosomes terminate in a long region (up to 14 kb) that may be entirely composed of TTAGGG repeats. This terminal segment is unusually variable. Although sperm telomeres are 10 to 14 kb long, telomeres in somatic cells are several kilobase pairs shorter and very heterogeneous in length. Additional telomere reduction occurs in primary tumors, indicating that somatic telomeres are unstable and may continuously lose sequences from their termini.
Collapse
|
19
|
de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE. Structure and variability of human chromosome ends. Mol Cell Biol 1990; 10:518-27. [PMID: 2300052 PMCID: PMC360828 DOI: 10.1128/mcb.10.2.518-527.1990] [Citation(s) in RCA: 235] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian telomeres are thought to be composed of a tandem array of TTAGGG repeats. To further define the type and arrangement of sequences at the ends of human chromosomes, we developed a direct cloning strategy for telomere-associated DNA. The method involves a telomere enrichment procedure based on the relative lack of restriction endonuclease cutting sites near the ends of human chromosomes. Nineteen (TTAGGG)n-bearing plasmids were isolated, two of which contain additional human sequences proximal to the telomeric repeats. These telomere-flanking sequences detect BAL 31-sensitive loci and thus are located close to chromosome ends. One of the flanking regions is part of a subtelomeric repeat that is present at 10 to 25% of the chromosome ends in the human genome. This sequence is not conserved in rodent DNA and therefore should be a helpful tool for physical characterization of human chromosomes in human-rodent hybrid cell lines; some of the chromosomes that may be analyzed in this manner have been identified, i.e., 7, 16, 17, and 21. The minimal size of the subtelomeric repeat is 4 kilobases (kb); it shows a high frequency of restriction fragment length polymorphisms and undergoes extensive de novo methylation in somatic cells. Distal to the subtelomeric repeat, the chromosomes terminate in a long region (up to 14 kb) that may be entirely composed of TTAGGG repeats. This terminal segment is unusually variable. Although sperm telomeres are 10 to 14 kb long, telomeres in somatic cells are several kilobase pairs shorter and very heterogeneous in length. Additional telomere reduction occurs in primary tumors, indicating that somatic telomeres are unstable and may continuously lose sequences from their termini.
Collapse
Affiliation(s)
- T de Lange
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | | | | | | | | | |
Collapse
|
20
|
The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2685572 DOI: 10.1128/mcb.9.12.5643] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.
Collapse
|
21
|
Ma H, Bloom LM, Walsh CT, Botstein D. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:5643-9. [PMID: 2685572 PMCID: PMC363735 DOI: 10.1128/mcb.9.12.5643-5649.1989] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.
Collapse
Affiliation(s)
- H Ma
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
22
|
Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 1989; 171:2680-8. [PMID: 2651414 PMCID: PMC209952 DOI: 10.1128/jb.171.5.2680-2688.1989] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast Hsp70 genes constitute a multigene family in which at least five of the nine members are heat inducible. Hsp70 RNA levels also vary dramatically during stationary arrest and sporulation. During growth to stationary phase, SSB1-SSB2 and SSC1 RNAs decreased in abundance as cell density increased. In contrast, SSA1-SSA2 RNA levels increased before the diauxic shift and then decreased as cells approach stationary phase. SSA3 RNA was detected only after the diauxic shift and accumulated to high levels as cells entered stationary phase. This accumulation was reversed by addition of glucose. Studies with cyr1 mutants indicated that SSA3 RNA accumulation is stimulated by decreasing intracellular cyclic AMP concentrations. When cells were incubated in sporulation medium, most Hsp70 RNAs, with the exception of SSA1-SSA2 RNA, decreased in abundance. This finding contrasted with the SSA1-SSA2 pattern observed during growth to stationary phase. SSA3 RNA was not detected during growth in acetate-based medium but accumulated after several hours. SSA3 RNA accumulation was higher in sporulating cells than in nonsporulating cells and was reversed by addition of glucose.
