1
|
Pires RH, Dau TH, Manu E, Shree N, Otto O. Switching in the expression pattern of actin isoforms marks the onset of contractility and distinct mechanodynamic behavior during cardiomyocyte differentiation. Physiol Rep 2022; 10:e15171. [PMID: 35166060 PMCID: PMC8844573 DOI: 10.14814/phy2.15171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 04/16/2023] Open
Abstract
Differentiation of cardiac progenitor cells (CPC) into cardiomyocytes is a fundamental step in cardiogenesis, which is marked by changes in gene expression responsible for remodeling of the cytoskeleton and in altering the mechanical properties of cells. Here we have induced the differentiation of CPC derived from human pluripotent stem cells into immature cardiomyocytes (iCM) which we compare with more differentiated cardiomyocytes (mCM). Using atomic force microscopy and real-time deformability cytometry, we describe the mechanodynamic changes that occur during the differentiation process and link our findings to protein expression data of cytoskeletal proteins. Increased levels of cardiac-specific markers as well as evolution of cytoskeletal morphology and contractility parameters correlated with the expected extent of cell differentiation that was accompanied by hypertrophic growth of cells. These changes were associated with switching in the balance of the different actin isoforms where β-actin is predominantly found in CPC, smooth muscle α-actin is dominant in iCM cells and sarcomeric α-actin is found in significantly higher levels in mCM. We link these cytoskeletal changes to differences in mechano-dynamic behavior of cells that translate to changes in Young's modulus that depend on the cell adherence. Our results demonstrate that the intracellular balance of actin isoform expression can be used as a sensitive ruler to determine the stage of differentiation during early phases of cardiomyocyte differentiation that correlates with an increased expression of sarcomeric proteins and is accompanied by changes in cellular elasticity.
Collapse
Affiliation(s)
- Ricardo H. Pires
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| | - Tung H. Dau
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- FLI ‐ Friedrich‐Loeffler‐InstitutGreifswaldInsel RiemsGermany
| | - Emmanuel Manu
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| | - Nithya Shree
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
| | - Oliver Otto
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| |
Collapse
|
2
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|
3
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
4
|
Badreldin AA, Bagheri L, Zhang B, Larson AN, van Wijnen AJ. Relative mRNA and protein stability of epigenetic regulators in musculoskeletal cell culture models. Gene 2021; 766:145032. [PMID: 32771387 DOI: 10.1016/j.gene.2020.145032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/04/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
Control of gene expression by epigenetic regulators is fundamental to tissue development and homeostasis. Loss-of-function (LOF) studies using siRNAs for epigenetic regulators require that RNA interference rapidly reduces the cellular levels of the corresponding mRNAs and/or proteins. The most abundant chromatin structural proteins (i.e., the core histones H2A, H2B, H3 and H4) have relatively long half-lives and do not turn over rapidly, although their mRNAs are labile. The question arises whether epigenetic regulatory enzymes (e.g., Ezh2) or proteins that interact with histones via selective modifications (e.g., Cbx1 to Cbx8, Brd4) are stable or unstable. Therefore, we performed classical α-amanitin and cycloheximide inhibition assays that block, respectively, mRNA transcription and protein translation in mouse MC3T3 osteoblasts, ATDC5 chondrocytes and C2C12 myoblasts. We find that mRNA levels of Cbx proteins and Ezh2 were significantly depleted after 24 hrs, while their corresponding proteins remained relatively stable. As positive control, the half-life of the labile cyclin D1 protein was found to be less than 1 hr. Our study suggests that histone code readers and writers are relatively stable chromatin-related proteins, which is consistent with their long-term activities in maintaining chromatin organization and phenotype identity. These findings have conceptual ramifications for the interpretation of RNAi experiments that reduce the mRNA but not protein levels of epiregulatory proteins. We propose that siRNAs for at least some epigenetic regulatory proteins may exert their biological effects by blocking translation and new protein synthesis rather than by decreasing pre-existing protein pools.
Collapse
Affiliation(s)
- Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Bangke Zhang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Abstract
The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.
Collapse
|
6
|
Yang C, Yang W, Wong Y, Wang K, Teng Y, Chang M, Liao K, Nian F, Chao C, Tsai J, Hwang W, Lin M, Tzeng T, Wang P, Campbell M, Chen L, Tsai T, Chang P, Kung H. Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. Aging Cell 2020; 19:e13107. [PMID: 32233025 PMCID: PMC7253071 DOI: 10.1111/acel.13107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons.
Collapse
Affiliation(s)
- Chia‐Pei Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Wan‐Shan Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Yu‐Hui Wong
- Brain Research Center National Yang‐Ming University Taipei Taiwan
| | - Kai‐Hsuan Wang
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| | - Yuan‐Chi Teng
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ming‐Hsuan Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Ko‐Hsun Liao
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Fang‐Shin Nian
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
- Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Chuan‐Chuan Chao
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| | - Jin‐Wu Tsai
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan
| | - Ming‐Wei Lin
- Institute of Public Health National Yang‐Ming University Taipei Taiwan
| | - Tsai‐Yu Tzeng
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ning Wang
- Brain Research Center National Yang‐Ming University Taipei Taiwan
- Department of Neurology Neurological InstituteTaipei Veterans General Hospital Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Mel Campbell
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| | - Liang‐Kung Chen
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
- Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan
- Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan
| | - Ting‐Fen Tsai
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Hsing‐Jien Kung
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| |
Collapse
|
7
|
Growth on Metallo-Supramolecular Coordination Polyelectrolyte (MEPE) Stimulates Osteogenic Differentiation of Human Osteosarcoma Cells (MG63) and Human Bone Marrow Derived Mesenchymal Stem Cells. Polymers (Basel) 2019; 11:polym11071090. [PMID: 31252601 PMCID: PMC6680855 DOI: 10.3390/polym11071090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. METHODS We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. RESULTS Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. CONCLUSION This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue.
Collapse
|
8
|
Yousefelahiyeh M, Xu J, Alvarado E, Yu Y, Salven D, Nissen RM. DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B. PLoS One 2018; 13:e0207779. [PMID: 30496304 PMCID: PMC6264848 DOI: 10.1371/journal.pone.0207779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the Dual-specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) gene contributes to the retardation, craniofacial anomalies, cognitive impairment, and learning and memory deficits associated with Down Syndrome (DS). DCAF7/HAN11/WDR68 (hereafter WDR68) binds DYRK1A and is required for craniofacial development. Accumulating evidence suggests DYRK1A-WDR68 complexes enable proper growth and patterning of multiple organ systems and suppress inappropriate cell growth/transformation by regulating the balance between proliferation and differentiation in multiple cellular contexts. Here we report, using engineered mouse C2C12 and human HeLa cell lines, that WDR68 is required for normal levels of DYRK1A. However, Wdr68 does not significantly regulate Dyrk1a mRNA expression levels and proteasome inhibition did not restore DYRK1A in cells lacking Wdr68 (Δwdr68 cells). Overexpression of WDR68 increased DYRK1A levels while overexpression of DYRK1A had no effect on WDR68 levels. We further report that WDR68 is similarly required for normal levels of the closely related DYRK1B kinase and that both DYRK1A and DYRK1B are essential for the transition from proliferation to differentiation in C2C12 cells. These findings reveal an additional role of WDR68 in DYRK1A-WDR68 and DYRK1B-WDR68 complexes.