Collapse
Affiliation(s)
- M Werner-Washburne
- Department of Physiological Chemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
23
|
Chow TH, Sollitti P, Marmur J. Structure of the multigene family of MAL loci in Saccharomyces. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:60-9. [PMID: 2549370 DOI: 10.1007/bf00330943] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multigene families are a ubiquitous feature of eukaryotes; however, their presence in Saccharomyces is more limited. The MAL multigene family is comprised of five unlinked loci, MAL1, MAL2, MAL3, MAL4 and MAL6, any one of which is sufficient for yeast to metabolize maltose. A cloned MAL6 locus was used as a probe to facilitate the cloning of the other four functional loci as well as two partially active alleles of MAL1. Each locus could be characterized as a cluster of three genes, MALR (regulatory), MALT (maltose transport or permease) and MALS (structural or maltase), encoded by a total of about 7 kb of DNA; however, homologous sequences at each locus extend beyond the coding regions. Our results indicate that there is extensive homology among the MAL loci, especially within their maltase genes. The greatest sequence diversity occurs in their regulatory gene regions. Southern cross analyses of the cloned MAL loci indicate a single duplication of the MAL6R-homologous sequences upstream of the MAL6R gene as well as an extensive duplication of more than 10 kb at the MAL3 locus. The large repeat at the MAL3 locus results in the presence of four copies of MAL3R-homologous sequences and two copies of MAL3T-homologous sequences at that locus. Two naturally occurring inactive alleles of MAL1 show a deletion or divergence of their MALR sequences. The significance of these repeats in the evolution of the MAL multigene family is discussed.
Collapse
Affiliation(s)
- T H Chow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
24
|
Vernick KD, Walliker D, McCutchan TF. Genetic hypervariability of telomere-related sequences is associated with meiosis in Plasmodium falciparum. Nucleic Acids Res 1988; 16:6973-85. [PMID: 3043376 PMCID: PMC338345 DOI: 10.1093/nar/16.14.6973] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sequences related to those near chromosome telomeres in the human malaria parasite, Plasmodium falciparum, were extremely unstable during a genetic cross between two different clonal genotypes. Many progeny of the heterologous cross displayed telomere-homologous restriction fragments found in neither parent. A significant number of the new fragments resulted from rearrangements at chromosome-internal locations which were bounded by more complex tracts of DNA sequence. The same instability was not seen to arise during an inbreeding cross, nor during mitotic replication of parasites. Thus, a form of genetic hypervariability results from molecular events which occur during meiotic reduction and is apparent only in a cross between heterologous strains of parasite. Since other sequences were entirely stable under the same conditions, it appears that chromosome-internal blocks of telomeric sequences in the P. falciparum genome may designate conditionally unstable chromosomal domains. We discuss some potential implications of these findings for the population biology of P. falciparum.
Collapse
Affiliation(s)
- K D Vernick
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | |
Collapse
|
25
|
Structural analysis of two genes encoding divergent forms of yeast cytochrome c oxidase subunit V. Mol Cell Biol 1988. [PMID: 2824989 DOI: 10.1128/mcb.7.10.3511] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, subunit V of the inner mitochondrial membrane protein complex cytochrome c oxidase is encoded by two nonidentical genes, COX5a and COX5b. Both genes are present as single copies in S. cerevisiae and in several other Saccharomyces species. Nucleotide sequencing studies with the S. cerevisiae COX5 genes reveal that they encode proteins of 153 and 151 amino acids, respectively. Overall, the coding sequences of COX5a and COX5b have nucleotide and protein homologies of 67 and 66%, respectively. They are saturated for nucleotide substitutions that result in a synonomous codon, indicating a long divergence time between these two genes. Nucleotide sequences flanking the COX5a and COX5b coding regions exhibit no significant homology. The COX5a protein, pre-subunit Va, contains a 20-amino-acid leader peptide, whereas the COX5b protein, pre-subunit Vb, contains a 17-amino-acid leader peptide. These two leader peptides exhibit only 45% homology in the primary sequence, but have similar predicted secondary structures. By analyzing the RNA transcripts from both genes we have found that COX5a is a contiguous gene but that COX5b contains an intron. Surprisingly, the COX5b intron interrupts the AUG codon that initiates translation of the pre-subunit Vb polypeptide and contains a 5' donor splice sequence that differs from that normally found in yeast introns.