Collapse
Affiliation(s)
- Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Jingyi Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - David Salven
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Glucocorticoids Improve Myogenic Differentiation In Vitro by Suppressing the Synthesis of Versican, a Transitional Matrix Protein Overexpressed in Dystrophic Skeletal Muscles. Int J Mol Sci 2017; 18:ijms18122629. [PMID: 29211034 PMCID: PMC5751232 DOI: 10.3390/ijms18122629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a dysregulated extracellular matrix (ECM) directly exacerbates pathology. Glucocorticoids are beneficial therapeutics in DMD, and have pleiotropic effects on the composition and processing of ECM proteins in other biological contexts. The synthesis and remodelling of a transitional versican-rich matrix is necessary for myogenesis; whether glucocorticoids modulate this transitional matrix is not known. Here, versican expression and processing were examined in hindlimb and diaphragm muscles from mdx dystrophin-deficient mice and C57BL/10 wild type mice. V0/V1 versican (Vcan) mRNA transcripts and protein levels were upregulated in dystrophic compared to wild type muscles, especially in the more severely affected mdx diaphragm. Processed versican (versikine) was detected in wild type and dystrophic muscles, and immunoreactivity was highly associated with newly regenerated myofibres. Glucocorticoids enhanced C2C12 myoblast fusion by modulating the expression of genes regulating transitional matrix synthesis and processing. Specifically, Tgfβ1, Vcan and hyaluronan synthase-2 (Has2) mRNA transcripts were decreased by 50% and Adamts1 mRNA transcripts were increased three-fold by glucocorticoid treatment. The addition of exogenous versican impaired myoblast fusion, whilst glucocorticoids alleviated this inhibition in fusion. In dystrophic mdx muscles, versican upregulation correlated with pathology. We propose that versican is a novel and relevant target gene in DMD, given its suppression by glucocorticoids and that in excess it impairs myoblast fusion, a process key for muscle regeneration.
Collapse
|
11
|
Coda DM, Gaarenstroom T, East P, Patel H, Miller DSJ, Lobley A, Matthews N, Stewart A, Hill CS. Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling. eLife 2017; 6:e22474. [PMID: 28191871 PMCID: PMC5305219 DOI: 10.7554/elife.22474] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 01/13/2023] Open
Abstract
NODAL/Activin signaling orchestrates key processes during embryonic development via SMAD2. How SMAD2 activates programs of gene expression that are modulated over time however, is not known. Here we delineate the sequence of events that occur from SMAD2 binding to transcriptional activation, and the mechanisms underlying them. NODAL/Activin signaling induces dramatic chromatin landscape changes, and a dynamic transcriptional network regulated by SMAD2, acting via multiple mechanisms. Crucially we have discovered two modes of SMAD2 binding. SMAD2 can bind pre-acetylated nucleosome-depleted sites. However, it also binds to unacetylated, closed chromatin, independently of pioneer factors, where it induces nucleosome displacement and histone acetylation. For a subset of genes, this requires SMARCA4. We find that long term modulation of the transcriptional responses requires continued NODAL/Activin signaling. Thus SMAD2 binding does not linearly equate with transcriptional kinetics, and our data suggest that SMAD2 recruits multiple co-factors during sustained signaling to shape the downstream transcriptional program.
Collapse
Affiliation(s)
- Davide M Coda
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tessa Gaarenstroom
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Lobley
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Abstract
Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians.
Collapse
|
13
|
Fujita N, Suzuki S, Watanabe K, Ishii K, Watanabe R, Shimoda M, Takubo K, Tsuji T, Toyama Y, Miyamoto T, Horiuchi K, Nakamura M, Matsumoto M. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells. J Orthop Res 2016; 34:1341-50. [PMID: 27248133 PMCID: PMC5108487 DOI: 10.1002/jor.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Satoshi Suzuki
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Kota Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ken Ishii
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ryuichi Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masayuki Shimoda
- Departments of PathologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keiyo Takubo
- Department of Stem Cell BiologyResearch Institute, National Center for Global Health and Medicine1‐21‐1 ToyamaShinjuku‐kuTokyo160‐8582Japan
| | - Takashi Tsuji
- Kitasato Institute Hospital5‐9‐1 ShiroganeMinato‐kuTokyo108‐8642Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Takeshi Miyamoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keisuke Horiuchi
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masaya Nakamura
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Morio Matsumoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| |
Collapse
|
14
|
Huang Y, Chen B, Ye M, Liang P, Zhangfang Y, Huang J, Liu M, Songyang Z, Ma W. Ccndbp1 is a new positive regulator of skeletal myogenesis. J Cell Sci 2016; 129:2767-77. [PMID: 27235421 DOI: 10.1242/jcs.184234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/02/2016] [Indexed: 12/26/2022] Open
Abstract
Skeletal myogenesis is a multistep process in which basic helix-loop-helix (bHLH) transcription factors, such as MyoD (also known as MyoD1), bind to E-boxes and activate downstream genes. Ccndbp1 is a HLH protein that lacks a DNA-binding region, and its function in skeletal myogenesis is currently unknown. We generated Ccndbp1-null mice by using CRISPR-Cas9. Notably, in Ccndbp1-null mice, the cross sectional area of the skeletal tibialis anterior muscle was smaller, and muscle regeneration ability and grip strength were impaired, compared with those of wild type. This phenotype resembled that of myofiber hypotrophy in some human myopathies or amyoplasia. Ccndbp1 expression was upregulated during C2C12 myogenesis. Ccndbp1 overexpression promoted myogenesis, whereas knockdown of Ccndbp1 inhibited myogenic differentiation. Co-transfection of Ccndbp1 with MyoD and/or E47 (encoded by TCF3) significantly enhanced E-box-dependent transcription. Furthermore, Ccndbp1 physically associated with MyoD but not E47. These data suggest that Ccndbp1 regulates muscle differentiation by interacting with MyoD and enhancing its binding to target genes. Our study newly identifies Ccndbp1 as a positive modulator of skeletal myogenic differentiation in vivo and in vitro, providing new insights in order to decipher the complex network involved in skeletal myogenic development and related diseases.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China Collaborative Innovation Center for Cancer Medicine, Guangzhou Key Laboratory of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Bohong Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Miaoman Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Puping Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Yingnan Zhangfang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China Collaborative Innovation Center for Cancer Medicine, Guangzhou Key Laboratory of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China Collaborative Innovation Center for Cancer Medicine, Guangzhou Key Laboratory of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Brown M, Strudwick N, Suwara M, Sutcliffe LK, Mihai AD, Ali AA, Watson JN, Schröder M. An initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response. J Cell Sci 2016; 129:2317-2328. [PMID: 27122189 DOI: 10.1242/jcs.179127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR). In mammalian cells, UPR signals generated by several ER-membrane-resident proteins, including the bifunctional protein kinase endoribonuclease IRE1α, control cell survival and the decision to execute apoptosis. Processing of XBP1 mRNA by the RNase domain of IRE1α promotes survival of ER stress, whereas activation of the mitogen-activated protein kinase JNK family by IRE1α late in the ER stress response promotes apoptosis. Here, we show that activation of JNK in the ER stress response precedes activation of XBP1. This activation of JNK is dependent on IRE1α and TRAF2 and coincides with JNK-dependent induction of expression of several antiapoptotic genes, including cIap1 (also known as Birc2), cIap2 (also known as Birc3), Xiap and Birc6 ER-stressed Jnk1(-/-) Jnk2(-/-) (Mapk8(-/-) Mapk9(-/-)) mouse embryonic fibroblasts (MEFs) display more pronounced mitochondrial permeability transition and increased caspase 3/7 activity compared to wild-type MEFs. Caspase 3/7 activity is also elevated in ER-stressed cIap1(-/-) cIap2(-/-) and Xiap(-/-) MEFs. These observations suggest that JNK-dependent transcriptional induction of several inhibitors of apoptosis contributes to inhibiting apoptosis early in the ER stress response.
Collapse
Affiliation(s)
- Max Brown
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Natalie Strudwick
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Monika Suwara
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Louise K Sutcliffe
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Adina D Mihai
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Ahmed A Ali
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK.,Molecular Biology Department, National Research Centre, Dokki 12311, Cairo, Egypt
| | - Jamie N Watson
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| | - Martin Schröder
- Durham University, School of Biological and Biomedical Sciences, Durham DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom.,North East England Stem Cell Institute (NESCI), Life Bioscience Centre, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 4EP, UK
| |
Collapse
|
16
|
Simionescu-Bankston A, Pichavant C, Canner JP, Apponi LH, Wang Y, Steeds C, Olthoff JT, Belanto JJ, Ervasti JM, Pavlath GK. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am J Physiol Cell Physiol 2015; 308:C919-31. [PMID: 25810257 DOI: 10.1152/ajpcell.00029.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/22/2022]
Abstract
Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia; Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Christophe Pichavant
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - James P Canner
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Yanru Wang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Craig Steeds
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
17
|
Pu F, Rhodes NP, Bayon Y, Hunt JA. In vitrocellular response to oxidized collagen-PLLA hybrid scaffolds designed for the repair of muscular tissue defects and complex incisional hernias. J Tissue Eng Regen Med 2013; 10:E454-E466. [DOI: 10.1002/term.1837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/27/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fanrong Pu
- UK Centre for Tissue Engineering, Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - Nicholas P. Rhodes
- UK Centre for Tissue Engineering, Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - Yves Bayon
- Covidien-Sofradim Production; Trevoux France
| | - John A. Hunt
- UK Centre for Tissue Engineering, Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| |
Collapse
|
18
|
Abdul-Hussein S, van der Ven PFM, Tajsharghi H. Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells. BMC Musculoskelet Disord 2012; 13:262. [PMID: 23273262 PMCID: PMC3549291 DOI: 10.1186/1471-2474-13-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023] Open
Abstract
Background The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins. Methods We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development. Results Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development. Conclusions In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents.
Collapse
Affiliation(s)
- Saba Abdul-Hussein
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, SE, 413 45, Sweden
| | | | | |
Collapse
|
19
|
De Carlo F, Ledda M, Pozzi D, Pierimarchi P, Zonfrillo M, Giuliani L, D'Emilia E, Foletti A, Scorretti R, Grimaldi S, Lisi A. Nonionizing Radiation as a Noninvasive Strategy in Regenerative Medicine: The Effect of Ca2+-ICR on Mouse Skeletal Muscle Cell Growth and Differentiation. Tissue Eng Part A 2012; 18:2248-58. [DOI: 10.1089/ten.tea.2012.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Flavia De Carlo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Deleana Pozzi
- Department of Experimental Medicine, University of Rome “La Sapienza,” Regina Elena, Italy
| | | | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Livio Giuliani
- Instituto Superiore per la, Prevenzionie e Sicurezza sul Lavoro, Dipartimento Installazioni de Prodozione e Insediamenti Antropici (ISPESL-DIPIA), Rome, Italy
| | - Enrico D'Emilia
- Instituto Superiore per la, Prevenzionie e Sicurezza sul Lavoro, Dipartimento Installazioni de Prodozione e Insediamenti Antropici (ISPESL-DIPIA), Rome, Italy
| | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Riccardo Scorretti
- Ampère-Lab-UMR 5005 Centre National de la Recherche Scientifique, University of Lyon, Villeurbanne, France
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
20
|
Structure of a dominant-negative helix-loop-helix transcriptional regulator suggests mechanisms of autoinhibition. EMBO J 2012; 31:2541-52. [PMID: 22453338 DOI: 10.1038/emboj.2012.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 03/06/2012] [Indexed: 01/28/2023] Open
Abstract
Helix-loop-helix (HLH) family transcription factors regulate numerous developmental and homeostatic processes. Dominant-negative HLH (dnHLH) proteins lack DNA-binding ability and capture basic HLH (bHLH) transcription factors to inhibit cellular differentiation and enhance cell proliferation and motility, thus participating in patho-physiological processes. We report the first structure of a free-standing human dnHLH protein, HHM (Human homologue of murine maternal Id-like molecule). HHM adopts a V-shaped conformation, with N-terminal and C-terminal five-helix bundles connected by the HLH region. In striking contrast to the common HLH, the HLH region in HHM is extended, with its hydrophobic dimerization interfaces embedded in the N- and C-terminal helix bundles. Biochemical and physicochemical analyses revealed that HHM exists in slow equilibrium between this V-shaped form and the partially unfolded, relaxed form. The latter form is readily available for interactions with its target bHLH transcription factors. Mutations disrupting the interactions in the V-shaped form compromised the target transcription factor specificity and accelerated myogenic cell differentiation. Therefore, the V-shaped form of HHM may represent an autoinhibited state, and the dynamic conformational equilibrium may control the target specificity.
Collapse
|
21
|
Mian I, Pierre-Louis WS, Dole N, Gilberti RM, Dodge-Kafka K, Tirnauer JS. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation. PLoS One 2012; 7:e31583. [PMID: 22348111 PMCID: PMC3279410 DOI: 10.1371/journal.pone.0031583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. FINDINGS We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK) and microtubule affinity regulating kinases (MARKs). LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. CONCLUSIONS Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.