Collapse
|
26
|
Affiliation(s)
- M Carlson
- Department of Genetics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
27
|
Cumsky MG, Trueblood CE, Ko C, Poyton RO. Structural analysis of two genes encoding divergent forms of yeast cytochrome c oxidase subunit V. Mol Cell Biol 1987; 7:3511-9. [PMID: 2824989 PMCID: PMC368003 DOI: 10.1128/mcb.7.10.3511-3519.1987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, subunit V of the inner mitochondrial membrane protein complex cytochrome c oxidase is encoded by two nonidentical genes, COX5a and COX5b. Both genes are present as single copies in S. cerevisiae and in several other Saccharomyces species. Nucleotide sequencing studies with the S. cerevisiae COX5 genes reveal that they encode proteins of 153 and 151 amino acids, respectively. Overall, the coding sequences of COX5a and COX5b have nucleotide and protein homologies of 67 and 66%, respectively. They are saturated for nucleotide substitutions that result in a synonomous codon, indicating a long divergence time between these two genes. Nucleotide sequences flanking the COX5a and COX5b coding regions exhibit no significant homology. The COX5a protein, pre-subunit Va, contains a 20-amino-acid leader peptide, whereas the COX5b protein, pre-subunit Vb, contains a 17-amino-acid leader peptide. These two leader peptides exhibit only 45% homology in the primary sequence, but have similar predicted secondary structures. By analyzing the RNA transcripts from both genes we have found that COX5a is a contiguous gene but that COX5b contains an intron. Surprisingly, the COX5b intron interrupts the AUG codon that initiates translation of the pre-subunit Vb polypeptide and contains a 5' donor splice sequence that differs from that normally found in yeast introns.
Collapse
Affiliation(s)
- M G Cumsky
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder 80309-0347
| | | | | | | |
Collapse
|
28
|
Short repeated elements in the upstream regulatory region of the SUC2 gene of Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 3097512 DOI: 10.1128/mcb.6.7.2324] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of secreted invertase from the SUC2 gene is regulated by carbon catabolite repression. Previously, an upstream regulatory region that is required for derepression of secreted invertase was identified and shown to confer glucose-repressible expression to the heterologous promoter of a LEU2-lacZ fusion. In this paper we show that tandem copies of a 32-base pair (bp) sequence from the upstream regulatory region activate expression of the same LEU2-lacZ fusion. The level of expression increased with the number of copies of the element, but was independent of their orientation; the expression from constructions containing four copies of the sequence was only twofold lower than that when the entire SUC2 upstream regulatory region was present. This activation was not significantly glucose repressible. The 32-bp sequence includes a 7-bp motif with the consensus sequence (A/C)(A/G)GAAAT that is repeated at five sites within the upstream regulatory region. Genetic evidence supporting the functional significance of this repeated motif was obtained by pseudoreversion of a SUC2 deletion mutant lacking part of the upstream region, including two copies of the 7-bp element. In three of five pseudorevertants, the mutations that restored high-level SUC2 expression altered one of the remaining copies of the 7-bp element.
Collapse
|
29
|
Hohmann S, Zimmermann FK. Cloning and expression on a multicopy vector of five invertase genes of Saccharomyces cerevisiae. Curr Genet 1986; 11:217-25. [PMID: 2834091 DOI: 10.1007/bf00420610] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Six unlinked loci for invertase structural genes are known in the yeast Saccharomyces cerevisiae: SUC1-SUC5 and SUC7. These genes are similar in structure and expression but not identical. Different yeast strains possess none, one or several of these genes. We have isolated the genes SUC1-SUC5, subcloned them into the multicopy vector YEp24 and compared the expression of the five SUC genes in one recipient strain. SUC2 was isolated by transformation of a suc0 strain with a gene pool and complementation to sucrose fermentation. SUC4 was cloned from a minipool of chromosomal fragments which were shown to contain SUC4 by Southern hybridization. SUC1, SUC3 and SUC5 were isolated using the method of plasmid eviction. A plasmid containing regions flanking SUC4 was integrated next to these SUC genes. The plasmid together with the SUC genes were then cut out of the chromosome using an appropriate restriction endonuclease. The length of chromosomal DNA fragments containing the different SUC genes were 4.8 kb for SUC1, 5.2 kb for SUC2, 4.8 kb for SUC3, 12.8 kb for SUC4 and 17.2 kb for SUC5. Fragments containing the complete SUC genes and the sequences controlling their expression were subcloned into YEp24 and transformed into a strain without any active invertase gene. Invertase activity of transformants was measured after growth repressing (8% glucose) and derepressing (2% raffinose) conditions. As expected from results with strains carrying the individual SUC genes in a chromosomal location, the SUC genes were expressed to a different extent.