Collapse
Affiliation(s)
- Isma Mian
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Willythssa Stéphie Pierre-Louis
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Neha Dole
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Renée M. Gilberti
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jennifer S. Tirnauer
- Center for Molecular Medicine and University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
22
|
Hadjighassem MR, Galaraga K, Albert PR. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci 2010; 33:214-23. [PMID: 21155902 DOI: 10.1111/j.1460-9568.2010.07498.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.
Collapse
Affiliation(s)
- Mahmoud R Hadjighassem
- Ottawa Hospital Research Institute (Neuroscience) and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
23
|
Muscular laminopathies: role of prelamin A in early steps of muscle differentiation. ACTA ACUST UNITED AC 2010; 51:246-56. [PMID: 21035482 DOI: 10.1016/j.advenzreg.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
Abstract
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.
Collapse
|
24
|
Switching of actin isoforms in skeletal muscle differentiation using mouse ES cells. Histochem Cell Biol 2009; 132:669-72. [DOI: 10.1007/s00418-009-0650-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
|
25
|
Jaeger MA, Sonnemann KJ, Fitzsimons DP, Prins KW, Ervasti JM. Context-dependent functional substitution of alpha-skeletal actin by gamma-cytoplasmic actin. FASEB J 2009; 23:2205-14. [PMID: 19279140 DOI: 10.1096/fj.09-129783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We generated transgenic mice that overexpressed gamma-(cyto) actin 2000-fold above wild-type levels in skeletal muscle. gamma-(cyto) actin comprised 40% of total actin in transgenic skeletal muscle, with a concomitant 40% decrease in alpha-actin. Surprisingly, transgenic muscle was histologically and ultrastructurally identical to wild-type muscle despite near-stoichiometric incorporation of gamma-(cyto) actin into sarcomeric thin filaments. Furthermore, several parameters of muscle physiological performance in the transgenic animals were not different from wild type. Given these surprising results, we tested whether overexpression of gamma-(cyto) actin could rescue the early postnatal lethality in alpha-(sk) actin-null mice (Acta1(-/-)). By quantitative Western blot analysis, we found total actin levels were decreased by 35% in Acta1(-/-) muscle. Although transgenic overexpression of gamma-(cyto) actin on the Acta1(-/-) background restored total actin levels to wild type, resulting in thin filaments composed of 60% gamma-(cyto) actin and a 40% mixture of cardiac and vascular actin, the life span of transgenic Acta1(-/-) mice was not extended. These results indicate that sarcomeric thin filaments can accommodate substantial incorporation of gamma-(cyto) actin without functional consequences, yet gamma-(cyto) actin cannot fully substitute for alpha-(sk) actin.
Collapse
Affiliation(s)
- Michele A Jaeger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C. Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 2009; 378:668-72. [DOI: 10.1016/j.bbrc.2008.11.123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
|
27
|
Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ. Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008; 3:e3638. [PMID: 18982058 PMCID: PMC2572840 DOI: 10.1371/journal.pone.0003638] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023] Open
Abstract
Background Dystroglycan is a ubiquitously expressed cell adhesion receptor best understood in its role as part of the dystrophin glycoprotein complex of mature skeletal muscle. Less is known of the role of dystroglycan in more fundamental aspects of cell adhesion in other cell types, nor of its role in myoblast cell adhesion. Principal Findings We have examined the role of dystroglycan in the early stages of myoblast adhesion and spreading and found that dystroglycan initially associates with other adhesion proteins in large puncta morphologically similar to podosomes. Using a human SH3 domain phage display library we identified Tks5, a key regulator of podosomes, as interacting with β-dystroglycan. We verified the interaction by immunoprecipitation, GST-pulldown and immunfluorescence localisation. Both proteins localise to puncta during early phases of spreading, but importantly following stimulation with phorbol ester, also localise to structures indistinguishable from podosomes. Dystroglycan overexpression inhibited podosome formation by sequestering Tks5 and Src. Mutation of dystroglycan tyrosine 890, previously identified as a Src substrate, restored podosome formation. Conclusions We propose therefore, that Src-dependent phosphorylation of β-dystroglycan results in the formation of a Src/dystroglycan complex that drives the SH3-mediated association between dystroglycan and Tks5 which together regulate podosome formation in myoblasts.
Collapse
Affiliation(s)
- Oliver Thompson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Iivari Kleino
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luca Crimaldi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mario Gimona
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Zhao W, Pan J, Wang X, Wu Y, Bauman WA, Cardozo CP. Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone. Endocrinology 2008; 149:5449-60. [PMID: 18599544 DOI: 10.1210/en.2008-0664] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin ligase muscle atrophy F-box (MAFbx; also called atrogin-1) is thought to play important roles in muscle loss. Conversely, testosterone reduces atrophy from glucocorticoids or denervation associated with repression of MAFbx. To characterize mechanisms of such repression, the effects of testosterone on MAFbx expression in C2C12 cells were tested. Testosterone reduced MAFbx mRNA levels as well as expression of a reporter gene under the control of 3.1 kb of the human MAFbx promoter. Repression required the androgen receptor (AR) as well as sequences within the first 208 bases upstream of the first codon of the MAFbx gene. This sequence is downstream of known forkhead transcription factor binding sites and testosterone did not alter Forkhead box O 3A phosphorylation. The AR associated with sequences conferring repression in a manner that was stimulated by testosterone and was independent of DNA binding. In gel shift studies, octamer binding transcription factor (Oct)-1 bound two predicted Oct-1 sites within these sequences. Deletion of Oct-1 sites from reporter genes prevented repression by testosterone. Gene knockdown of Oct-1 blocked repression of MAFbx reporter gene activity by testosterone and binding of AR to sequences conferring repression. In conclusion, testosterone represses MAFbx expression via interactions of the AR with Oct-1 that are associated with sequences within the 5' untranslated region of the MAFbx promotor located just upstream of the first codon. This action of testosterone may contribute to beneficial actions of testosterone on muscle.
Collapse
Affiliation(s)
- Weidong Zhao
- Center of Excellence for the Medical Consequences of SCI, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468, USA
| | | | | | | | | | | |
Collapse
|
29
|
Waardenberg AJ, Reverter A, Wells CA, Dalrymple BP. Using a 3D virtual muscle model to link gene expression changes during myogenesis to protein spatial location in muscle. BMC SYSTEMS BIOLOGY 2008; 2:88. [PMID: 18945372 PMCID: PMC2596796 DOI: 10.1186/1752-0509-2-88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
Background Myogenesis is an ordered process whereby mononucleated muscle precursor cells (myoblasts) fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells. To gain further insight into the orchestration of these structural changes we have overlaid the spatial organisation of the protein components of a muscle cell with their gene expression changes during differentiation using a new 3D visualisation tool: the Virtual Muscle 3D (VMus3D). Results Sets of generic striated muscle costamere, Z-disk and filament proteins were constructed from the literature and protein-interaction databases. Expression profiles of the genes encoding these proteins were obtained from mouse C2C12 cells undergoing myogenesis in vitro, as well as a mouse tissue survey dataset. Visualisation of the expression data in VMus3D yielded novel observations with significant relationships between the spatial location and the temporal expression profiles of the structural protein products of these genes. A muscle specificity index was calculated based on muscle expression relative to the median expression in all tissues and, as expected, genes with the highest muscle specificity were also expressed most dynamically during differentiation. Interestingly, most genes encoding costamere as well as some Z-disk proteins appeared to be broadly expressed across most tissues and showed little change in expression during muscle differentiation, in line with the broader cellular role described for some of these proteins. Conclusion By studying gene expression patterns from a structural perspective we have demonstrated that not all genes encoding proteins that are part of muscle specific structures are simply up-regulated during muscle cell differentiation. Indeed, a group of genes whose expression program appears to be minimally affected by the differentiation process, code for proteins participating in vital skeletal muscle structures. Expression alone is a poor metric of gene behaviour. Instead, the "connectivity model of muscle development" is proposed as a mechanism for muscle development: whereby the closer to the myofibril core of muscle cells, the greater the gene expression changes during muscle differentiation and the greater the muscle specificity.
Collapse
Affiliation(s)
- Ashley J Waardenberg
- CSIRO, Food Futures Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St, Lucia, QLD 4067, Australia.
| | | | | | | |
Collapse
|
30
|
Bertola LD, Ott EB, Griepsma S, Vonk FJ, Bagowski CP. Developmental expression of the alpha-skeletal actin gene. BMC Evol Biol 2008; 8:166. [PMID: 18518953 PMCID: PMC2443135 DOI: 10.1186/1471-2148-8-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/02/2008] [Indexed: 01/01/2023] Open
Abstract
Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish). Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.
Collapse
Affiliation(s)
- Laura D Bertola
- Institute of Biology, Department of Integrative Zoology University of Leiden, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP. Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 2008; 110:125-9. [PMID: 18436443 DOI: 10.1016/j.jsbmb.2008.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 03/13/2008] [Indexed: 11/21/2022]
Abstract
Administration of glucocorticoids in pharmacological amounts results in muscle atrophy due, in part, to accelerated degradation of muscle proteins by the ubiquitin-proteasome pathway. The ubiquitin ligase MAFbx is upregulated during muscle loss including that caused by glucocorticoids and has been implicated in accelerated muscle protein catabolism during such loss. Testosterone has been found to reverse glucocorticoid-induced muscle loss due to prolonged glucocorticoid administration. Here, we tested the possibility that testosterone would block muscle loss, upregulation of MAFbx, and protein catabolism when begun at the time of glucocorticoid administration. Coadministration of testosterone to male rats blocked dexamethasone-induced reduction in gastrocnemius muscle mass and upregulation of MAFbx mRNA levels. Administration of testosterone together with dexamethasone also prevented glucocorticoid-induced upregulation of MAFbx mRNA levels and protein catabolism in C2C12 myotube expressing the androgen receptor. Half-life of MAFbx was not altered by testosterone, dexamethasone or the combination. Testosterone blocked dexamethasone-induced increases in activity of the human MAFbx promotor. The findings indicate that administration testosterone prevents glucocorticoid-induced muscle atrophy and suggest that this results, in part at least, from reductions in muscle protein catabolism and expression of MAFbx.
Collapse
Affiliation(s)
- Weidong Zhao
- Department of Veterans Affairs, Room 1E-02, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bryan BA, Walshe TE, Mitchell DC, Havumaki JS, Saint-Geniez M, Maharaj AS, Maldonado AE, D'Amore PA. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell 2007; 19:994-1006. [PMID: 18094043 DOI: 10.1091/mbc.e07-09-0856] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Brad A Bryan
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cottle DL, McGrath MJ, Cowling BS, Coghill ID, Brown S, Mitchell CA. FHL3 binds MyoD and negatively regulates myotube formation. J Cell Sci 2007; 120:1423-35. [PMID: 17389685 DOI: 10.1242/jcs.004739] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MyoD initiates muscle differentiation and promotes skeletal myogenesis by regulating temporal gene expression. MyoD-interacting proteins induce regulatory effects, and the identification of new MyoD-binding partners may provide mechanistic insights into the regulation of gene expression during myogenesis. FHL3 is one of three members of the FHL protein family that are expressed in skeletal muscle, but its function in myogenesis is unknown. Overexpression of human FHL3 in mouse C2C12 cells retarded myotube formation and decreased the expression of muscle-specific regulatory genes such as myogenin but not MyoD. By contrast, short interfering RNA (siRNA)-mediated FHL3 protein knockdown enhanced myoblast differentiation associated with increased myogenin, but not MyoD protein expression, early during differentiation. We demonstrate that FHL3 is a MyoD-associated protein by direct binding assays, colocalisation in the nucleus of myoblasts and GST pull-down studies. Moreover, we determined that FHL3 interacts with MyoD, functioning as its potent negative co-transcriptional regulator. Ectopic expression of FHL3 in myoblasts impaired MyoD-mediated transcriptional activity and muscle gene expression. By contrast, siRNA-mediated FHL3 knockdown enhanced MyoD transcriptional activity in a dose-dependent manner. These findings reveal that FHL3 association with MyoD may contribute to the regulation of MyoD-dependent transcription of muscle genes and thereby myogenesis.
Collapse
Affiliation(s)
- Denny L Cottle
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, 3800, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Chen SE, Jin B, Li YP. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 2006; 292:C1660-71. [PMID: 17151142 PMCID: PMC3099536 DOI: 10.1152/ajpcell.00486.2006] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF-alpha receptor double-knockout (p55(-/-)p75(-/-)) mice. To fully evaluate the role of TNF-alpha in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-alpha, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55(-/-)p75(-/-) soleus. We observed an increase of TNF-alpha release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF-alpha-neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF-alpha added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55(-/-)p75(-/-) mice. Increased TNF-alpha release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55(-/-)p75(-/-) soleus. These results indicate that TNF-alpha regulates myogenesis and muscle regeneration as a key activator of p38.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Cell Differentiation
- Cell Line
- Cobra Cardiotoxin Proteins
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Activation
- MAP Kinase Kinase 6/metabolism
- Mice
- Mice, Knockout
- Muscle Development/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/chemically induced
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Myoblasts/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Regeneration/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Shuen-Ei Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
35
|
Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol 2006; 7:38. [PMID: 17062158 PMCID: PMC1635557 DOI: 10.1186/1471-2121-7-38] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/24/2006] [Indexed: 12/31/2022] Open
Abstract
Background The nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation. Results Using transcriptional microarray analysis, we found that expression of 6 of the NETs significantly increases during myoblast differentiation. We confirmed these results using quantitative RT-PCR, and furthermore, found that all 6 NETs are expressed at high levels in adult mouse skeletal muscle relative to 9 other tissues examined. Using epitope-tagged cDNAs, we determined that the 5 NETs we could analyze (NETs 9, 25, 32, 37 and 39) all target to the nuclear envelope in C2C12 cells. Furthermore, the 3 NETs that we could analyze by immunoblotting were highly enriched in nuclear envelopes relative to microsomal membranes purified from mouse liver. Database searches showed that 4 of the 6 up-regulated NETs contain regions of homology to proteins previously linked to signaling. Conclusion This work identified 6 NETs that are predicted to have important functions in muscle development and/or maintenance from their expression patterns during myoblast differentiation and in mouse tissues. We confirmed that 5 of these NETs are authentic nuclear envelope proteins. Four members of this group have potential signaling functions at the NE, based on their sequence homologies.