Collapse
Affiliation(s)
- S Hohmann
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Federal Republic of Germany
| | | |
Collapse
|
30
|
Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol Cell Biol 1986. [PMID: 3018485 DOI: 10.1128/mcb.5.11.2894] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres.
Collapse
|
31
|
Sarokin L, Carlson M. Short repeated elements in the upstream regulatory region of the SUC2 gene of Saccharomyces cerevisiae. Mol Cell Biol 1986; 6:2324-33. [PMID: 3097512 PMCID: PMC367785 DOI: 10.1128/mcb.6.7.2324-2333.1986] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expression of secreted invertase from the SUC2 gene is regulated by carbon catabolite repression. Previously, an upstream regulatory region that is required for derepression of secreted invertase was identified and shown to confer glucose-repressible expression to the heterologous promoter of a LEU2-lacZ fusion. In this paper we show that tandem copies of a 32-base pair (bp) sequence from the upstream regulatory region activate expression of the same LEU2-lacZ fusion. The level of expression increased with the number of copies of the element, but was independent of their orientation; the expression from constructions containing four copies of the sequence was only twofold lower than that when the entire SUC2 upstream regulatory region was present. This activation was not significantly glucose repressible. The 32-bp sequence includes a 7-bp motif with the consensus sequence (A/C)(A/G)GAAAT that is repeated at five sites within the upstream regulatory region. Genetic evidence supporting the functional significance of this repeated motif was obtained by pseudoreversion of a SUC2 deletion mutant lacking part of the upstream region, including two copies of the 7-bp element. In three of five pseudorevertants, the mutations that restored high-level SUC2 expression altered one of the remaining copies of the 7-bp element.
Collapse
|
32
|
Erratt JA, Nasim A. Cloning and expression of a Saccharomyces diastaticus glucoamylase gene in Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Bacteriol 1986; 166:484-90. [PMID: 3009402 PMCID: PMC214630 DOI: 10.1128/jb.166.2.484-490.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae.
Collapse
|
33
|
Carlson M, Celenza JL, Eng FJ. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol Cell Biol 1985; 5:2894-902. [PMID: 3018485 PMCID: PMC369100 DOI: 10.1128/mcb.5.11.2894-2902.1985] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres.
Collapse
|
34
|
Sarokin L, Carlson M. Comparison of two yeast invertase genes: conservation of the upstream regulatory region. Nucleic Acids Res 1985; 13:6089-103. [PMID: 3900928 PMCID: PMC321940 DOI: 10.1093/nar/13.17.6089] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast genome contains a dispersed family of invertase structural genes (SUC1-SUC5, SUC7). Five of these genes are located very close to telomeres and are flanked by large regions of homologous sequence; recombination between telomeres could account for the dispersal of these SUC genes to different chromosomes. The SUC2 locus, in contrast, is not near a telomere and does not share large regions of flanking homology with the other loci. We examine here the relationship between SUC2 and one of the telomeric genes, SUC7. Sequence comparison revealed homology extending from about position -624 to +1791, which is close to the end of the mRNA. The 5' noncoding sequence includes two highly conserved regions: the region between -140 and +1, which contains the TATA box and presumably other promoter elements, and a second region extending from -508 to -400, which corresponds to the upstream regulatory region.
Collapse
|
35
|
Metzenberg RL, Stevens JN, Selker EU, Morzycka-Wroblewska E. Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa. Proc Natl Acad Sci U S A 1985; 82:2067-71. [PMID: 3157192 PMCID: PMC397493 DOI: 10.1073/pnas.82.7.2067] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 5S rRNA genes of Neurospora crassa, unlike those of most organisms, are not tandemly arranged, and they are found imbedded in a variety of unique sequences. The 5S rRNA regions of most of the genes are of one type, alpha; however, several other "isotypes" (beta, gamma, delta, zeta, and eta) are also found. We asked whether Neurospora 5S rRNA genes are dispersed on a chromosomal scale and whether genes of different isotypes are spatially segregated. We identified, by DNA sequencing, 5S rRNA genes in 22 5S DNA clones, and we mapped these genes by conventional crosses by using restriction fragment length polymorphisms in their flanking sequences as genetic markers. The results show that the 5S rRNA genes are distributed on at least six of the seven chromosomes. Their location does not appear to be completely random. Some of them are closely linked. One of the chromosomes carries a disproportionate number of 5S rRNA genes of the most common structural type, alpha; another chromosome carries three of the four mapped beta 5S rRNA genes. None of the 5S rRNA genes studied maps close to the nucleolus organizer, the site of the genes that code for the three larger rRNAs.