Collapse
|
36
|
Ilkovski B, Clement S, Sewry C, North KN, Cooper ST. Defining α-skeletal and α-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord 2005; 15:829-35. [PMID: 16288873 DOI: 10.1016/j.nmd.2005.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/26/2005] [Accepted: 08/05/2005] [Indexed: 11/16/2022]
Abstract
Mutations in alpha-skeletal actin (ACTA1) underlie several congenital muscle disorders including nemaline myopathy (NM). Almost all ACTA1-NM patients have normal cardiac function, and, even lethally affected congenital NM patients exhibit an unremarkable gestation with decreased foetal movement just prior to birth. Although alpha-skeletal actin is thought to be the predominant sarcomeric actin in human heart (Boheler KR, Carrier L, de la Bastie D, et al. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest 1991;88:323-30 ), ACTA1-NM patients almost never exhibit a cardiac phenotype. In this study, we define the relative expression of skeletal and cardiac actin proteins in human heart and skeletal muscle. We show that alpha-cardiac actin is the predominant sarcomeric isoform in human donor hearts and in early foetal skeletal muscle development. Skeletal actin is the predominant isoform from 25 to 27 weeks gestation and is the exclusive isoform expressed in muscle from infancy through to adulthood. These findings are consistent with clinical observations of NM patients and assist us to better understand the pathogenesis of inherited myopathies and cardiomyopathies with mutations in actin.
Collapse
Affiliation(s)
- Biljana Ilkovski
- Institute for Neuromuscular Research, Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | |
Collapse
|
37
|
Zhao W, Wu Y, Zhao J, Guo S, Bauman WA, Cardozo CP. Structure and function of the upstream promotor of the humanMafbx gene: The proximal upstream promotor modulates tissue-specificity. J Cell Biochem 2005; 96:209-19. [PMID: 16052482 DOI: 10.1002/jcb.20468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscle loss has been linked to increased expression of an ubiquitin ligase termed muscle atrophy F-box (MAFbx), a nuclear protein involved in degradation of MyoD. To gain insights into mechanisms by which the human MAFbx gene is controlled, the structure of its upstream promotor were studied, and its expression in cultured cells was characterized. Expression of MAFbx was found only in cells of muscle lineage. A reporter gene controlled by 948 bases of human MAFbx upstream promotor displayed similar cell-type selectivity. MAFbx levels were greatly enhanced upon myogenic differentiation of C2C12 myoblasts, and differentiation markedly increased activity of a reporter gene constructed with 400 bp of upstream promotor from the MAFbx gene. The core promotor spanned approximately 160 bases beginning at -241 bp upstream of the first codon, included potential binding sites for MyoD and myogenin, and was highly conserved among mouse, rat, and humanMAFbx genes. The major transcription start site for the human MAFbx gene was 340 bases upstream of the ATG and was localized the highly conserved region of 140 bp. The findings indicate an important role for the immediate upstream promotor of the human MAFbx gene in mediating its developmental expression and tissue specificity.
Collapse
Affiliation(s)
- Weidong Zhao
- VA Rehabilitation Research and Development Service Center of Excellence, Bronx VA Medical Center, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lloyd CM, Berendse M, Lloyd DG, Schevzov G, Grounds MD. A novel role for non-muscle gamma-actin in skeletal muscle sarcomere assembly. Exp Cell Res 2004; 297:82-96. [PMID: 15194427 DOI: 10.1016/j.yexcr.2004.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/13/2004] [Indexed: 11/25/2022]
Abstract
Existing models describing sarcomere assembly have arisen primarily from studies using cardiac muscle. In contrast to cardiac muscle, skeletal muscle differentiation is characterised by dramatic changes in protein expression, from non-muscle to muscle-specific isoforms before organisation of the sarcomeres. Consequently, little is understood of the potential influence of non-muscle cytoskeletal proteins on skeletal sarcomere assembly. To address this issue, transfectant (gamma33-B1) and control mouse C2 myoblasts were differentiated to form myotubes, and various stages of skeletal sarcomere assembly were studied. Organisation of non-muscle gamma-actin and co-localisation with sarcomeric alpha-actinin, an early marker of sarcomere assembly and a major component of Z lines, was noted. gamma-Actin was also identified in young myotubes with developing sarcomeric myofibrils in regenerating adult mouse muscle. Localisation of gamma-actin in a different area of the myotube to the muscle-specific sarcomeric alpha-actin also indicated a distinct role for gamma-actin. The effects of aberrant gamma-actin expression in other myoblast lines, further suggested a sequestering role for gamma-actin. These observations make the novel suggestion that non-muscle gamma-actin plays a role in skeletal sarcomere assembly both in vitro and in vivo. Consequently, a modified model is proposed which describes the role of gamma-actin in skeletal sarcomere assembly.
Collapse
Affiliation(s)
- C M Lloyd
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
39
|
Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibâñez CF, Lendahl U. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 2004; 130:6089-99. [PMID: 14597575 DOI: 10.1242/dev.00834] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either the gamma-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.
Collapse
Affiliation(s)
- Camilla Dahlqvist
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, Pittman DD, Hankins GR, Helm GA. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 2003; 10:1735-43. [PMID: 12939640 DOI: 10.1038/sj.gt.3302075] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone morphogenetic protein (BMP) adenoviral vectors for the induction of osteogenesis are being developed for the treatment of bone pathology. However, it is still unknown which BMP adenoviral vector has the highest potential to stimulate bone formation in vivo. In this study, the osteogenic activities of recombinant human BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 adenoviruses were compared in vitro, in athymic nude rats, and in Sprague-Dawley rats. In vitro osteogenic activity was assessed by measuring the alkaline phosphatase activity in C2C12 cells transduced by the various BMP vectors. The alkaline phosphatase activity induced by 2 x 10(5) PFU/well of BMP viral vector was 4890 x 10(-12) U/well for ADCMVBMP-9, 302 x 10(-12) U/well for ADCMVBMP-4, 220 x 10(-12) U/well for ADCMVBMP-6, 45 x 10(-12) U/well for ADCMVBMP-2, and 0.43 x 10(-12) U/well for ADCMVBMP-7. The average volume of new bone induced by 10(7) PFU of BMP vector in athymic nude rats was 0.37+/-0.03 cm(3) for ADCMVBMP-2, 0.89+/-0.07 cm(3) for ADCMVBMP-4, 1.02+/-0.07 cm(3) for ADCMVBMP-6, 0.24+/-0.05 cm(3) for ADCMVBMP-7, and 0.63+/-0.07 cm(3) for ADCMVBMP-9. In immunocompetent Sprague-Dawley rats, no bone formation was demonstrated in the ADCMVBMP-2, ADCMVBMP-4, and ADCMVBMP-7 groups. ADCMVBMP-6 at a viral dose of 10(8) PFU induced 0.10+/-0.03 cm(3) of new bone, whereas ADCMVBMP-9 at a lower viral dose of 10(7) PFU induced more bone, with an average volume of 0.29+/-0.01 cm(3).
Collapse
Affiliation(s)
- J Z Li
- Molecular Neurosurgery Lab, Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peitsch WK, Hofmann I, Endlich N, Prätzel S, Kuhn C, Spring H, Gröne HJ, Kriz W, Franke WW. Cell biological and biochemical characterization of drebrin complexes in mesangial cells and podocytes of renal glomeruli. J Am Soc Nephrol 2003; 14:1452-63. [PMID: 12761245 DOI: 10.1097/01.asn.0000069222.63700.de] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Drebrins are actin-binding proteins (ABP) initially identified in and thought to be specific for neuronal cells, where they appear to contribute to the formation of cell processes. Recent studies have also detected the isoform drebrin E2 in a wide range of non-neuronal cell types, notably in and near actin-rich lamellipodia and filopodia. The present study demonstrates drebrin enrichment in renal glomeruli. Immunohistochemistry and double-label confocal laser scanning microscopy have shown intense drebrin reactions in the mesangial cells of diverse mammalian species. In adult human and bovine kidneys, drebrin is, in addition, markedly enriched in the foot processes of podocytes, as also demonstrable by immunoelectron microscopy. By contrast, the podocytes of rodent glomeruli appear to contain significant drebrin concentrations only during early developmental stages. In differentiated murine podocytes cultured in vitro, however, drebrin is concentrated in the cell processes, where it partially codistributes with actin and other ABP. In biochemical analyses using protein extracts from renal cortices, large (approximately 20S) complexes ("drebrosomes") were found containing drebrin and actin. These findings confirm and extend our hypothesis that drebrin is involved in the regulation of actin dynamics also outside the nervous system. Clearly, drebrin has to be added to the ensemble of ABP regulating the actomyosin system and the dynamics of mesangial cells and foot processes in podocytes.
Collapse
Affiliation(s)
- Wiebke K Peitsch
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sordella R, Jiang W, Chen GC, Curto M, Settleman J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 2003; 113:147-58. [PMID: 12705864 DOI: 10.1016/s0092-8674(03)00271-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mature adipocytes and myocytes are derived from a common mesenchymal precursor. While IGF-1 promotes the differentiation of both cell types, the signaling pathways that specify the distinct cell fates are largely unknown. Here, we show that the Rho GTPase and its regulator, p190-B RhoGAP, are components of a critical switch in the adipogenesis-myogenesis "decision." Cells derived from embryos lacking p190-B RhoGAP exhibit excessive Rho activity, are defective for adipogenesis, but undergo myogenesis in response to IGF-1 exposure. In vitro, activation of Rho-kinase by Rho inhibits adipogenesis and is required for myogenesis. The activation state of Rho following IGF-1 signaling is determined by the tyrosine-phosphorylation status of p190-B RhoGAP and its resulting subcellular relocalization. Moreover, adjusting Rho activity is sufficient to alter the differentiation program of adipocyte and myocyte precursors. Together, these results identify the Rho GTPase as an essential modulator of IGF-1 signals that direct the adipogenesis-myogenesis cell fate decision.
Collapse
Affiliation(s)
- Raffaella Sordella
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
43
|
Muscat GEO, Wagner BL, Hou J, Tangirala RK, Bischoff ED, Rohde P, Petrowski M, Li J, Shao G, Macondray G, Schulman IG. Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors. J Biol Chem 2002; 277:40722-8. [PMID: 12193599 DOI: 10.1074/jbc.m206681200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have identified the liver X receptors (LXRalpha and LXRbeta) as important regulators of cholesterol and lipid metabolism. Although originally identified as liver-enriched transcription factors, LXRs are also expressed in skeletal muscle, a tissue that accounts for approximately 40% of human total body weight and is the major site of glucose utilization and fatty acid oxidation. Nevertheless, no studies have yet addressed the functional role of LXRs in muscle. In this work we utilize a combination of in vivo and in vitro analysis to demonstrate that LXRs can functionally regulate genes involved in cholesterol metabolism in skeletal muscle. Furthermore we show that treatment of muscle cells in vitro with synthetic agonists of LXR increases the efflux of intracellular cholesterol to extracellular acceptors such as high density lipoprotein, thus identifying this tissue as a potential important regulator of reverse cholesterol transport and high density lipoprotein levels. Additionally we demonstrate that LXRalpha and a subset of LXR target genes are induced during myogenesis, suggesting a role for LXR-dependent signaling in the differentiation process.
Collapse
Affiliation(s)
- George E O Muscat
- X-Ceptor Therapeutics, Inc., 4757 Nexus Centre Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Springer ML, Ozawa CR, Blau HM. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:177-86. [PMID: 11977092 DOI: 10.1002/cm.10022] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.
Collapse
Affiliation(s)
- Matthew L Springer
- Baxter Laboratory for Genetic Pharmacology, Stanford University, Stanford, California 94305-5175, USA
| | | | | |
Collapse
|
45
|
Lloyd C, Gunning P. beta- and gamma-actin genes differ in their mechanisms of down-regulation during myogenesis. J Cell Biochem 2002; 84:335-42. [PMID: 11787062 DOI: 10.1002/jcb.10014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the differentiation of myoblasts to form myotubes, the expression patterns of the different actin isoforms change. The cytoplasmic actins, beta and gamma, are down-regulated and the muscle specific isoforms are up-regulated. The region responsible for the down-regulation of the beta-actin gene has been located in the 3'end of the gene. Since the beta- and gamma-actin genes arose from a gene duplication (Erba et al. [1988] J. Cell. Biol. 8:1775-1789), it is possible that the region responsible for down-regulation of the gamma-actin gene may also be in the 3'end of the gene. We have tested this by transfection of human gamma-actin gene constructs into myogenic C2 cells. To our surprise, we found that the region responsible for down-regulation of the gamma-actin gene during differentiation is not in the 3' end of the gene in contrast to that for beta-actin. Rather, we found that intron III is required for appropriate down-regulation of gamma-actin during myogenesis. Intron III containing transcripts from the gamma-actin gene were also found to accumulate during myogenesis. We, therefore, propose that excision of intron III from the primary transcript is inhibited during myogenesis resulting in degradation of the RNA. Removal of intron III from the gene allows it to escape this regulatory mechanism.