Collapse
|
36
|
Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 6392854 DOI: 10.1128/mcb.4.11.2509] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric regions.
Collapse
|
37
|
Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 6209559 DOI: 10.1128/mcb.4.7.1238] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MEL1 gene in Saccharomyces cerevisiae is required for the production of alpha-galactosidase and for the catabolism of melibiose. Production of alpha-galactosidase is induced by galactose or melibiose and repressed by glucose. Inducibility is controlled by the positive and negative regulatory proteins GAL4 and GAL80, respectively. We have cloned the MEL1 gene to study its transcriptional expression and regulation. Evidence is presented that the MEL1 gene encodes alpha-galactosidase and that mel0 is a naturally occurring allele which lacks the alpha-galactosidase-coding sequences. RNAs prepared from wild-type cells and from cells carrying either the noninducible gal4-2 or GAL80S-100 allele grown on three different carbon sources were examined by Northern hybridization analyses. In wild-type cells under noninducing conditions, such as growth on glycerol-lactic acid, the MEL1 transcript was detected at a basal level which was 1 to 2% of the fully induced level. The basal level of expression was diminished in cells carrying the gal4-2 mutant allele but not in cells carrying the GAL80S-100 allele. The basal and induced RNA levels are repressed by glucose. Size determinations of the MEL1 transcripts detected in glycerol-lactic acid- and galactose-grown cells provided no evidence for two distinct transcripts.
Collapse
|
38
|
Horowitz H, Thorburn P, Haber JE. Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:2509-17. [PMID: 6392854 PMCID: PMC369082 DOI: 10.1128/mcb.4.11.2509-2517.1984] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric regions.
Collapse
|
39
|
Post-Beittenmiller MA, Hamilton RW, Hopper JE. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:1238-45. [PMID: 6209559 PMCID: PMC368904 DOI: 10.1128/mcb.4.7.1238-1245.1984] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The MEL1 gene in Saccharomyces cerevisiae is required for the production of alpha-galactosidase and for the catabolism of melibiose. Production of alpha-galactosidase is induced by galactose or melibiose and repressed by glucose. Inducibility is controlled by the positive and negative regulatory proteins GAL4 and GAL80, respectively. We have cloned the MEL1 gene to study its transcriptional expression and regulation. Evidence is presented that the MEL1 gene encodes alpha-galactosidase and that mel0 is a naturally occurring allele which lacks the alpha-galactosidase-coding sequences. RNAs prepared from wild-type cells and from cells carrying either the noninducible gal4-2 or GAL80S-100 allele grown on three different carbon sources were examined by Northern hybridization analyses. In wild-type cells under noninducing conditions, such as growth on glycerol-lactic acid, the MEL1 transcript was detected at a basal level which was 1 to 2% of the fully induced level. The basal level of expression was diminished in cells carrying the gal4-2 mutant allele but not in cells carrying the GAL80S-100 allele. The basal and induced RNA levels are repressed by glucose. Size determinations of the MEL1 transcripts detected in glycerol-lactic acid- and galactose-grown cells provided no evidence for two distinct transcripts.
Collapse
|
40
|
Kim KW, Roon RJ. Asparaginase II of Saccharomyces cerevisiae: positive selection of two mutations that prevent enzyme synthesis. J Bacteriol 1984; 157:958-61. [PMID: 6365897 PMCID: PMC215357 DOI: 10.1128/jb.157.3.958-961.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A positive selection method, D-aspartic acid beta-hydroxamate resistance, was used to isolate Saccharomyces cerevisiae strains lacking the ability to synthesize asparaginase II. Of 100 such mutant strains, 93 exhibited mutations which were allelic with asp3, a previously characterized mutation. The other seven strains carried a new mutation, asp6. The asp6 mutation segregated 2:2 in asp6 X wild-type crosses and assorted from the asp3 mutation in asp6 X asp3 crosses. All seven asp6 mutant isolates reverted at a relatively high frequency, whereas the asp3 mutant isolates did not revert under the same conditions. Various independent asp3 isolates were mated to give heteroallelic diploids, which when sporulated and spread on D-asparagine medium yielded no recombinant strains.
Collapse
|