Collapse
Affiliation(s)
- Catriona Lloyd
- Cell Biology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
46
|
Li YP, Schwartz RJ. TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J 2001; 15:1413-5. [PMID: 11387241 DOI: 10.1096/fj.00-0632fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y P Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
47
|
Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 2000; 18:304-8. [PMID: 10700146 DOI: 10.1038/73753] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new microtubule-binding molecule, myoseverin, was identified from a library of 2,6,9-trisubstituted purines in a morphological differentiation screen. Myoseverin induces the reversible fission of multinucleated myotubes into mononucleated fragments. Myotube fission promotes DNA synthesis and cell proliferation after removal of the compound and transfer of the cells to fresh growth medium. Transcriptional profiling and biochemical analysis indicate that myoseverin alone does not reverse the biochemical differentiation process. Instead, myoseverin affects the expression of a variety of growth factor, immunomodulatory, extracellular matrix-remodeling, and stress response genes, consistent with the activation of pathways involved in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- G R Rosania
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., San Diego, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Nakajima Y, Yamagishi T, Yoshimura K, Nomura M, Nakamura H. Antisense oligodeoxynucleotide complementary to smooth muscle alpha-actin inhibits endothelial-mesenchymal transformation during chick cardiogenesis. Dev Dyn 1999; 216:489-98. [PMID: 10633868 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<489::aid-dvdy17>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
alpha-Smooth-muscle actin (SMA) is the major isoform of adult vascular tissues. During early development, SMA is expressed in various mesodermally derived tissues in a spatiotemporally restricted manner; however, its exact role remains unknown. We examined its role in the formation of chicken atrioventricular (AV) endocardial cushion tissue. This developmental process possesses the characteristics of endothelial-mesenchymal transformation and is partly TGF beta-dependent. Immunohistochemistry showed that SMA was (1) expressed homogeneously in the newly formed appendages of transforming endothelial/mesenchymal cells, and (2) distributed in a punctate manner in the lamellipodia/filopodia of invading mesenchymal cells. Antisense oligodeoxynucleotide (ODNs) specific for SMA reduced both SMA expression and mesenchymal formation in AV endothelial cells cultured with myocardium on a collagen gel lattice. Perturbation of SMA by antisense ODN also inhibited TGF beta-inducible migratory appendage formation in a cultured AV endothelial monolayer. However, it did not inhibit cell:cell separation or cellular hypertrophy. These results suggest that the expression of SMA is necessary for migratory appendage formation during the TGF beta-dependent initial phenotypic changes that occur in endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy, Saitama Medical School, Japan.
| | | | | | | | | |
Collapse
|
49
|
Smith CW, Klaasmeyer JG, Edeal JB, Woods TL, Jones SJ. Effects of serum deprivation, insulin and dexamethasone on polysome percentages in C2C12 myoblasts and differentiating myoblasts. Tissue Cell 1999; 31:451-8. [PMID: 10522391 DOI: 10.1054/tice.1999.0053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An increase in the rate of protein synthesis in living cells can be achieved by regulating the quantity of mRNA, ribosomes, and enzymes available for translation or by regulating the efficiency at which existing components are used. Efficiency can be measured by comparing the number of ribosomes actively engaged in the synthesis of protein (polysomes) to the pool of free ribosomes. The objective of this study was to determine the percentage of ribosomes found as polysomes in C2C12 cells deprived of serum or exposed to insulin or dexamethasone 24 h before and after being stimulated to differentiate. Individual 60 mm culture dishes were exposed to serum-free control medium, medium containing serum, insulin, or dexamethasone for a period of 1 h or 2 h and then quickly frozen. The ribosomes and polysomes from these cells were separated by ultracentrifugation on 15 to 60% sucrose gradients and the absorbance across the gradient at 254 nm was recorded. Polysome percentages were determined as the area under the polysome peak divided by the total area under the curve. Serum deprivation caused a 12% decline in the percentage of ribosomes found as polysomes (P < 0.01). Dexamethasone caused a quadratic decline (P < 0.05) in polysome percentage, while insulin yielded a quadratic increase (P < 0.05). Protein synthesis assays measuring 3H-tyrosine uptake showed similar responses. These changes occurred in the absence of any differences in total RNA concentration. It was concluded that differentiation and the absence of serum in the media reduced the rate of recruitment of ribosomes for protein synthesis. Insulin increased ribosome recruitment which was also observed by a similar increase in incorporation of radio-labeled tyrosine.
Collapse
Affiliation(s)
- C W Smith
- University of California at San Diego, USA
| | | | | | | | | |
Collapse
|
50
|
Bailey P, Downes M, Lau P, Harris J, Chen SL, Hamamori Y, Sartorelli V, Muscat GE. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol 1999; 13:1155-68. [PMID: 10406466 DOI: 10.1210/mend.13.7.0305] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Classical ligand-activated nuclear receptors (e.g. thyroid hormone receptor, retinoic acid receptor), orphan nuclear receptors (e.g. Rev-erbAalpha/beta), Mad/Max bHLH (basic helix loop helix)-LZ proteins, and oncoproteins, PLZF and LAZ3/BCL6, bind DNA and silence transcription by recruiting a repressor complex that contains N-CoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoic acid and thyroid hormone receptor), Sin3A/B, and HDAc-1/-2 proteins. The function of the corepressor, N-CoR, in the process of cellular differentiation and coupled phenotypic acquisition, has not been investigated. We examined the functional role of N-CoR in myogenesis (muscle differentiation), an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding N-CoR was suppressed as proliferating myoblasts exited the cell cycle, and formed morphologically and biochemically differentiated myotubes. Exogenous expression of N-CoR (but not RIP13) in myogenic cells ablated 1) myogenic differentiation, 2) the expression of the myoD gene family that encode the myogenic specific bHLH proteins, and 3) the crucial cell cycle regulator, p21Waf-1/Cip-1 mRNA. Furthermore, N-CoR expression efficiently inhibits the myoD-mediated myogenic conversion of pluripotential C3H10T1/2 cells. We demonstrate that MyoD-mediated transactivation and activity are repressed by N-CoR. The mechanism involves direct interactions between MyoD and N-CoR; moreover, the interaction was dependent on the amino-terminal repression domain (RD1) of N-CoR and the bHLH region of MyoD. Trichostatin A treatment significantly stimulated the activity of MyoD by approximately 10-fold and inhibited the ability of N-CoR to repress MyoD-mediated transactivation, consistent with the involvement of the corepressor and the recruitment of a histone deacteylase activity in the process. This work demonstrates that the corepressor N-CoR is a key regulator of MyoD activity and mammalian differentiation, and that N-CoR has a multifaceted role in myogenesis.
Collapse
Affiliation(s)
- P Bailey
- University of Queensland, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|